Transition systems

A transition system TSis a tuple (S, Act, —, I, AP, L) where

» Sis a set of states

v

Actis a set of actions

» — C S x Act x Sis a transition relation

v

| C Sis a set of initial states

v

AP is a set of atomic propositions

L:S—24Pisa labeling function

v

Notation: s =+ s’ for (s,,8') € —

Transition systems # automata

As opposed to automata, in a transition system:
» there are no accepting states
» set of states and actions may be infinite
» may have infinite branching
» actions may be subject to synchronization
» nondeterminism has a different role

Modeling hardware: sequential circuits

Transition system representation of a simple hardware circuit:
» input variable x, output variable y, and register r
» output function =(x & r)
» register evaluation function x v r

Modeling software: program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,—, Locy, gg) where

v

Loc s a set of locations with initial locations Locy C Loc
Actis a set of actions
Effect : Act x Eval(Var) — Eval(Var) is the effect function
— C Locx (Cond(Var) xAct) x Loc

Ny b

v

v

v

Boolean condition over Var

is the transition relation
9o € Cond(Var) is the initial condition.

v

Notation: ¢ %%, ¢’ denotes (¢, g, o, /') € —

Beverage vending machine

v

Loc = { start, select } with Locy = { start }
Act = { bget, sget, coin, ret_coin, refill }

v

» Var= { nsprite, nbeer } with domain {0,1,..., max}
» Effect.

Effect{coin,n) n

Effect(ret_coin,n) n

Effect(sget,n) n[nsprite := nsprite—1]
Effect(bget,n) nlnbeer := nbeer—1]

Effect(refill,) nlnsprite := max, nbeer := max]
9o = (nsprite = max A nbeer = max)

v

From program graphs to transition systems

» Basic strategy: unfolding
» state = location (current control) ¢ + data valuation n
» initial state = initial location satisfying the initial
condition gy
» Propositions and labeling
» propositions: “¢” and “x € D" for D C dom(x)
» (¢,n) is labeled with “¢” and all conditions that hold in 7

» if £-£% ¢ and g holds in 5, then (¢, 7)) - (¢, Effect(c, 1))

Structured operational semantics

» We describe the operational semantics using inference

rules of the form .
premise

conclusion
The notation means:
If the premise holds, then the conclusion holds

» If the premise is a tautology, it may be omitted
» In this case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph
PG = (Loc, Act, Effect,—, Locy, go)

over set Var of variables is the tuple (S, Act,—, I, AP, L) where

» S=Loc x Eval(Var)
» — C S x Act x Sis defined by the rule:

tI50 A g
(6,n) > (¢, Effect(a, n))
» I={{,n) | e Locy,n = go}

» AP = Loc U Cond(Var) and
L({¢;n)) = {£} U {g € Cond(Var) | 1 |= g}.

T L L
v\Ac.AA\\A-L a
STt~ d ovnn rW
nbeer pex =2
$0
it o V\,‘:CL(
vurr'.l»t,
0
.d‘Ou\—
nherr #0
ndrr:l‘r_ =0

Synchronous composition

Let TS; = (Sj, Act,—, I;, AP;, L;) and
Act x Act — Act, (a,B) — a3

TS TS = (81 x So,Act,—, I1 x I, APy & AP, L)
with L({s1,S2)) = L1(81) U Lao(s2) and — is defined by the

following rule:

Sq i)184 AN So i>gs’2

(s1,82) <25 (8], 8p)

typically used for synchronous hardware circuits

Pl &

Example

i

TS : TS::

TS @ TSz

FX‘«Q/\J VN~ b llle

Pl

Composition by interleaving

» Actions of independent processes are interleaved for

example if

» a single processor is available
» that takes turns in processing the actions of the processes

» No assumptions are made on the order of processes

» possible orders for non-terminating independent processes
Pand Q:

P QP QPQQQFP
P PQPPQPPQ
P QPP QPP PQ

» assumption: there is a scheduler with an a-priori unknown
strategy

Po

P

UL {%-éw[/-(\r\,. OQ,(\B {AL "(/\»LQ,Q.a&L & e

UL ZWQCWM &.9 &

Interleaving

X=x+1]|y=y-2

x=0 y=7
& 1] B =
x=1 y=5

V\.{:_(e JY\AW%

rM

Interleaving of transition systems —>

Let TS; = (S;, Acti, —i, i, AP, L) i=1,2, be two transition
systems.

Transition system
TS| TS, = (81 x Sp,)Act; W Acty, —, I1 X b, AP L‘!’JAPQ,L)

where L((s1, S2)) = L1(s1) U Lp(s2) and the transition relation
— is defined by the rules:

51 iﬂ Sq and So i)g 5/2
(51,82) =+ (s}, 82) (s1,82) = (54, 55)
!
o , . X
—
(c1,2) — (1) RS

A

S'_ H)— fz,/

f

(1.4 — (L H') Ju

Interleaving of program graphs

For program graphs PGy (on Vary) and PG, (on Var,) without
shared variables, i.e., Var; N Var, = 0,

TS(PGy) ||| TS(PG)

faithfully describes the concurrent behavior of PGy and PG,

what if they have variables in common?

Shared variable communication

Xx:=2x ||| x:=x+1 withinitially x =3
—~— —
action « action g

x=3 x=3
a Il s =
x=6 x=4

(x=6, x=4) is an inconsistent state!
= no faithful model of the concurrent execution of o and 3

Idea: first interleave, then unfold

Interleaving of program graphs

Let PG; = (Loc;, Act;, Effect;, — i, LoCy i, 9o,i)
over variables Var;.

Program graph PG; ||| PGz over Var; U Var, is defined by:
(Locy x Locy, Acty W Acty, Effect,—, Loco 1 x L0Cy 2,801 A Go,2)

where — is defined by the inference rules:

(1 L2 0 and lp L2455 1)
(01,02) T (0, o) (01, 02) T (04, 0)

and Effect(«,n) = Effecti(a,n) if a € Act;.

Example
x:=2Xx ||| x:=x+1 withinitially x =3
— —
action « action g
PG : B
@)
=2z
4
PG, ||| PGy :
-
'51 132
=2z, cri=z 41
7ty WA
rz:=z+1) ,'1:21
)

note that TS(PG,) ||| TS(PGz) # TS(PG: ||| PGz)

Semaphore-based mutual exclusion

PG1 : PGZI

noncrity

' IJ

L y>0: \y>o0:
yi=y-1 Loyt

AN \\
orte

y=0 means “lock is currently possessed”; y=1 means “lock is free”

Program graph PG; ||| PGy

PG, ||| PG: :
N

B * |(noncriti, noncritg) [+~

y=y+l

(waity, noncrity) | [(noncrit, , waity)

. y_l . l . ' ’ Ca Y= 1/_1

[(crity, noncrity)] [(waity, waity)] (noncrity , crity)
U E =
L ferity, waity) e -1 .
Y= y+1“‘\\ ; l y =y+1

T (crity, critg) |-

eyl

Transition system TS(PG; ||| PGz)

(ny, N, y=1)

y=y+1

(Wi, np, y=1)

)

e

Composition by handshaking (T,
(Rendex ~Vono) L

(T,
!

H < Ad4 N At

H is a set of handshake actions
actions outside H are independent and are interleaved

v

v

v

actions in H are synchronized
the interacting processes “shake hands”

v

Handshaking <&Iéﬁ

Let TS, = (S, Acti, i, I, AP;, L)), i=1,2and H C Act; N Acty. p e Go=
Cxwwwwvdvxbsl-

TSi ||y TS: = (81 x So, Acty UAC, —, Iy X b, AP1 W AP, L) per Jo (/I/\M)Q

where L({s1,82)) = Ly(s1) U Lo(s2) and with — defined by:

» interleaving for o ¢ H:

s1 %1 8 s2 % 8h PL2 Py p el
(s1,82) == (8}, 52) (s1,82) = (s1,8p) aypmal o
» handshaking fora & H: Pa
S1 218 A S8 4= l. jl\»‘\fﬂ\(&' PL)%
<S1732> = <S{I7s,2>
P\ e * o o ¢ e @
J\)'k
note that TS, HH TS, =TS, HH TS but
(TSt |1 TS2) |1, TSs # TSt [lmy (TS2 ||k, TSs) P v o s e Tt

A booking system

store scan prt_cmd store print: prt_cmd

]]]
BCR || BP || Printer

|| is a shorthand for ||y with H = Acty N Act,

Handshaking

Let TS; = (S;, Acti, —j, I;, AP;, L}), i=1,2 and H C Act; N Acts.

TS, HH TS, = (81 x So, Acty U Aclo, —, Iy x b, AP H—JAPQ,L)

where L({s1,82)) = Ly(s1) U Lo(s2) and with — defined by:

» interleaving for o ¢ H:

St 34 Sq Sp 3o 8/2

(s1,82) = (8, 52) (s1,82) = (s1,85)
» handshaking for a € H:
ST 18, A s 8,
(s1,82) = (8,82)

note that TS1 HH TSg = TSZ HH TS1 but
(TS |l TS2) |l TSz # TSt [l (TS2 I, TSs)

A booking system

store scan prt_cmd store print

)))
BCR || BP || Printer

|| is a shorthand for ||y with H = Act; N Act,

prt_cmd

