Linear and branching temporal logic

► Linear temporal logic:

"statements about (all) paths starting in a state"

 $s \models \mathbf{G}(x \le 20)$ iff for all possible paths starting in *s* always $x \le 20$

Branching temporal logic:

"statements about all or some paths starting in a state"

 $s \models AG (x \le 20)$ iff for **all** paths starting in *s* always $x \le 20$ $s \models EG (x \le 20)$ iff for **some** path starting in *s* always $x \le 20$ nesting of path quantifiers is allowed

- \blacktriangleright Checking E φ in LTL can be done using A $\neg\varphi$
 - (but this does not work for nested formulas such as AG EF a)

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in CTL, but not in LTL
- Different model checking algorithms and complexities
- Different treatment of fairness assumptions
- Different equivalences (pre-orders) on transition systems

Linear and branching temporal logic

► Linear temporal logic:

"statements about (all) paths starting in a state"

 $s \models \Box (x \le 20)$ iff for all possible paths starting in s always $x \le 20$

• Branching temporal logic:

"statements about all or some paths starting in a state"

 $s \models AG (x \le 20)$ iff for **all** paths starting in *s* always $x \le 20$ $s \models EG (x \le 20)$ iff for **some** path starting in *s* always $x \le 20$ nesting of path quantifiers is allowed

- Checking E φ in LTL can be done using A $\neg \varphi$
 - (but this does not work for nested formulas such as AG EF a)

Linear versus branching temporal logic

- Semantics is based on a branching notion of time
 - an infinite tree of states obtained by unfolding transition system
 - one "time instant" may have several possible successor "time instants"
- Incomparable expressiveness
 - there are properties that can be expressed in LTL, but not in CTL
 - there are properties that can be expressed in CTL, but not in LTL
- Different model checking algorithms and complexities
- Different treatment of fairness assumptions
- Different equivalences (pre-orders) on transition systems

Transition systems and trees

Computation Tree Logic

Computation tree logic

modal logic over infinite trees [Clarke & Emerson 1981]

Alternative syntax: $E \approx \exists$, $A \approx \forall$, $X \approx \bigcirc$, $G \approx \Box$, $F \approx \diamondsuit$.

Derived operators

potentially Φ :	EFΦ		E(trueUΦ)
inevitably Φ:	ΑΕΦ	=	A (true U Φ)
potentially always Φ:	EGΦ	:=	$\neg A F \neg \Phi$
invariantly Φ:	AGΦ	=	$\neg E F \neg \Phi$
weak until:	$E(\PhiW\Psi)$	=	$\neg A \left(\left(\Phi \land \neg \Psi \right) U \left(\neg \Phi \land \neg \Psi \right) \right)$
	$A(\PhiW\Psi)$	=	$\neg E \left(\left(\Phi \ \land \ \neg \Psi \right) U \left(\neg \Phi \ \land \ \neg \Psi \right) \right)$

the boolean connectives are derived as usual

Visualization of semantics

Semantics of CTL state-formulas

Defined by a relation \models such that

 $s \models \Phi$ if and only if formula Φ holds in state s

$s \models a$	$iff \ a \in L(s)$
$s \models \neg \Phi$	iff $\neg (s \models \Phi)$
$s \models \Phi \land \Psi$	$iff \hspace{0.1in} (\boldsymbol{s} \models \Phi) \hspace{0.1in} \land \hspace{0.1in} (\boldsymbol{s} \models \Psi)$
$\pmb{s} \models \pmb{E} \varphi$	iff $\pi \models \varphi$ for some path π that starts in s
$\pmb{s} \models \pmb{A} \varphi$	iff $\pi \models \varphi$ for all paths π that start in s

Semantics of CTL path-formulas

Defined by a relation \models such that

 $\pi \models \varphi$ if and only if path π satisfies φ

 $\pi \models \mathsf{X} \Phi \qquad \text{iff } \pi[1] \models \Phi$ $\pi \models \Phi \cup \Psi \qquad \text{iff } (\exists j \ge 0, \pi[j] \models \Psi \land (\forall 0 \le k < j, \pi[k] \models \Phi))$

where $\pi[i]$ denotes the state s_i in the path $\pi = s_0 s_1 s_2 \dots$

Transition system semantics

For CTL-state-formula Φ, the satisfaction set Sat(Φ) is defined by:

 $Sat(\Phi) \models \{ s \in S \mid s \models \Phi \}$

• TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

 $TS \models \Phi$ if and only if $\forall s_0 \in I. s_0 \models \Phi$

- ▶ this is equivalent to $I \subseteq Sat(\Phi)$
- Note: It is possible that both $TS \not\models \Phi$ and $TS \not\models \neg \Phi$
 - (because of several initial states, e.g. s₀ ⊨ EG Φ and s'₀ ⊭ EG Φ)

CTL equivalence

CTL-formulas Φ and Ψ (over *AP*) are **equivalent**, denoted $\Phi \equiv \Psi$ if and only if $Sat(\Phi) = Sat(\Psi)$ for all transition systems *TS* over *AP*

$$\Phi \equiv \Psi$$
 iff $(TS \models \Phi$ if and only if $TS \models \Psi$)

Duality laws

$$AX\Phi \equiv \neg EX\neg\Phi$$

$$EX\Phi \equiv \neg AX\neg\Phi$$

$$AF\Phi \equiv \neg EG\neg\Phi$$

$$EF\Phi \equiv \neg AG\neg\Phi$$

$$LTL:$$

$$\PsiW\Psi \equiv$$

$$G\Psi \vee (\PsiU\Psi)$$

$$(\PsiU\Psi)$$

$$(\Psieek unkle)$$

$$T(\PsiU\Psi) \equiv$$

$$(\Psi^{} \Psi^{}) \Psi$$

$$(\Psi^{} \Psi^{}) \Psi$$

$$\mathsf{A}(\Phi \mathsf{U} \Psi) \equiv \neg \mathsf{E}((\Phi \land \neg \Psi) \mathsf{W}(\neg \Phi \land \neg \Psi))$$

$$s \models A \times \phi \quad \exists i \quad \forall \quad s \rightarrow s' :$$

$$s' \models \phi$$

$$s \models A \vdash \phi$$

$$s \models E \in (7\phi)$$

$$f \Rightarrow$$

Expansion laws

Distributive laws

$$\begin{array}{rcl} \mathsf{AG}(\Phi \wedge \Psi) &\equiv & \mathsf{AG}\Phi \wedge \mathsf{AG}\Psi \\ \\ \mathsf{EF}(\Phi \lor \Psi) &\equiv & \mathsf{EF}\Phi \lor \mathsf{EF}\Psi \end{array}$$

note that EG
$$(\Phi \land \Psi) \not\equiv EG \Phi \land EG \Psi$$
 and
AF $(\Phi \lor \Psi) \not\equiv AF \Phi \lor AF \Psi$

$$\begin{array}{l}
\varphi \equiv a \\
\varphi \equiv a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi \equiv a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi \equiv d$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\$$

$$\end{array}$$

$$\begin{array}{l}
\varphi = a \\
\end{array}$$

$$\begin{array}{l}
\varphi = a \\$$

$$\begin{array}{l}
\varphi = a \\$$

$$\end{array}$$

$$\left \begin{array}{l}
\end{array}$$

$$\left \begin{array}{l}
\end{array}$$

$$\left \begin{array}{l}
\end{array}$$

Existential normal form (ENF)

The set of CTL formulas in **existential normal form** (ENF) is given by:

 $\Phi ::= true \left| a \right| \Phi_1 \land \Phi_2 \left| \neg \Phi \right| \mathsf{EX} \Phi \left| \mathsf{E} (\Phi_1 \mathsf{U} \Phi_2) \right| \underset{\frown}{\mathsf{EG}} \Phi$

For each CTL formula, there exists an equivalent CTL formula in ENF

$$\begin{array}{lll} \mathsf{AX}\,\Phi & \equiv & \neg\mathsf{EX}\,\neg\Phi \\ \mathsf{A}\,(\Phi\,U\,\Psi) & \equiv & \neg\mathsf{E}\,(\neg\Psi\,U\,(\neg\Phi\,\wedge\,\neg\Psi))\,\wedge\,\neg\mathsf{EG}\,\neg\Psi \end{array}$$

Existential normal form (ENF)

The set of CTL formulas in **existential normal form** (ENF) is given by:

 $\Phi ::= true \left| \begin{array}{c} a \end{array} \right| \Phi_1 \land \Phi_2 \left| \begin{array}{c} \neg \Phi \end{array} \right| \mathsf{EX} \Phi \left| \begin{array}{c} \mathsf{E}(\Phi_1 \, U \, \Phi_2) \end{array} \right| \mathsf{EG} \Phi$

For each CTL formula, there exists an equivalent CTL formula in ENF

 $\begin{array}{lll} \mathsf{AX}\,\Phi & \equiv & \neg\mathsf{EX}\,\neg\Phi \\ \mathsf{A}\,(\Phi\,U\,\Psi) & \equiv & \neg\mathsf{E}\,(\neg\Psi\,U\,(\neg\Phi\,\wedge\,\neg\Psi))\,\wedge\,\neg\mathsf{EG}\,\neg\Psi \end{array}$

Existential normal form (ENF)

The set of CTL formulas in **existential normal form** (ENF) is given by:

$$\Phi ::= \text{ true } \left| \begin{array}{c} a \end{array} \right| \Phi_1 \land \Phi_2 \left| \begin{array}{c} \neg \Phi \end{array} \right| \mathsf{EX} \Phi \left| \begin{array}{c} \mathsf{E}(\Phi_1 \, \mathsf{U} \, \Phi_2) \end{array} \right| \mathsf{EG} \, \Phi$$

For each CTL formula, there exists an equivalent CTL formula in ENF $AX \Phi \equiv \neg EX \neg \Phi$ $A(\Phi U \Psi) \equiv \neg E(\neg \Psi U (\neg \Phi \land \neg \Psi)) \land \neg EG \neg \Psi$

$$\begin{array}{cccc}
 7 \left(\phi \cup \psi \right) & : & & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & & \\
 1 \psi & \gamma \psi & & & \\
 1 \psi & & & & \\
 1 \psi &$$