
Linear and branching temporal logic

! Linear temporal logic:

“statements about (all) paths starting in a state”

s |= (x ≤ 20) iff for all possible paths starting in s always x ≤ 20

! Branching temporal logic:

“statements about all or some paths starting in a state”

s |= AG (x ≤ 20) iff for all paths starting in s always x ≤ 20
s |= EG (x ≤ 20) iff for some path starting in s always x ≤ 20
nesting of path quantifiers is allowed

! Checking Eϕ in LTL can be done using A¬ϕ
! (but this does not work for nested formulas such as

AG EF a)

Linear versus branching temporal logic

! Semantics is based on a branching notion of time
! an infinite tree of states obtained by unfolding transition

system
! one “time instant” may have several possible successor

“time instants”

! Incomparable expressiveness
! there are properties that can be expressed in LTL,

but not in CTL
! there are properties that can be expressed in CTL,

but not in LTL

! Different model checking algorithms and complexities

! Different treatment of fairness assumptions

! Different equivalences (pre-orders) on transition systems

G

Linear and branching temporal logic

! Linear temporal logic:

“statements about (all) paths starting in a state”

s |= (x ≤ 20) iff for all possible paths starting in s always x ≤ 20

! Branching temporal logic:

“statements about all or some paths starting in a state”

s |= AG (x ≤ 20) iff for all paths starting in s always x ≤ 20
s |= EG (x ≤ 20) iff for some path starting in s always x ≤ 20
nesting of path quantifiers is allowed

! Checking Eϕ in LTL can be done using A¬ϕ
! (but this does not work for nested formulas such as

AG EF a)

Linear versus branching temporal logic

! Semantics is based on a branching notion of time
! an infinite tree of states obtained by unfolding transition

system
! one “time instant” may have several possible successor

“time instants”

! Incomparable expressiveness
! there are properties that can be expressed in LTL,

but not in CTL
! there are properties that can be expressed in CTL,

but not in LTL

! Different model checking algorithms and complexities

! Different treatment of fairness assumptions

! Different equivalences (pre-orders) on transition systems

Transition systems and trees

s0

s2s3 { x = 0 }

{ x = 0 }

{ x "= 0 }

{ x = 1, x "= 0 }

(s0, 0)

(s1, 1)

(s2, 2) (s3, 2)

(s3, 3) (s2, 3) (s3, 3)

(s2, 4) (s3, 4) (s3, 4) (s2, 4) (s3, 4)

s1 Computation Tree Logic

CTL

CTL*

LTI t TL

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

! State formulas Φ
! a ∈ AP atomic proposition
! ¬Φ and Φ ∧ Ψ negation and conjunction
! Eϕ there exists a path fulfilling ϕ
! Aϕ all paths fulfill ϕ

! Path formulas ϕ
! X Φ the next state fulfills Φ
! ΦUΨ Φ holds until a Ψ-state is reached

⇒ note that X and U alternate with A and E
! AX XΦ and A EX Φ "∈ CTL, but AX AX Φ and AX EX Φ ∈

CTL

Alternative syntax: E ≈ ∃, A ≈ ∀, X ≈ , G ≈ , F ≈.

Derived operators

potentially Φ: E FΦ = E (true UΦ)

inevitably Φ: A FΦ = A (true UΦ)

potentially always Φ: E GΦ := ¬A F¬Φ

invariantly Φ: A GΦ = ¬E F¬Φ

weak until: E (ΦWΨ) = ¬A
(
(Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ)

)

A (ΦWΨ) = ¬E
(
(Φ ∧ ¬Ψ)U (¬Φ ∧ ¬Ψ)

)

the boolean connectives are derived as usual

A, H'

Visualization of semantics

AF red A (yellow U red)

E (yellow U red)EG red

AG red

EF red

Semantics of CTL state-formulas

Defined by a relation |= such that

s |= Φ if and only if formula Φ holds in state s

s |= a iff a ∈ L(s)

s |= ¬Φ iff ¬ (s |= Φ)

s |= Φ ∧ Ψ iff (s |= Φ) ∧ (s |= Ψ)

s |= Eϕ iff π |= ϕ for some path π that starts in s

s |= Aϕ iff π |= ϕ for all paths π that start in s

Semantics of CTL path-formulas

Defined by a relation |= such that

π |= ϕ if and only if path π satisfies ϕ

π |= XΦ iff π[1] |= Φ

π |= ΦUΨ iff (∃ j ≥ 0.π[j] |= Ψ ∧ (∀ 0 ≤ k < j .π[k] |= Φ))

where π[i] denotes the state si in the path π = s0s1s2 . . .

Transition system semantics

! For CTL-state-formula Φ, the satisfaction set Sat(Φ) is
defined by:

Sat(Φ) = { s ∈ S | s |= Φ }

! TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

TS |= Φ if and only if ∀s0 ∈ I. s0 |= Φ

! this is equivalent to I ⊆ Sat(Φ)

! Note: It is possible that both TS "|= Φ and TS "|= ¬Φ
! (because of several initial states, e.g. s0 |= EGΦ and

s′

0 "|= EGΦ)

-

l

CTL equivalence

CTL-formulas Φ and Ψ (over AP) are equivalent,
denoted Φ ≡ Ψ

if and only if Sat(Φ) = Sat(Ψ)
for all transition systems TS over AP

Φ ≡ Ψ iff (TS |= Φ if and only if TS |= Ψ)

Duality laws

A XΦ ≡ ¬E X¬Φ

E XΦ ≡ ¬A X¬Φ

A FΦ ≡ ¬E G¬Φ

E FΦ ≡ ¬A G¬Φ

A (ΦUΨ) ≡ ¬E ((Φ ∧ ¬Ψ)W (¬Φ ∧ ¬Ψ))

LTC :

4W YE

GY v (✗Ut)

(week until)

71404) I

(4^74) w (74^74)

SE AX of sit s→s
'
:

s
' F- 01

SEA-1-4

SKEG (7$)µ

Expansion laws

A (ΦUΨ) ≡ Ψ ∨ (Φ ∧ A X A (ΦUΨ))

A FΦ ≡ Φ ∨ A X A FΦ

A GΦ ≡ Φ ∧ A X A GΦ

E (ΦUΨ) ≡ Ψ ∨ (Φ ∧ E X E (ΦUΨ))

E FΦ ≡ Φ ∨ E X E FΦ

E GΦ ≡ Φ ∧ E X E GΦ

Distributive laws

A G (Φ ∧ Ψ) ≡ A GΦ ∧ A GΨ

E F (Φ ∨Ψ) ≡ E FΦ ∨ E FΨ

note that EG (Φ ∧ Ψ) "≡ EGΦ ∧ EGΨ and
AF (Φ ∨ Ψ) "≡ AFΦ ∨ AFΨ

A -1-(01^4)=-1 AFG ^ AF 4
Ea

E- to to a ST F-Afa
,
AFL

to
ST # AFC- 1h)

doe

EG (dunt) I F-Got v EGIY)

→8¥

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is
given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ EXΦ

∣∣∣ E (Φ1 UΦ2)
∣∣∣ EGΦ

For each CTL formula, there exists an equivalent CTL formula in ENF

AXΦ ≡ ¬EX¬Φ

A (ΦUΨ) ≡ ¬E (¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬EG¬Ψ

Std

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is
given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ EXΦ

∣∣∣ E (Φ1 UΦ2)
∣∣∣ EGΦ

For each CTL formula, there exists an equivalent CTL formula in ENF

AXΦ ≡ ¬EX¬Φ

A (ΦUΨ) ≡ ¬E (¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬EG¬Ψ

Existential normal form (ENF)

The set of CTL formulas in existential normal form (ENF) is
given by:

Φ ::= true
∣∣∣ a

∣∣∣ Φ1 ∧ Φ2

∣∣∣ ¬Φ
∣∣∣ EXΦ

∣∣∣ E (Φ1 UΦ2)
∣∣∣ EGΦ

For each CTL formula, there exists an equivalent CTL formula in ENF

AXΦ ≡ ¬EX¬Φ

A (ΦUΨ) ≡ ¬E (¬ΨU (¬Φ ∧ ¬Ψ)) ∧ ¬EG¬Ψ

7101 V4) :

* in, ix. - gig
Got)

71004) = G 4) V (74474^74)^1
F- (da v92) = Ecofn) vector)

