Structured operational semantics

▶ We describe the operational semantics using inference rules of the form

premise conclusion

The **notation** means:

If the premise holds, then the conclusion holds

- ▶ If the premise is a tautology, it may be omitted
- In this case, the rule is also called an axiom

Transition systems for program graphs

The transition system TS(PG) of program graph

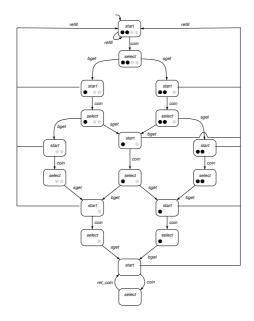
$$PG = (Loc, Act, Effect, \hookrightarrow, Loc_0, g_0)$$

over set *Var* of variables is the tuple $(S, Act, \longrightarrow, I, AP, L)$ where

- ightharpoonup S = Loc imes Eval(Var)
- ▶ \longrightarrow \subseteq $S \times Act \times S$ is defined by the rule:

$$\frac{\ell \overset{\boldsymbol{g}:\alpha}{\hookrightarrow} \ell' \ \land \ \eta \models \boldsymbol{g}}{\langle \ell, \eta \rangle \overset{\alpha}{\longrightarrow} \langle \ell', \textit{Effect}(\alpha, \eta) \rangle}$$

- $I = \{ \langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
- ▶ $AP = Loc \cup Cond(Var)$ and $L(\langle \ell, \eta \rangle) = \{\ell\} \cup \{g \in Cond(Var) \mid \eta \models g\}.$



Synchronous composition

Let
$$TS_i = (S_i, Act, \rightarrow_i, I_i, AP_i, L_i)$$
 and $Act \times Act \rightarrow Act, (\alpha, \beta) \rightarrow \alpha * \beta$

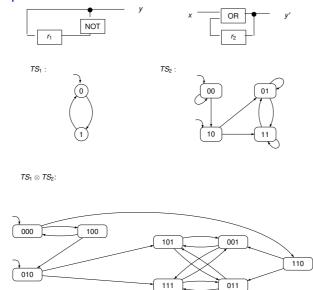
$$TS_1 \otimes TS_2 = (S_1 \times S_2, Act, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

with $L(\langle s_1,s_2\rangle)=L_1(s_1)\cup L_2(s_2)$ and \to is defined by the following rule:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1 \land s_2 \xrightarrow{\beta}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha*\beta} \langle s'_1, s'_2 \rangle}$$

typically used for synchronous hardware circuits

Example



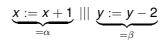
Composition by interleaving

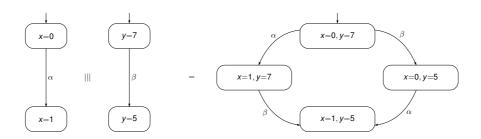
- ► Actions of independent processes are interleaved for example if
 - ▶ a single processor is available
 - that takes turns in processing the actions of the processes
- ▶ No assumptions are made on the order of processes
 - possible orders for non-terminating independent processes P and Q:

P Q P Q P Q Q Q P .. P P Q P P Q P P Q .. P Q P P Q P P P Q ..

assumption: there is a scheduler with an a-priori unknown strategy

Interleaving





Interleaving of transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$ i=1, 2, be two transition systems.

Transition system

$$TS_1 \mid \mid \mid TS_2 = (S_1 \times S_2, Act_1 \uplus Act_2, \rightarrow, l_1 \times l_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and the transition relation \rightarrow is defined by the rules:

$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \quad \text{and} \quad \frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$$

Interleaving of program graphs

For program graphs PG_1 (on Var_1) and PG_2 (on Var_2) **without** shared variables, i.e., $Var_1 \cap Var_2 = \emptyset$,

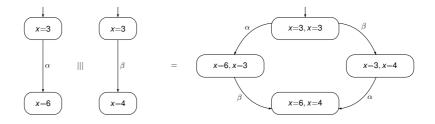
$$TS(PG_1) \mid \mid \mid TS(PG_2)$$

faithfully describes the concurrent behavior of PG_1 and PG_2

what if they have variables in common?

Shared variable communication

$$\underline{x := 2 \cdot x}$$
 ||| $\underline{x := x + 1}$ with initially $x = 3$ action β



 $\langle x=6, x=4 \rangle$ is an **inconsistent** state!

 \Rightarrow no faithful model of the concurrent execution of α and β

Idea: first interleave, then unfold

Interleaving of program graphs

Let $PG_i = (Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i})$ over variables Var_i .

Program graph $PG_1 \mid \mid PG_2$ over $Var_1 \cup Var_2$ is defined by:

$$(Loc_1 \times Loc_2, Act_1 \uplus Act_2, Effect, \longrightarrow, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \land g_{0,2})$$

where \longrightarrow is defined by the inference rules:

$$\frac{\ell_1 \xrightarrow{g:\alpha}_1 \ell'_1}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha}_{} \langle \ell'_1, \ell_2 \rangle} \quad \text{and} \quad \frac{\ell_2 \xrightarrow{g:\alpha}_2 \ell'_2}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha}_{} \langle \ell_1, \ell'_2 \rangle}$$

and $\textit{Effect}(\alpha, \eta) = \textit{Effect}_i(\alpha, \eta)$ if $\alpha \in \textit{Act}_i$.

Example

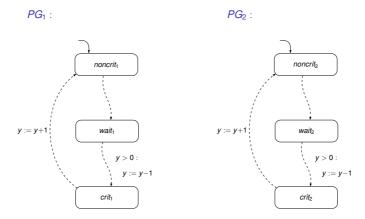
$$\underbrace{x := 2 \cdot x}_{\text{action } \alpha} | || \underbrace{x := x + 1}_{\text{action } \beta} \text{ with initially } x = 3$$

$$PG_1 : \underbrace{\ell_1}_{\ell_1} \underbrace{PG_2 : \ell_2}_{x := 2 \cdot x} \underbrace{x := x + 1}_{x := x + 1}$$

$$\underbrace{\ell_1}_{\ell_1} \underbrace{\ell_2}_{x := x + 1} \underbrace{PG_2 : \ell_2}_{x := x + 1} \underbrace{rS(PG_1 \mid \mid\mid PG_2)}_{\ell_1} \underbrace{rS(PG_1 \mid \mid\mid PG_2)}_{x := x + 1}$$

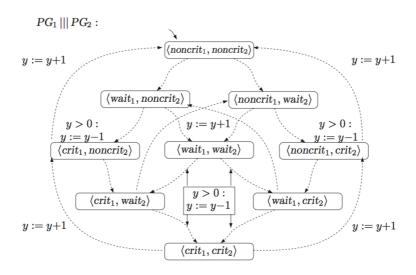
note that $TS(PG_1) ||| TS(PG_2) \neq TS(PG_1 ||| PG_2)$

Semaphore-based mutual exclusion

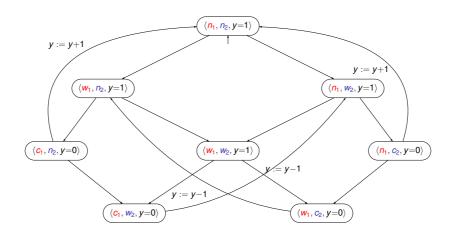


y=0 means "lock is currently possessed"; y=1 means "lock is free"

Program graph $PG_1 \mid\mid\mid PG_2$



Transition system $TS(PG_1 ||| PG_2)$



Composition by handshaking

- ► *H* is a set of handshake actions
- ▶ actions outside *H* are independent and are interleaved
- actions in H are synchronized
- ▶ the interacting processes "shake hands"

Handshaking

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$, i=1, 2 and $H \subseteq Act_1 \cap Act_2$.

 $TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$ where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

▶ interleaving for $\alpha \notin H$:

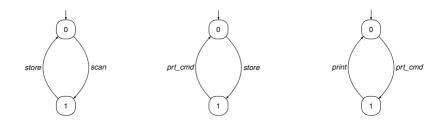
$$\frac{s_1 \xrightarrow{\alpha}_1 s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \qquad \frac{s_2 \xrightarrow{\alpha}_2 s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$$

▶ handshaking for $\alpha \in H$:

$$\frac{s_1 \stackrel{\alpha}{\longrightarrow}_1 s'_1 \wedge s_2 \stackrel{\alpha}{\longrightarrow}_2 s'_2}{\langle s_1, s_2 \rangle \stackrel{\alpha}{\longrightarrow} \langle s'_1, s'_2 \rangle}$$

note that $TS_1 \parallel_H TS_2 = TS_2 \parallel_H TS_1$ but $(TS_1 \parallel_{H_1} TS_2) \parallel_{H_2} TS_3 \neq TS_1 \parallel_{H_1} (TS_2 \parallel_{H_2} TS_3)$

A booking system



BCR || BP || Printer

 \parallel is a shorthand for \parallel_H with $H = Act_1 \cap Act_2$