
Petri nets

Petri nets

Petri nets are a basic model of parallel and distributed systems, designed by Carl
Adam Petri in 1962 in his PhD Thesis: “Kommunikation mit Automaten”. The
basic idea is to describe state changes in a system with transitions.

��
��

��
��

��
��

��
��

t
���

@@R

@@R

���
s1 s2

s3 s4

Petri nets contain places ��
��

(Stelle) and transitions (Transition) that may be
connected by directed arcs.

Places symbolise states, conditions, or resources that need to be met/be
available before an action can be carried out.

Transitions symbolise actions.

2

Behaviour of Petri nets

Places may contain tokens that may move to other places by executing (“firing”)
actions.

A token on a place means that the corresponding condition is fulfilled or that a
resource is available:

��
��

��
��

��
��

��
��

t
���

@@R

@@R

���
s1

}

} s2

s3 s4

In the example, transition t may “fire” if there are tokens on places s1 and s3.
Firing t will remove those tokens and place new tokens on s2 and s4.

3

Place/Transition Nets

Let us study Petri nets and their firing rule in more detail:

• A place may contain several tokens, which may be interpreted as resources.

• There may be several input and output arcs between a place and a transition.
The number of these arcs is represented as the weight of a single arc.

• A transition is enabled if its each input place contains at least as many tokens
as the corresponding input arc weight indicates.

• When an enabled transition is fired, its input arc weights are subtracted from
the input place markings and its output arc weights are added to the output
place markings.

4

Place/Transition Net

A Place/Transition Net (P/T net) is a tuple N = 〈P, T , F , W , M0〉, where

• P is a finite set of places,

• T is a finite set of transitions,

• the places P and transitions T are disjoint (P ∩ T = ∅),

• F ⊆ (P × T) ∪ (T × P) is the flow relation,

• W : ((P × T) ∪ (T × P)) → IN is the arc weight mapping
(where W(f) = 0 for all f /∈ F , and W(f) > 0 for all f ∈ F), and

• M0 : P → IN is the initial marking representing the initial distribution of tokens.

5

P/T nets: Remarks

If 〈p, t〉 ∈ F for a transition t and a place p, then p is an input place of t ,

If 〈t , p〉 ∈ F for a transition t and a place p, then p is an output place of t ,

Let a ∈ P ∪ T . The set •a = {a′ | 〈a′, a〉 ∈ F} is called the pre-set of a, and the
set a• = {a′ | 〈a, a′〉 ∈ F} is its post-set.

When drawing a Petri net, we usually omit arc weights of 1. Also, we may either
denote tokens on a place either by black circles, or by a number.

6

Place/Transition Net: Example

&%
'$

p2

&%
'$

p1

&%
'$

p3

t

�
���

@
@@R
2

-2

vvv vv

v v

The place/transition net 〈P, T , F , W , M0〉 above is defined as follows:

• P = {p1, p2, p3},

• T = {t},

• F = {〈p1, t〉, 〈p2, t〉, 〈t , p3〉},

• W = {〈p1, t〉 7→ 2, 〈p2, t〉 7→ 1, 〈t , p3〉 7→ 2},

• M0 = {p1 7→ 2, p2 7→ 5, p3 7→ 0}.

7

Bigger example: Dining philosophers

There are philosophers sitting around a round table.

There are forks on the table, one between each pair of philosophers.

4

1 2

3

The philosophers want to eat spaghetti from a large bowl in the center of the
table.

8

Dining philosophers: Petri net

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��
��
��

��
��
��
��
��
��

w

w w

w

w w

w w
fork

fork

fork fork

l1 �

�
�
�
�
��	

?
r1- -

& %6

b1
6

�

@
@
@
@
@@R

@
@
@
@
@@I

thinking

eating

r2�

@
@
@
@
@@R

6

l2- -

& %6

b2

?

�

�
�
�
�
��	

�
�
�
�
���

eating

thinking

l3-

�
�
�
�
���

6

r3� �

' $
?

b3

?
-

@
@
@
@
@@I

@
@
@
@
@@R

thinking

eating

r4 -

@
@
@
@
@@I

?

l4� �

' $
?

b4

6

-
�
�
�
�
���

�
�
�
�
��	

eating

thinking

9

Literature about Petri Nets

For more in-depth coverage, a lot of literature about Petri nets is available, for
instance:

Reisig, Elements of Distributed Algorithms: Modelling and Analysis with Petri
Nets, Springer, 1998

Tools: The PEP tool
http://theoretica.informatik.uni-oldenburg.de/∼pep/

Internet resources: Petri Nets World
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

10

Notation for markings

Often we will fix an order on the places (e.g., matching the place numbering),
and write, e.g., M0 = 〈2,5,0〉 instead.

When no place contains more than one token, markings are in fact sets, in which
case we often use set notation and write instead M0 = {p5, p7, p8}.

Alternatively, we could denote a marking as a multiset, e.g.
M0 = {p1, p1, p2, p2, p2, p2, p2}.

The notation M(p) denotes the number of tokens in place p in marking M.

11

The firing rule

Let 〈P, T , F , W , M0〉 be a Place/Transition net and M : P → IN one of its
markings.

Firing condition:
Transition t ∈ T is M-enabled (or: enabled in M), written M t−→, iff

∀p ∈ •t : M(p) ≥ W(p, t).

Firing rule:
An M-enabled transition t may fire, producing the successor marking M ′, written
M t−→ M ′, where

∀p ∈ P : M ′(p) = M(p)− W(p, t) + W(t , p).

12

The firing rule of Place/Transition Nets: Example

&%
'$

p2

&%
'$

p1

&%
'$

p3

t

�
���

@
@@R
2

-2

Marking M M t−→ M ′

{p1 7→ 2, p2 7→ 5, p3 7→ 0} enabled {p1 7→ 0, p2 7→ 4, p3 7→ 2}
{p1 7→ 0, p2 7→ 4, p3 7→ 2} disabled

{p1 7→ 1, p2 7→ 5, p3 7→ 0} disabled

Note: If M t−→ M ′, then we call M ′ the successor marking of M.

13

Reachable markings

Let M be a marking of a Place/Transition net N = 〈P, T , F , W , M0〉.

The set of markings reachable from M (the reachability set of M, written
reach(M)), is the smallest set of markings such that:

1. M ∈ reach(M), and

2. if M ′ t−→ M ′′ for some t ∈ T , M ′ ∈ reach(M), then M ′′ ∈ reach(M).

Let M be a set of markings. The previous notation is extended to sets of
markings in the obvious way:

reach(M) =
⋃

M∈M reach(M)

The set of reachable markings reach(N) of a net N = 〈P, T , F , W , M0〉 is
defined to be reach(M0).

14

Reachability Graph

The reachability graph of a place/transition net N = 〈P, T , F , W , M0〉 is a rooted,
directed graph G = 〈V , E , v0〉, where

• V = reach(N) is the set of vertices, i.e. each reachable marking is a vertex;

• v0 = M0, i.e. the initial marking is the root node;

• E =
{
〈M, t , M ′〉

∣∣∣ M ∈ V and M t−→ M ′
}

is the set of edges, i.e. there is an
edge from each marking (resp. vertex) M to each of its successor markings,
and the edge is labelled with the firing transition.

15

Reachability Graph: Example

��
��

��
��

��
��

��
��

��
��

p1 p3 p5

p2 p4

t1 t3

t2

v

v

- - - -

- -

& $
?

�
�
�
�
���

�
�
�
�
���

t1

t1

@
@
@
@
@@I

@
@
@
@
@@I

t2

t2
�
�
�
�
���

t3

> 〈1,1,0,0,0〉

〈1,0,0,1,0〉 〈0,1,1,0,0〉

〈0,0,1,1,0〉 〈0,0,0,0,1〉

• The weight of each arc is 1.

• The graph shows that t3 cannot be fired if t2 is fired before t1.

16

Computing the reachability graph

REACHABILITY-GRAPH(〈P, T , F , W , M0〉)
1 〈V , E , v0〉 := 〈{M0}, ∅, M0〉;
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M from Work ;

5 Work := Work \ {M};
6 for t ∈ enabled(M)

7 do M ′ := fire(M, t);
8 if M ′ /∈ V
9 then V := V ∪ {M ′}

10 Work := Work ∪ {M ′};
11 E := E ∪ {〈M, t , M ′〉};
12 return 〈V , E , v0〉;

The algorithm makes use of two
functions:
• enabled(M) := {t | M t−→}
• fire(M, t) := M ′

if M t−→ M ′

The set Work may be imple-
mented as a stack, in which case
the graph will be constructed in
a depth-first manner, or as a
queue for breadth-first. Breadth
first search will find the short-
est transition path from the initial
marking to a given (erroneous)
marking. Some applications re-
quire depth first search.

17

Reachability Graph: Termination

In general, the algorithm may not terminate!

This is because the graph may be infinite. Example: Example:

p1 p2t

The reachable markings in this net are 〈1,0〉, 〈1,1〉, 〈1,2〉, . . .

It is quite straightforward to see that the graph is finite if and only if we can put a
bound on the number of tokens in reachable markings.

18

k -Safeness

Definition: Let N be a net. If no reachable marking of N can contain more than k
tokens in any place (where k ≥ 0 is some constant), then N is said to be k -safe.

Example (1): The following net is 1-safe.

��
��

��
��

��
��

��
��

��
��

p1 p3 p5

p2 p4

t1 t3

t2

v

v

- - - -

- -

& $
?

Example (2): The net from the previous slide is not k -safe for any k .

19

k -safeness and Termination

A k -safe net has at most (k + 1)|P| reachable markings; for 1-safe nets, the limit
is 2|P|.

In this case, there are finitely many reachable markings, and the construction of
the reachability graph terminates.

On the other hand, if a net is not k -safe for any k , then there are infinitely many
markings, and the construction will not terminate.

20

Use of reachability graphs

In practice, all analysis tools and methods for Petri nets compute (some
representation of) the reachability graph. The reachability graph can be
effectively computed if the net is k -safe for some k .

If the net is not k -safe for any k , we may compute the coverability graph instead
(see upcoming slides).

21

Coverability graphs

Example

Consider the following (slightly inept) attempt at modelling a traffic light:

R −> RY

RY −> G

Y −> R

G −> Y

p3 (green light)

p2 (yellow light)

p1 (red light)

23

Coverability Graphs

The reachability graph of the preceding net is infinite. As we have mentioned
before, the algorithm for computing the reachability graph will not terminate in
this case.

We will show the construction of a different graph:
the so-called coverability graph.

The coverability graph has the following properties:

It can be used to find out whether the reachability graph is infinte.

It is always finite, and its construction always terminates.

It gathers some information about reachable markings.

However, it is slightly more complicated than the reachability graph!

24

Computing with ω

First we introduce a new symbol ω to represent “arbitrarily many” tokens.

We extend the arithmetic on natural numbers with ω as follows. For all n ∈ IN:
n + ω = ω + n = ω,
ω + ω = ω,
ω − n = ω,
0 · ω = 0, ω · ω = ω,
n ≥ 1 ⇒ n · ω = ω · n = ω,
n ≤ ω, and ω ≤ ω.

Note: ω − ω remains undefined, but we will not need it.

25

ω-Markings

We extend the notion of markings to ω-markings. In an ω-marking, each place p
will either have n ∈ IN tokens, or ω tokens (arbitrarily many).

Note: This is a technical definition that we will need for constructing the
coverability graph! The nets that we use only have finite markings.

An ω-marking such as (1, ω,0) can also be interpreted as the set of
(non-ω)-markings that have one token on the first place, no token on the third
place, an any number of tokens on the second place.

26

Firing Rule with ω-markings

The firing condition and firing rule (reproduced below) neatly extend to
ω-markings with the extended arithmetic rules:

Firing condition:
Transition t ∈ T is M-enabled, written M t−→, iff ∀p ∈ •t : M(p) ≥ W(p, t).

Firing rule:
An M-enabled transition t may fire, producing the successor marking M ′, where

∀p ∈ P : M ′(p) = M(p)− W(p, t) + W(t , p).

If a transition has a place with ω tokens in its preset, that place is considered to
have sufficiently many tokens for the transition to fire, regardless of the arc
weight.

If a place contains an ω-marking, then firing any transition connected with an arc
to that place will not change its marking.

27

Definition of Covering

An ω-marking M ′ covers an ω-marking M, denoted M ≤ M ′, iff

∀p ∈ P : M(p) ≤ M ′(p).

An ω-marking M ′ strictly covers an ω-marking M, denoted M < M ′, iff

M ≤ M ′ and M ′ 6= M.

28

Coverability and Transition Sequences (1/2)

Observation: Let M and M ′ be two markings such that M ≤ M ′.
Then for all transitions t , the following holds:

If M t−→ then M ′ t−→.

In other words, if M ′ has at least as many tokens as M has (on each place), then
M ′ enables at least the same transitions as M does.

This observation can be extended to sequences of transitions:

Define M
t1t2...tn−→ M ′ to denote:

∃M1, M2, . . . , Mn : M
t1−→ M1

t2−→ M2 · · ·
tn−→ Mn = M ′.

Now, if M
t1t2...tn−→ and M ≤ M ′, then M ′ t1t2...tn−→ .

29

Coverability and Transition Sequences (2/2)

Let M, M ′ be markings such that M < M ′, and assume that there is a sequence

of transitions such that M
t1t2...tn−→ M ′ holds.

Thus, there is a marking M ′′ with M ′ t1t2...tn−→ M ′′.

Let ∆M := M ′ − M (place-wise difference). Because M < M ′, the values of
∆M are non-negative and at least one value is non-zero.

Clearly, M ′′ = M ′ + ∆M = M + 2∆M.

M t1 t2 ... tn M’ t1 t2 ... tn M’’= =

∆Μ ∆Μ

Μ+∆Μ Μ+2∆Μ

...

=

...

30

By firing the transition sequence t1t2 . . . tn repeatedly we can “pump” an arbitrary
number of tokens to all the places having a non-zero marking in ∆M.

The basic idea for constructing the coverability graph is now to replace the
marking M ′ with a marking where all the places with non-zero tokens in ∆M are
replaced by ω.

31

Coverability Graph Algorithm (1/2)

COVERABILITY-GRAPH(〈P, T , F , W , M0〉)
1 〈V , E , v0〉 := 〈{M0}, ∅, M0〉;
2 Work : set := {M0};
3 while Work 6= ∅
4 do select M from Work ;

5 Work := Work \ {M};
6 for t ∈ enabled(M)

7 do M ′ := fire(M, t);
8 M ′ := AddOmegas(M, t , M ′, V , E);

9 if M ′ /∈ V
10 then V := V ∪ {M ′}
11 Work := Work ∪ {M ′};
12 E := E ∪ {〈M, t , M ′〉};
13 return 〈V , E , v0〉;

The coverability graph al-
gorithm is almost exactly
the same as the reachability
graph algorithm, with the ad-
dition of the call to subroutine
AddOmegas(M, t , M ′, V , E),
where all the details w.r.t. cover-
ability graphs are contained. As
for the implementation of Work ,
the same comments as for the
reachability graph apply.

32

Coverability Graph Algorithm (2/2)
The following notation us used in the AddOmegas subroutine:

• M ′′ →∗ M iff the coverability graph currently contains a path (including the
empty path!) leading from M ′′ to M.

ADDOMEGAS(M, t , M ′, V , E)

1 repeat saved := M ′;
2 for all M ′′ ∈ V s.t. M ′′ →∗ M
3 do if M ′′ < M ′

4 then M ′ := M ′ + ((M ′ − M ′′) · ω);

5 until saved = M ′;
6 return M ′;

In other words, repeated check all the predecessor markings of the new marking
M ′ to see if they are strictly covered by M ′. Line 5 causes all places whose
number of tokens in M ′ is strictly larger than in the “parent” M ′′ to contain ω.

33

Reachability and coverability graphs: Comparison (1)

Let N = 〈P, T , F , W , M0〉 be a net.

The reachability graph has the following fundamental property:

A marking M of N is reachable if and only if M is a vertex of the
reachability graph of N.

The coverability graph has the following fundamental property:

If a marking M of N is reachable, then M is covered by some vertex of the
coverability graph of N.

Notice that the first property is an equivalence, the second one an implication!

34

More specifically, the reverse implication does not hold: A marking that is
covered by some vertex of the coverability graph is not necessarily reachable, as
shown by the following example:

t1

1 3

<1>

<ω>

t1

t1

In the net, only markings with an odd number of tokens are reachable, but
markings with an even number of tokens are also covered.

35

Reachability and coverability graphs: Comparison (2)

The construction of the reachability graph may not terminate.
It terminates if and only if N is bounded.

The construction of the coverability graph always terminates.
If N is bounded, then the coverabilibility graph is identical to the reachability
graph.

36

Reachability and coverability graphs: Comparison (3)

The reachability graph captures exact information about the reachable markings
(but its computation may not terminate).

The coverability graph computes an overapproximation
(but remains exact as long as the number of markings is finite).

37

Reachability and coverability graphs: Comparison (4)

Reachability graphs are unique,
i.e. for a given net there is exactly one reachability graph (modulo isomorphism).

Coverability graphs are not unique,
i.e. for a given net there may be more than one coverability graph, depending on
the order of the worklist and the order in which firing transitions are considered.

38

