Transition systems

A transition system $T S$ is a tuple $(S, A c t, \rightarrow, I, A P, L)$ where

- S is a set of states
- Act is a set of actions
- $\longrightarrow \subseteq S \times A c t \times S$ is a transition relation
- $I \subseteq S$ is a set of initial states
- $A P$ is a set of atomic propositions
- $L: S \rightarrow 2^{A P}$ is a labeling function

$$
\text { Notation: } s \xrightarrow{\alpha} s^{\prime} \text { for }\left(s, \alpha, s^{\prime}\right) \in \longrightarrow
$$

Transition systems \neq automata

As opposed to automata, in a transition system:

- there are no accepting states
- set of states and actions may be infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Modeling hardware: sequential circuits

Transition system representation of a simple hardware circuit:

- input variable x, output variable y, and register r
- output function $\neg(x \oplus r)$
- register evaluation function $x \vee r$

Modeling software: program graphs

A program graph $P G$ over set Var of typed variables is a tuple

$$
\left(\text { Loc, Act, Effect }, \longrightarrow, L o c_{0}, g_{0}\right) \quad \text { where }
$$

- Loc is a set of locations with initial locations $L O c_{0} \subseteq L O C$
- Act is a set of actions
- Effect : Act \times Eval(Var) \rightarrow Eval(Var) is the effect function
$-\longrightarrow \subseteq L o c \times(\underbrace{\text { Cond(Var) }}_{\text {Boolean condition over Var }} \times A c t) \times L o c$ is the transition relation
- $g_{0} \in \operatorname{Cond}(\operatorname{Var})$ is the initial condition.

Notation: $\ell \xrightarrow{g: \alpha} \ell^{\prime}$ denotes $\left(\ell, g, \alpha, \ell^{\prime}\right) \in \longrightarrow$

Beverage vending machine

- Loc $=\{$ start, select $\}$ with Loc $_{0}=\{$ start $\}$
- Act $=\{$ bget, sget, coin, ret_coin, refill $\}$
- Var $=\{$ nsprite, nbeer $\}$ with domain $\{0,1, \ldots, \max \}$
- Effect:

Effect(coin, η) $=\eta$
Effect(ret_coin, η) $=\eta$
Effect(sget, $\eta) \quad=\eta[$ nsprite $:=$ nsprite -1$]$
Effect(bget, $\eta)=\eta[$ nbeer $:=$ nbeer -1$]$
Effect(refill, $\eta)=\eta[$ nsprite $:=$ max, nbeer $:=$ max]

- $g_{0}=($ nsprite $=\max \wedge$ nbeer $=\max)$

From program graphs to transition systems

- Basic strategy: unfolding
- state = location (current control) $\ell+$ data valuation η
- initial state = initial location satisfying the initial condition g_{0}
- Propositions and labeling
- propositions: " ℓ " and " $x \in D$ " for $D \subseteq \operatorname{dom}(x)$
- $\langle\ell, \eta\rangle$ is labeled with " ℓ " and all conditions that hold in η
- if $\ell \xrightarrow{g: \alpha} \ell^{\prime}$ and g holds in η, then $\langle\ell, \eta\rangle \xrightarrow{\alpha}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle$

Structured operational semantics

- We describe the operational semantics using inference rules of the form

$$
\frac{\text { premise }}{\text { conclusion }}
$$

The notation means:
If the premise holds, then the conclusion holds

- If the premise is a tautology, it may be omitted
- In this case, the rule is also called an axiom

Transition systems for program graphs

The transition system $T S(P G)$ of program graph

$$
P G=\left(L o c, \text { Act, Effect, } \hookrightarrow, L o c_{0}, g_{0}\right)
$$

over set Var of variables is the tuple $(S, A c t, \longrightarrow, I, A P, L)$ where

- S = Loc \times Eval(Var)
- $\longrightarrow \subseteq S \times A c t \times S$ is defined by the rule:

$$
\frac{\ell \stackrel{\text { g:a }}{\longrightarrow} \ell^{\prime} \wedge \eta \vDash g}{\langle\ell, \eta\rangle \xrightarrow{\longrightarrow}\left\langle\ell^{\prime}, \operatorname{Effect}(\alpha, \eta)\right\rangle}
$$

- $I=\left\{\langle\ell, \eta\rangle \mid \ell \in L o c_{0}, \eta \models g_{0}\right\}$
- $A P=L o c \cup \operatorname{Cond}($ Var $)$ and $L(\langle\ell, \eta\rangle)=\{\ell\} \cup\{g \in \operatorname{Cond}($ Var $) \mid \eta \models g\}$.

Synchronous composition

Let $T S_{i}=\left(S_{i}, A c t, \rightarrow_{i}, I_{i}, A P_{i}, L_{i}\right)$ and
Act \times Act \rightarrow Act, $\quad(\alpha, \beta) \rightarrow \alpha * \beta$
$T S_{1} \otimes T S_{2}=\left(S_{1} \times S_{2}, A c t, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)$
with $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and \rightarrow is defined by the following rule:

$$
\frac{s_{1} \xrightarrow{\alpha}_{1} s_{1}^{\prime} \wedge s_{2} \xrightarrow{\beta}_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha * \beta}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle}
$$

typically used for synchronous hardware circuits

Example

$T S_{1}:$

$T S_{2}$:

$T S_{1} \otimes T S_{2}:$

Composition by interleaving

- Actions of independent processes are interleaved for example if
- a single processor is available
- that takes turns in processing the actions of the processes
- No assumptions are made on the order of processes
- possible orders for non-terminating independent processes P and Q :

P	Q	P	Q	P	Q	Q	Q	P	\ldots
P	P	Q	P	P	Q	P	P	Q	\cdots
P	Q	P	P	Q	P	P	P	Q	\cdots

- assumption: there is a scheduler with an a-priori unknown strategy
une exécution de P est entelocée are e one exéurtro do Q

Interleaving

$$
\underbrace{x:=x+1}_{=\alpha}| | \mid \underbrace{y:=y-2}_{=\beta}
$$

Interleaving of transition systems $\rightarrow \begin{array}{r}\text { pour dues } S T \text { qu s } \\ \text { ne se syndrowisenh }\end{array}$
Let $T S_{i}=\left(S_{i}, A c t_{i} \rightarrow \rightarrow_{i}, l_{i}, A P_{i}, L_{i}\right) i=1$, 2, be two transition pas
Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, l_{i}, A P_{i}, L_{i}\right) i=1,2$, be two transition
systems.

Transition system

$$
\left.T S_{1} \|| | S_{2}=\left(S_{1} \times S_{2} .\right) A c t_{1} \uplus A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)
$$

where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and the transition relation \rightarrow is defined by the rules:

$$
\frac{s_{1} \xrightarrow{\alpha} s_{1} s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \text { and } \frac{s_{2} \xrightarrow{\alpha} 2 s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle}
$$

$$
\begin{array}{lll}
\left(s_{1}, s_{2}\right) \xrightarrow{\alpha}\left(s_{1}^{\prime}, s_{2}\right) & \text { s: } & s_{1} \xrightarrow{\alpha} s_{1}^{\prime} \\
\left(s_{1}, s_{2}\right) \xrightarrow{\beta}\left(s_{1}, s_{2}^{\prime}\right) & \text { si } & s_{2} \xrightarrow{\beta} s_{2}^{\prime}
\end{array}
$$

Interleaving of program graphs

For program graphs $P G_{1}$ (on $V a r_{1}$) and $P G_{2}$ (on $V a r_{2}$) without shared variables, i.e., $\operatorname{Var}_{1} \cap \operatorname{Var}_{2}=\emptyset$,
$T S\left(P G_{1}\right) \| T S\left(P G_{2}\right)$
faithfully describes the concurrent behavior of $P G_{1}$ and $P G_{2}$
what if they have variables in common?

Shared variable communication

$\langle x=6, x=4\rangle$ is an inconsistent state!
\Rightarrow no faithful model of the concurrent execution of α and β
Idea: first interleave, then unfold

Interleaving of program graphs

Let $P G_{i}=\left(\right.$ Loc $_{i}$, Act $_{i}$, Effect $_{i}, \longrightarrow_{i}$, Loc $\left._{0, i}, g_{0, i}\right)$
over variables Var $_{i}$.
Program graph $P G_{1} \| \mid P G_{2}$ over $\operatorname{Var}_{1} \cup \operatorname{Var}_{2}$ is defined by:
$\left(L o c_{1} \times\right.$ Loc $_{2}$, Act $_{1} \uplus A c t_{2}$, Effect $\left., \longrightarrow, L o c_{0,1} \times L o c_{0,2}, g_{0,1} \wedge g_{0,2}\right)$
where \longrightarrow is defined by the inference rules:

$$
\frac{\ell_{1} \xrightarrow{g: \alpha} 1 \ell_{1}^{\prime}}{\left\langle\ell_{1}, \ell_{2}\right\rangle \xrightarrow{g: \alpha}\left\langle\ell_{1}^{\prime}, \ell_{2}\right\rangle} \text { and } \frac{\ell_{2} \xrightarrow{g: \alpha} 2 \ell_{2}^{\prime}}{\left\langle\ell_{1}, \ell_{2}\right\rangle \xrightarrow{g: \alpha}\left\langle\ell_{1}, \ell_{2}^{\prime}\right\rangle}
$$

and $\operatorname{Effect}(\alpha, \eta)=\operatorname{Effect}_{i}(\alpha, \eta)$ if $\alpha \in \operatorname{Act}_{i}$.

Example

$$
\text { note that } T S\left(P G_{1}\right) \| \mid T S\left(P G_{2}\right) \neq T S\left(P G_{1} \| \mid P G_{2}\right)
$$

Semaphore-based mutual exclusion

$P G_{1}:$

$y=0$ means "lock is currently possessed"; $y=1$ means "lock is free"

Program graph $P G_{1}| | \mid P G_{2}$

Transition system $T S\left(P G_{1}| | \mid P G_{2}\right)$

Composition by handshaking
(Rendet-vons)

$H \subseteq$ Act $_{1} \cap$ Act $_{2}$

- H is a set of handshake actions
- actions outside H are independent and are interleaved
- actions in H are synchronized
- the interacting processes "shake hands"

Handshaking

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, l_{i}, A P_{i}, L_{i}\right), i=1,2$ and $H \subseteq A c t_{1} \cap A c t_{2}$.
$T S_{1} \|_{H} T S_{2}=\left(S_{1} \times S_{2}\right.$, Act $\left._{1} \cup A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)$ where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and with \rightarrow defined by:

- interleaving for $\alpha \notin H$:

$$
\frac{s_{1} \xrightarrow{\alpha}{ }_{1} s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \quad \frac{s_{2} \xrightarrow{\alpha}{ }_{2} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle}
$$

- handshaking for $\alpha \in H$:

$$
\frac{s_{1} \xrightarrow{\alpha} s_{1}^{\prime} s_{1}^{\wedge} s_{2} \xrightarrow{\alpha} 2 s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle}
$$

note that $T S_{1}\left\|_{H} T S_{2}=T S_{2}\right\|_{H} T S_{1}$ but
$\left(T S_{1} \|_{H_{1}} T S_{2}\right)\left\|_{H_{2}} T S_{3} \neq T S_{1}\right\|_{H_{1}}\left(T S_{2} \|_{H_{2}} T S_{3}\right)$
$H=\left\{\operatorname{signal}\left(P_{1}, P_{2}\right)\right\}$

A booking system

$$
B C R\|B P\| \text { Printer }
$$

$\|$ is a shorthand for $\|_{H}$ with $H=A c t_{1} \cap A c t_{2}$

Handshaking

Let $T S_{i}=\left(S_{i}, A c t_{i}, \rightarrow_{i}, l_{i}, A P_{i}, L_{i}\right), i=1,2$ and $H \subseteq A c t_{1} \cap A c t_{2}$.
$T S_{1} \|_{H} T S_{2}=\left(S_{1} \times S_{2}, A c t_{1} \cup A c t_{2}, \rightarrow, I_{1} \times I_{2}, A P_{1} \uplus A P_{2}, L\right)$
where $L\left(\left\langle s_{1}, s_{2}\right\rangle\right)=L_{1}\left(s_{1}\right) \cup L_{2}\left(s_{2}\right)$ and with \rightarrow defined by:

- interleaving for $\alpha \notin H$:

$$
\frac{s_{1} \xrightarrow{\alpha} s_{1}^{\prime} s_{1}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}\right\rangle} \quad \frac{s_{2} \xrightarrow{\alpha} 2 s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}, s_{2}^{\prime}\right\rangle}
$$

- handshaking for $\alpha \in H$:

$$
\begin{gathered}
\frac{s_{1} \stackrel{\alpha}{\longrightarrow} s_{1}^{\prime} \wedge s_{2} \xrightarrow{\alpha} s_{2}^{\prime} s_{2}^{\prime}}{\left\langle s_{1}, s_{2}\right\rangle \xrightarrow{\alpha}\left\langle s_{1}^{\prime}, s_{2}^{\prime}\right\rangle} \\
\text { note that } T S_{1}\left\|_{H} T S_{2}=T S_{2}\right\|_{H} T S_{1} \text { but } \\
\left(T S_{1} \|_{H_{1}} T S_{2}\right)\left\|_{H_{2}} T S_{3} \neq T S_{1}\right\|_{H_{1}}\left(T S_{2} \|_{H_{2}} T S_{3}\right)
\end{gathered}
$$

A booking system

BCR || BP || Printer
$\|$ is a shorthand for $\|_{H}$ with $H=A c t_{1} \cap A c t_{2}$

