Linear and branching temporal logic

- Linear temporal logic:
"statements about (all) paths starting in a state"
$s \models \mathcal{G}(x \leq 20)$ iff for all possible paths starting in s always $x \leq 20$
- Branching temporal logic:
"statements about all or some paths starting in a state"
$s \models \mathrm{AG}(x \leq 20)$ iff for all paths starting in s always $x \leq 20$
$s \models \mathrm{EG}(x \leq 20)$ iff for some path starting in s always $x \leq 20$
nesting of path quantifiers is allowed
- Checking $\mathrm{E} \varphi$ in LTL can be done using $\mathrm{A} \neg \varphi$
- (but this does not work for nested formulas such as AGEF a)

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
- an infinite tree of states obtained by unfolding transition system
- one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
- there are properties that can be expressed in LTL, but not in CTL
- there are properties that can be expressed in CTL, but not in LTL
- Different model checking algorithms and complexities
- Different treatment of fairness assumptions
- Different equivalences (pre-orders) on transition systems

Linear and branching temporal logic

- Linear temporal logic:
"statements about (all) paths starting in a state"
$s \models \square(x \leq 20)$ iff for all possible paths starting in s always $x \leq 20$
- Branching temporal logic:
"statements about all or some paths starting in a state"
$s \models \mathrm{AG}(x \leq 20)$ iff for all paths starting in s always $x \leq 20$
$s \models \mathrm{EG}(x \leq 20)$ iff for some path starting in s always $x \leq 20$
nesting of path quantifiers is allowed
- Checking E φ in LTL can be done using $A \neg \varphi$
- (but this does not work for nested formulas such as AGEF a)

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
- an infinite tree of states obtained by unfolding transition system
- one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
- there are properties that can be expressed in LTL, but not in CTL
- there are properties that can be expressed in CTL, but not in LTL
- Different model checking algorithms and complexities
- Different treatment of fairness assumptions
- Different equivalences (pre-orders) on transition systems

Transition systems and trees

Computation tree logic

modal logic over infinite trees [Clarke \& Emerson 1981]

```
- State formulas }
- \(a \in A P \quad U, f\)
- \(\neg \Phi\) and \(\Phi \wedge \Psi\)
- \(\mathrm{E} \varphi\)
- \(\mathrm{A} \varphi\)
- Path formulas \(\varphi\)
- \(X\) Ф
- \(\Phi \mathrm{U} \psi\)
the next state fulfills \(\Phi\)
```

\Rightarrow note that X and U alternate with A and E

- $A X X \Phi$ and $A E X \Phi \notin C T L$, but AXAX Φ and $A X E X ~ \Phi \in$ CTL
Alternative syntax: $\mathrm{E} \approx \exists, \mathrm{A} \approx \forall, \mathrm{X} \approx \bigcirc, \mathrm{G} \approx \square, \mathrm{F} \approx \diamond$.

Derived operators

Visualization of semantics

EF red

AF red

EGred

AG red

E (yellowU red)

A (yellowU red)

Semantics of CTL state-formulas

Defined by a relation \models such that
$s \models \Phi$ if and only if formula Φ holds in state s

$$
\begin{array}{ll}
s \models a & \text { iff } \quad a \in L(s) \\
s \models \neg \Phi & \text { iff } \neg(s \models \Phi) \\
s \models \Phi \wedge \Psi & \text { iff } \quad(s \models \Phi) \wedge(s \models \Psi) \\
s \models \mathrm{E} \varphi & \\
\text { iff } \pi \models \varphi \text { for some path } \pi \text { that starts in } s \\
s \models \mathrm{~A} \varphi & \\
\text { iff } \pi \models \varphi \text { for all paths } \pi \text { that start in } s
\end{array}
$$

Semantics of CTL path-formulas

Defined by a relation \models such that
$\pi \models \varphi$ if and only if path π satisfies φ

$$
\begin{array}{ll}
\pi \models \mathrm{X} \Phi & \text { iff } \pi[1] \models \Phi \\
\pi \models \Phi \cup \psi \quad \text { iff }(\exists j \geq 0 . \pi[j] \models \psi \wedge(\forall 0 \leq k<j . \pi[k] \models \Phi))
\end{array}
$$

where $\pi[i]$ denotes the state s_{i} in the path $\pi=s_{0} s_{1} s_{2} \ldots$

Transition system semantics

- For CTL-state-formula Φ, the satisfaction set $\operatorname{Sat}(\Phi)$ is defined by:

```
Sat($)={s\inS|s\models\Phi}
```

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$
T S \models \Phi \quad \text { if and only if } \quad \forall s_{0} \in I . s_{0} \models \Phi
$$

- this is equivalent to $I \subseteq \operatorname{Sat}(\Phi)$
- Note: It is possible that both $T S \not \models \Phi$ and $T S \not \models \neg \Phi$
- (because of several initial states, e.g. $s_{0} \models \mathrm{EG} \Phi$ and $\left.s_{0}^{\prime} \not \models E G \Phi\right)$

CTL equivalence

CTL-formulas Φ and ψ (over $A P$) are equivalent, denoted $\Phi \equiv \Psi$
if and only if $\operatorname{Sat}(\Phi)=\operatorname{Sat}(\Psi)$
for all transition systems $T S$ over $A P$
$\Phi \equiv \Psi \quad$ iff $\quad(T S \models \Phi \quad$ if and only if $\quad T S \models \Psi)$

Duality laws

$$
\begin{aligned}
& A(\Phi U \psi) \equiv \neg E((\Phi \wedge \neg \Psi) W(\neg \Phi \wedge \neg \psi)) \\
& \text { sf } A \times \phi \text { si } \forall s \rightarrow s^{\prime} \text { : } \\
& \text { JFAF } \phi \\
& J \vDash E G(7 \phi) \\
& \text { JFEG(7申) }
\end{aligned}
$$

Expansion laws

$$
\begin{aligned}
\mathrm{A}(\Phi \cup \Psi) & \equiv \Psi \vee(\Phi \wedge \mathrm{AXA}(\Phi \cup \Psi)) \\
\mathrm{AF} \Phi & \equiv \Phi \vee \mathrm{AXAF} \Phi \\
\mathrm{AG} \Phi & \equiv \Phi \wedge \mathrm{AXAG} \Phi \\
\mathrm{E}(\Phi \cup \Psi) & \equiv \Psi \vee(\Phi \wedge E X E(\Phi \cup \Psi)) \\
\mathrm{EF} \Phi & \equiv \Phi \vee \mathrm{EXEF} \Phi \\
\mathrm{EG} \Phi & \equiv \Phi \wedge E X E G \Phi
\end{aligned}
$$

Distributive laws

$$
\begin{aligned}
& A G(\Phi \wedge \Psi) \equiv A G \Phi \wedge A G \psi \\
& E F(\Phi \vee \Psi) \equiv E F \Phi \vee E F \Psi \\
& \text { note that } E G(\Phi \wedge \Psi) \not \equiv E G \Phi \wedge E G \psi \text { and } \\
& \text { AF }(\Phi \vee \Psi) \not \equiv \operatorname{AF} \Phi \vee \mathrm{AF} \psi \\
& \begin{array}{l}
\phi \equiv a \\
\psi \equiv b
\end{array} \\
& A F(\phi \wedge \psi) \neq A F \phi \wedge A F \psi
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow \mathrm{O} \longrightarrow 0^{l}
\end{aligned}
$$

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:
$\Phi::=$ true $|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| E X \Phi\left|E\left(\Phi_{1} \cup \Phi_{2}\right)\right| \underline{E G \phi}$

For each CTL formula, there exists an equivalent CTL formula in ENF

```
AX\Phi \equiv \negEX ᄀФ
A(\PhiU\Psi) \equiv \negE(\neg\PsiU(\neg\Phi\wedge\neg\Psi))^\negEG\neg\Psi
```


Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:
$\Phi::=$ true $|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| E X \Phi\left|E\left(\Phi_{1} \cup \Phi_{2}\right)\right| E G \Phi$

For each CTL formula, there exists an equivalent CTL formula in ENF

```
AX\Phi \equiv \EX }\mp@subsup{|}{\Phi}{
A(\PhiU\Psi) \equiv\negE(\neg\PsiU(\neg\Phi\wedge\neg\Psi))^\negEG\neg\Psi
```


Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is given by:
$\Phi::=$ true $|a| \Phi_{1} \wedge \Phi_{2}|\neg \Phi| E X \Phi\left|E\left(\Phi_{1} \cup \Phi_{2}\right)\right| E G \Phi$

For each CTL formula, there exists an equivalent CTL formula in ENF
$\mathrm{AX} \Phi \quad \equiv \neg \mathrm{EX} \neg \Phi$
$A(\Phi U \Psi) \equiv \neg E(\neg \Psi U(\neg \Phi \wedge \neg \Psi)) \wedge \neg E G \neg \psi$

$$
\begin{aligned}
& E\left(\phi_{1} \vee \phi_{2}\right) \equiv E\left(\phi_{1}\right) \vee E\left(\phi_{2}\right)
\end{aligned}
$$

