

Transition systems \neq automata

As opposed to automata, in a transition system:

- ► there are **no** accepting states
- set of states and actions may be infinite
- may have infinite branching
- actions may be subject to synchronization
- nondeterminism has a different role

Structured operational semantics

We describe the operational semantics using inference rules of the form

premise conclusion

The **notation** means: If the premise holds, then the conclusion holds

- If the premise is a tautology, it may be omitted
- In this case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph

 $PG = (Loc, Act, Effect, \hookrightarrow, Loc_0, g_0)$

over set Var of variables is the tuple $(S, Act, \rightarrow, I, AP, L)$ where

- $S = Loc \times Eval(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by the rule:

$$\frac{\ell \stackrel{\boldsymbol{g}:\alpha}{\hookrightarrow} \ell' \land \eta \models \boldsymbol{g}}{\langle \ell, \eta \rangle \stackrel{\boldsymbol{\alpha}}{\longrightarrow} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle}$$

- $\blacktriangleright I = \{ \langle \ell, \eta \rangle \mid \ell \in \textit{Loc}_0, \eta \models g_0 \}$
- ► $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$

Synchronous composition

Let $TS_i = (S_i, Act, \rightarrow_i, I_i, AP_i, L_i)$ and $Act \times Act \rightarrow Act, (\alpha, \beta) \rightarrow \alpha * \beta$

$$TS_1 \otimes TS_2 = (S_1 \times S_2, Act, \rightarrow, l_1 \times l_2, AP_1 \uplus AP_2, L)$$

with $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and \rightarrow is defined by the following rule:

$$\frac{s_1 \xrightarrow{\alpha} 1 s'_1 \land s_2 \xrightarrow{\beta} 2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha * \beta} \langle s'_1, s'_2 \rangle}$$

typically used for synchronous hardware circuits

Exclusion mutuelle P1 11 P2 - 11 Pn

Composition by interleaving

- Actions of independent processes are interleaved for example if
 - a single processor is available

. . .

PIIQ

- that takes turns in processing the actions of the processes
- No assumptions are made on the order of processes
 - possible orders for non-terminating independent processes *P* and *Q*:

Р	Q	P	Q	Ρ	Q	Q	Q	Р	
Р	Р	Q	Р	Р	Q	Ρ	Ρ	Q	
Ρ	Q	Ρ	Ρ	Q	Ρ	Ρ	Ρ	Q	

assumption: there is a scheduler with an a-priori unknown strategy

une execution de P est entrelacée avec une execution de Q

Interleaving

Interleaving of transition systems

-> pour des ST qui ne se syndronisch

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$ i=1, 2, be two transition systems.

Transition system

$$TS_1 \parallel TS_2 = (S_1 \times S_2) Act_1 \uplus Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and the transition relation \rightarrow is defined by the rules:

$$\frac{s_{1} \xrightarrow{\alpha} 1}{\langle s_{1}, s_{2} \rangle \xrightarrow{\alpha} \langle s_{1}', s_{2} \rangle} \text{ and } \frac{s_{2} \xrightarrow{\alpha} 2}{\langle s_{1}, s_{2} \rangle \xrightarrow{\alpha} \langle s_{1}, s_{2} \rangle}$$

$$(s_{1}, s_{2}) \xrightarrow{\alpha} \langle s_{1}', s_{2} \rangle \xrightarrow{s} \langle s_{1}, s_{2} \rangle \xrightarrow{\alpha} \langle s_{1}, s_{2} \rangle$$

$$(s_{1}, s_{2}) \xrightarrow{\alpha} \langle s_{1}', s_{2} \rangle \xrightarrow{s} \langle s_{1}', s_{2} \rangle \xrightarrow{s} \langle s_{1}, s_{2} \rangle$$

$$(s_{1}, s_{2}) \xrightarrow{\beta} \langle s_{1}', s_{2} \rangle \xrightarrow{s} \langle s_{1}, s_{2} \rangle \xrightarrow{s} \langle s_{1}, s_{2} \rangle$$

Interleaving of program graphs

For program graphs PG_1 (on Var_1) and PG_2 (on Var_2) without shared variables, i.e., $Var_1 \cap Var_2 = \emptyset$,

 $TS(PG_1) \parallel TS(PG_2)$

faithfully describes the concurrent behavior of PG_1 and PG_2

what if they have variables in common?

Shared variable communication

 $\langle x=6, x=4 \rangle$ is an **inconsistent** state!

 \Rightarrow no faithful model of the concurrent execution of α and β

Idea: first interleave, then unfold

Interleaving of program graphs

Let $PG_i = (Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i})$ over variables Var_i .

Program graph $PG_1 \parallel PG_2$ over $Var_1 \cup Var_2$ is defined by:

 $(Loc_1 \times Loc_2, Act_1 \uplus Act_2, Effect, \longrightarrow, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \land g_{0,2})$

where \longrightarrow is defined by the inference rules:

$$\frac{\ell_1 \xrightarrow{g:\alpha} \ell'_1}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha} \langle \ell'_1, \ell_2 \rangle} \text{ and } \frac{\ell_2 \xrightarrow{g:\alpha} \ell'_2}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha} \langle \ell_1, \ell'_2 \rangle}$$

and *Effect*(α, η) = *Effect_i*(α, η) if $\alpha \in Act_i$.

Example

note that $TS(PG_1) \parallel TS(PG_2) \neq TS(PG_1) \parallel PG_2$

Semaphore-based mutual exclusion

y=0 means "lock is currently possessed"; y=1 means "lock is free"

Program graph PG₁ ||| PG₂

Transition system *TS*(*PG*₁ ||| *PG*₂)

- *H* is a set of handshake actions
- actions outside H are independent and are interleaved
- ► actions in *H* are synchronized
- the interacting processes "shake hands"

Handshaking

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i), i=1, 2 \text{ and } H \subseteq Act_1 \cap Act_2$

 $TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, l_1 \times l_2, AP_1 \uplus AP_2, L$ where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

• interleaving for $\alpha \notin H$:

$$\frac{\begin{array}{c} \mathbf{S}_{1} \xrightarrow{\alpha} \mathbf{S}_{1} \\ \hline \mathbf{S}_{1}, \mathbf{S}_{2} \end{array} \xrightarrow{\alpha} \left(\mathbf{S}_{1}', \mathbf{S}_{2} \right)}{\left(\mathbf{S}_{1}, \mathbf{S}_{2} \right) \xrightarrow{\alpha} \left(\mathbf{S}_{1}', \mathbf{S}_{2} \right)} \\ \hline \mathbf{S}_{1}, \mathbf{S}_{2} \xrightarrow{\alpha} \left(\mathbf{S}_{1}, \mathbf{S}_{2} \right) \xrightarrow{\alpha} \left(\mathbf{S}_{1}, \mathbf{S}_{2} \right) \\ \hline \mathbf{S}_{1}, \mathbf{S}_{2} \xrightarrow{\alpha} \left(\mathbf{S}_{1}, \mathbf{S}_{2} \right) \xrightarrow{\alpha} \left(\mathbf{S}_{1}, \mathbf{S}_{$$

 $\begin{array}{l} \text{note that } TS_1 \parallel_{\mathcal{H}} TS_2 = TS_2 \parallel_{\mathcal{H}} TS_1 \text{ but} \\ (TS_1 \parallel_{\mathcal{H}_1} TS_2) \parallel_{\mathcal{H}_2} TS_3 \neq TS_1 \parallel_{\mathcal{H}_1} (TS_2 \parallel_{\mathcal{H}_2} TS_3) \end{array}$

A booking system

BCR || BP || Printer

 \parallel is a shorthand for \parallel_H with $H = Act_1 \cap Act_2$

Handshaking

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i), i=1, 2 \text{ and } H \subseteq Act_1 \cap Act_2$.

 $TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, l_1 \times l_2, AP_1 \uplus AP_2, L)$ where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

• interleaving for $\alpha \notin H$:

$s_1 \xrightarrow{\alpha} s_1 s_1'$	$s_2 \xrightarrow{\alpha}_2 s'_2$			
$\langle \boldsymbol{s_1}, \boldsymbol{s_2} \rangle \xrightarrow{\alpha} \langle \boldsymbol{s_1'}, \boldsymbol{s_2} \rangle$	$\langle \boldsymbol{s_1}, \boldsymbol{s_2} \rangle \xrightarrow{\alpha} \langle \boldsymbol{s_1}, \boldsymbol{s_2'} \rangle$			

• handshaking for $\alpha \in H$:

$$\frac{ \begin{array}{cccc} s_1 & \stackrel{\alpha}{\longrightarrow}_1 & s_1' & \wedge & s_2 \stackrel{\alpha}{\longrightarrow}_2 & s_2' \\ \hline & \langle s_1, s_2 \rangle & \stackrel{\alpha}{\longrightarrow} & \langle s_1', s_2' \rangle \end{array}$$

note that $TS_1 \parallel_H TS_2 = TS_2 \parallel_H TS_1$ but $(TS_1 \parallel_{H_1} TS_2) \parallel_{H_2} TS_3 \neq TS_1 \parallel_{H_1} (TS_2 \parallel_{H_2} TS_3)$

A booking system

BCR || BP || Printer

 \parallel is a shorthand for \parallel_H with $H = Act_1 \cap Act_2$