
Transition systems

A transition system TS is a tuple (S,Act,→, I,AP,L) where

! S is a set of states

! Act is a set of actions

! −→ ⊆ S × Act × S is a transition relation

! I ⊆ S is a set of initial states

! AP is a set of atomic propositions

! L : S → 2AP is a labeling function

Notation: s α−−→ s′ for (s,α, s′) ∈ −→

Lecture 1

Transition systems &= automata

As opposed to automata, in a transition system:

! there are no accepting states

! set of states and actions may be infinite

! may have infinite branching

! actions may be subject to synchronization

! nondeterminism has a different role

Modeling hardware: sequential circuits

XOR

OR

y
NOT

x

r x r y

x 0 r 0

x 0 r 1

x 1 r 0

x 1 r 1
r

x y

Transition system representation of a simple hardware circuit:

! input variable x , output variable y , and register r

! output function ¬(x ⊕ r)

! register evaluation function x ∨ r

Lecture 1

Modeling software: program graphs

A program graph PG over set Var of typed variables is a tuple

(Loc,Act,Effect,−→,Loc0,g0) where

! Loc is a set of locations with initial locations Loc0 ⊆ Loc

! Act is a set of actions

! Effect : Act × Eval(Var) → Eval(Var) is the effect function

! −→ ⊆ Loc × (Cond(Var)︸ ︷︷ ︸
Boolean condition over Var

×Act)× Loc

is the transition relation

! g0 ∈ Cond(Var) is the initial condition.

Notation: "
g:α−−−→ "′ denotes (", g,α, "′) ∈ −→

Lecture 1

Beverage vending machine

! Loc = { start , select } with Loc0 = { start }

! Act = {bget, sget , coin, ret_coin, refill }

! Var = {nsprite, nbeer } with domain {0,1, . . . ,max }

! Effect:

Effect(coin, η) = η
Effect(ret_coin, η) = η
Effect(sget , η) = η[nsprite := nsprite−1]
Effect(bget , η) = η[nbeer := nbeer−1]
Effect(refill , η) = η[nsprite := max , nbeer := max]

! g0 = (nsprite = max ∧ nbeer = max)

Lecture 1

From program graphs to transition systems

! Basic strategy: unfolding
! state = location (current control) " + data valuation η
! initial state = initial location satisfying the initial

condition g0

! Propositions and labeling
! propositions: “"” and “x ∈ D” for D ⊆ dom(x)
! 〈", η〉 is labeled with “"” and all conditions that hold in η

! if "
g:α−−−→ "′ and g holds in η, then 〈", η〉 α−−→〈"′,Effect(α, η)〉

Lecture 1

Structured operational semantics

! We describe the operational semantics using inference
rules of the form

premise

conclusion

The notation means:
If the premise holds, then the conclusion holds

! If the premise is a tautology, it may be omitted

! In this case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph

PG = (Loc,Act,Effect, ↪→,Loc0,g0)

over set Var of variables is the tuple (S,Act,−→, I,AP,L) where

! S = Loc × Eval(Var)

! −→⊆ S × Act × S is defined by the rule:

"
g:α
↪→ "′ ∧ η |= g

〈", η〉 α−−→〈"′,Effect(α, η)〉

! I = {〈", η〉 | " ∈ Loc0, η |= g0}

! AP = Loc ∪ Cond(Var) and
L(〈", η〉) = {"} ∪ {g ∈ Cond(Var) | η |= g}.

start

select

startstart

selectselect

start

startstart

select selectselect

startstart

selectselect

start

select

coin

coin coin

bget

sget

coin
coin

coin

bget

sget

coincoin

sget

bget

sgetbget

bget

sget

bget

sget

coinret_coin

refill

refill refill

Synchronous composition

Let TSi = (Si ,Act,→i , Ii ,APi ,Li) and
Act × Act → Act, (α,β) → α ∗ β

TS1 ⊗ TS2 = (S1 × S2,Act,→, I1 × I2,AP1 / AP2,L)

with L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and → is defined by the
following rule:

s1
α−−→ 1 s′

1 ∧ s2
β−−→ 2 s′

2

〈s1, s2〉
α∗β−−−→ 〈s′

1, s
′

2〉

typically used for synchronous hardware circuits

ST de la

machine a
'

baboons for
Max = 2

f- 0III.a- • weer

• us prihef-0

nuns start

nbeer =/ O

n sprite = o

Example

r1

NOT

y
OR

r2

y ′x

0

1

00 01

10 11

TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2:

Composition by interleaving

! Actions of independent processes are interleaved for
example if

! a single processor is available
! that takes turns in processing the actions of the processes

! No assumptions are made on the order of processes
! possible orders for non-terminating independent processes

P and Q:

P Q P Q P Q Q Q P . . .
P P Q P P Q P P Q . . .
P Q P P Q P P P Q . . .
. . .

! assumption: there is a scheduler with an a-priori unknown
strategy

Exclusion mnhuelle

Pr 11 Pie . . 11 pm
-
-
-

PII Q une exécubm de P est enbelecéeauee

une execution de Q

Interleaving

x := x + 1︸ ︷︷ ︸
=α

||| y := y − 2︸ ︷︷ ︸
=β

x=0

x=1

α |||

y=7

y=5

β = x=1, y=7

x=0, y=7

x=0, y=5

x=1, y=5

α

β α

β

Interleaving of transition systems

Let TSi = (Si ,Acti ,→i , Ii ,APi ,Li) i=1,2, be two transition
systems.

Transition system

TS1 |||TS2 = (S1 × S2,Act1 / Act2,→, I1 × I2,AP1 / AP2,L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and the transition relation
→ is defined by the rules:

s1
α−−→1 s′

1

〈s1, s2〉
α−−→〈s′

1, s2〉
and

s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s1, s

′

2〉

→ pour
des ST qui

ne se synchronised
pas

O

⇐2)I> (Liisa) si sets
,
si

(Sa , Is Csn , SI) Si Singh'

Interleaving of program graphs

For program graphs PG1 (on Var1) and PG2 (on Var2) without
shared variables, i.e., Var1 ∩ Var2 = ∅,

TS(PG1) ||| TS(PG2)

faithfully describes the concurrent behavior of PG1 and PG2

what if they have variables in common?

Shared variable communication

x := 2·x︸ ︷︷ ︸
action α

||| x := x + 1︸ ︷︷ ︸
action β

with initially x = 3

x=3

x=6

α |||

x=3

x=4

β = x=6, x=3

x=3, x=3

x=3, x=4

x=6, x=4

α

β α

β

〈x=6, x=4〉 is an inconsistent state!

⇒ no faithful model of the concurrent execution of α and β

Idea: first interleave, then unfold

Interleaving of program graphs

Let PGi =
(
Loci ,Acti ,Effecti ,−→ i ,Loc0,i ,g0,i

)

over variables Vari .

Program graph PG1 |||PG2 over Var1 ∪ Var2 is defined by:

(
Loc1 × Loc2,Act1 / Act2,Effect,−→,Loc0,1 × Loc0,2,g0,1 ∧ g0,2

)

where −→ is defined by the inference rules:

"1
g:α−−−→1 "′1

〈"1, "2〉
g:α−−−→ 〈"′1, "2〉

and
"2

g:α−−−→2 "′2

〈"1, "2〉
g:α−−−→ 〈"1, "

′

2〉

and Effect(α, η) = Effecti(α, η) if α ∈ Acti .

Example

x := 2·x︸ ︷︷ ︸
action α

||| x := x + 1︸ ︷︷ ︸
action β

with initially x = 3

note that TS(PG1) |||TS(PG2) &= TS(PG1 |||PG2)

Semaphore-based mutual exclusion

wait1

crit1

noncrit1

y := y+1

y := y−1

y > 0 :

wait2

crit2

noncrit2

y := y+1

y := y−1

y > 0 :

PG1 : PG2 :

y=0 means “lock is currently possessed”; y=1 means “lock is free”

Program graph PG1 |||PG2

Transition system TS(PG1 |||PG2)

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1,w2, y=1〉

〈c1, n2, y=0〉 〈w1,w2, y=1〉 〈n1, c2, y=0〉

〈c1,w2, y=0〉 〈w1, c2, y=0〉

y := y−1

y := y−1

y := y+1

y := y+1

Composition by handshaking

! H is a set of handshake actions

! actions outside H are independent and are interleaved

! actions in H are synchronized

! the interacting processes “shake hands”

Stn fftz
(Rendez - vous) if

HE Act, n Autre

Handshaking

Let TSi = (Si ,Acti ,→i , Ii ,APi ,Li), i=1,2 and H ⊆ Act1 ∩ Act2.

TS1 ‖H TS2 = (S1 × S2,Act1 ∪ Act2,→, I1 × I2,AP1 / AP2,L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and with → defined by:

! interleaving for α &∈ H:

s1
α−−→1 s′

1

〈s1, s2〉
α−−→ 〈s′

1, s2〉

s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s1, s

′

2〉

! handshaking for α ∈ H:

s1
α−−→1 s′

1 ∧ s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s′

1, s
′

2〉

note that TS1 ‖H TS2 = TS2 ‖H TS1 but

(TS1 ‖H1
TS2) ‖H2

TS3 "= TS1 ‖H1
(TS2 ‖H2

TS3)

A booking system

0

1

scanstore

0

1

storeprt_cmd

0

1

prt_cmdprint

BCR ‖ BP ‖ Printer

‖ is a shorthand for ‖H with H = Act1 ∩ Act2

exempt

processed qui
communiqueet

par signaux

Pa ! P,
Rennie

signal d PL
Pz ? Pa Pa recoil

signal de
Pn|H= } Signal (Pr , RDp. . . .

.is:4! !!!
PL o o - • •

Handshaking

Let TSi = (Si ,Acti ,→i , Ii ,APi ,Li), i=1,2 and H ⊆ Act1 ∩ Act2.

TS1 ‖H TS2 = (S1 × S2,Act1 ∪ Act2,→, I1 × I2,AP1 / AP2,L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and with → defined by:

! interleaving for α &∈ H:

s1
α−−→1 s′

1

〈s1, s2〉
α−−→ 〈s′

1, s2〉

s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s1, s

′

2〉

! handshaking for α ∈ H:

s1
α−−→1 s′

1 ∧ s2
α−−→2 s′

2

〈s1, s2〉
α−−→ 〈s′

1, s
′

2〉

note that TS1 ‖H TS2 = TS2 ‖H TS1 but

(TS1 ‖H1
TS2) ‖H2

TS3 "= TS1 ‖H1
(TS2 ‖H2

TS3)

A booking system

0

1

scanstore

0

1

storeprt_cmd

0

1

prt_cmdprint

BCR ‖ BP ‖ Printer

‖ is a shorthand for ‖H with H = Act1 ∩ Act2

