
Transition systems

A transition system TS is a tuple (S,Act,→, I,AP,L) where

! S is a set of states

! Act is a set of actions

! −→ ⊆ S × Act × S is a transition relation

! I ⊆ S is a set of initial states

! AP is a set of atomic propositions

! L : S → 2AP is a labeling function

Notation: s α−−→ s′ for (s,α, s′) ∈ −→
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Transition systems &= automata

As opposed to automata, in a transition system:

! there are no accepting states

! set of states and actions may be infinite

! may have infinite branching

! actions may be subject to synchronization

! nondeterminism has a different role



Modeling hardware: sequential circuits
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Transition system representation of a simple hardware circuit:

! input variable x , output variable y , and register r

! output function ¬(x ⊕ r)

! register evaluation function x ∨ r
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Modeling software: program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,−→,Loc0,g0) where

! Loc is a set of locations with initial locations Loc0 ⊆ Loc

! Act is a set of actions

! Effect : Act × Eval(Var) → Eval(Var) is the effect function

! −→ ⊆ Loc × ( Cond(Var)︸ ︷︷ ︸
Boolean condition over Var

×Act)× Loc

is the transition relation

! g0 ∈ Cond(Var) is the initial condition.

Notation: "
g:α−−−→ "′ denotes (", g,α, "′) ∈ −→
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Beverage vending machine

! Loc = { start , select } with Loc0 = { start }

! Act = {bget, sget , coin, ret_coin, refill }

! Var = {nsprite, nbeer } with domain {0,1, . . . ,max }

! Effect:

Effect(coin, η) = η
Effect(ret_coin, η) = η
Effect(sget , η) = η[nsprite := nsprite−1]
Effect(bget , η) = η[nbeer := nbeer−1]
Effect(refill , η) = η[nsprite := max , nbeer := max ]

! g0 = (nsprite = max ∧ nbeer = max)
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From program graphs to transition systems

! Basic strategy: unfolding
! state = location (current control) " + data valuation η
! initial state = initial location satisfying the initial

condition g0

! Propositions and labeling
! propositions: “"” and “x ∈ D” for D ⊆ dom(x)
! 〈", η〉 is labeled with “"” and all conditions that hold in η

! if "
g:α−−−→ "′ and g holds in η, then 〈", η〉 α−−→〈"′,Effect(α, η)〉
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Structured operational semantics

! We describe the operational semantics using inference
rules of the form

premise

conclusion

The notation means:
If the premise holds, then the conclusion holds

! If the premise is a tautology, it may be omitted

! In this case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect, ↪→,Loc0,g0)

over set Var of variables is the tuple (S,Act,−→, I,AP,L) where

! S = Loc × Eval(Var)

! −→⊆ S × Act × S is defined by the rule:

"
g:α
↪→ "′ ∧ η |= g

〈", η〉 α−−→〈"′,Effect(α, η)〉

! I = {〈", η〉 | " ∈ Loc0, η |= g0}

! AP = Loc ∪ Cond(Var) and
L(〈", η〉) = {"} ∪ {g ∈ Cond(Var) | η |= g}.
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Synchronous composition

Let TSi = (Si ,Act,→i , Ii ,APi ,Li) and
Act × Act → Act, (α,β) → α ∗ β

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 / AP2,L)

with L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and → is defined by the
following rule:

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉
α∗β−−−→ 〈s′

1, s
′

2〉

typically used for synchronous hardware circuits
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Example
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Composition by interleaving

! Actions of independent processes are interleaved for
example if

! a single processor is available
! that takes turns in processing the actions of the processes

! No assumptions are made on the order of processes
! possible orders for non-terminating independent processes

P and Q:

P Q P Q P Q Q Q P . . .
P P Q P P Q P P Q . . .
P Q P P Q P P P Q . . .
. . .

! assumption: there is a scheduler with an a-priori unknown
strategy

Exclusion mnhuelle
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-
-
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une execution de Q



Interleaving

x := x + 1︸ ︷︷ ︸
=α

||| y := y − 2︸ ︷︷ ︸
=β

x=0
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α |||
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Interleaving of transition systems

Let TSi = (Si ,Acti ,→i , Ii ,APi ,Li) i=1,2, be two transition
systems.

Transition system

TS1 |||TS2 = (S1 × S2,Act1 / Act2,→, I1 × I2,AP1 / AP2,L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and the transition relation
→ is defined by the rules:

s1
α−−→1 s′

1

〈s1, s2〉
α−−→〈s′

1, s2〉
and

s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s1, s

′

2〉
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Interleaving of program graphs

For program graphs PG1 (on Var1) and PG2 (on Var2) without
shared variables, i.e., Var1 ∩ Var2 = ∅,

TS(PG1) ||| TS(PG2)

faithfully describes the concurrent behavior of PG1 and PG2

what if they have variables in common?

Shared variable communication

x := 2·x︸ ︷︷ ︸
action α

||| x := x + 1︸ ︷︷ ︸
action β

with initially x = 3

x=3

x=6

α |||

x=3

x=4

β = x=6, x=3

x=3, x=3

x=3, x=4

x=6, x=4

α
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β

〈x=6, x=4〉 is an inconsistent state!

⇒ no faithful model of the concurrent execution of α and β

Idea: first interleave, then unfold



Interleaving of program graphs

Let PGi =
(
Loci ,Acti ,Effecti ,−→ i ,Loc0,i ,g0,i

)

over variables Vari .

Program graph PG1 |||PG2 over Var1 ∪ Var2 is defined by:

(
Loc1 × Loc2,Act1 / Act2,Effect,−→,Loc0,1 × Loc0,2,g0,1 ∧ g0,2

)

where −→ is defined by the inference rules:

"1
g:α−−−→1 "′1

〈"1, "2〉
g:α−−−→ 〈"′1, "2〉

and
"2

g:α−−−→2 "′2

〈"1, "2〉
g:α−−−→ 〈"1, "

′

2〉

and Effect(α, η) = Effecti(α, η) if α ∈ Acti .

Example

x := 2·x︸ ︷︷ ︸
action α

||| x := x + 1︸ ︷︷ ︸
action β

with initially x = 3

note that TS(PG1) |||TS(PG2) &= TS(PG1 |||PG2)



Semaphore-based mutual exclusion

wait1

crit1

noncrit1

y := y+1

y := y−1

y > 0 :

wait2

crit2

noncrit2

y := y+1

y := y−1

y > 0 :

PG1 : PG2 :

y=0 means “lock is currently possessed”; y=1 means “lock is free”

Program graph PG1 |||PG2



Transition system TS(PG1 |||PG2)

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1,w2, y=1〉

〈c1, n2, y=0〉 〈w1,w2, y=1〉 〈n1, c2, y=0〉

〈c1,w2, y=0〉 〈w1, c2, y=0〉

y := y−1

y := y−1

y := y+1

y := y+1

Composition by handshaking

! H is a set of handshake actions

! actions outside H are independent and are interleaved

! actions in H are synchronized

! the interacting processes “shake hands”

Stn fftz
( Rendez - vous) if

HE Act, n Autre



Handshaking

Let TSi = (Si ,Acti ,→i , Ii ,APi ,Li), i=1,2 and H ⊆ Act1 ∩ Act2.

TS1 ‖H TS2 = (S1 × S2,Act1 ∪ Act2,→, I1 × I2,AP1 / AP2,L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and with → defined by:

! interleaving for α &∈ H:

s1
α−−→1 s′

1

〈s1, s2〉
α−−→ 〈s′

1, s2〉

s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s1, s

′

2〉

! handshaking for α ∈ H:

s1
α−−→1 s′

1 ∧ s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s′

1, s
′

2〉

note that TS1 ‖H TS2 = TS2 ‖H TS1 but

(TS1 ‖H1
TS2) ‖H2

TS3 "= TS1 ‖H1
(TS2 ‖H2

TS3)

A booking system
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scanstore
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storeprt_cmd

0

1

prt_cmdprint

BCR ‖ BP ‖ Printer

‖ is a shorthand for ‖H with H = Act1 ∩ Act2
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Handshaking
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