Symbolic model checking

Transition systems as boolean functions

- Assume each state is uniquely labeled
$L(s)=L\left(s^{\prime}\right)$ implies $s=s^{\prime}$
no restriction: if needed extend $A P$ and label states uniquely
Assume a fixed total order on propositions:
$a_{1}<a_{2}<\ldots<a_{K}$
- Represent a state by a boolean function
- over boolean variables x_{1} through x_{K} such that

$$
\llbracket s \rrbracket=x_{1}^{*} \wedge x_{2}^{*} \wedge \ldots \wedge x_{K}^{*}
$$

- where the literal x_{i}^{*} equals x_{i} if $a_{i} \in L(s)$, and $\neg x_{i}$ otherwise \Rightarrow no need to explicitly represent function L
-Represent $/$ and \rightarrow by their characteristic (boolean) functions
- e.g., $f_{\rightarrow}(\llbracket s \rrbracket, \llbracket \alpha \rrbracket, \llbracket t \rrbracket)=1$ if and only if $s \xrightarrow{\alpha} t$

Boolean functions

- Boolean functions $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$ for $n \geq 0$ where $\mathbb{B}=\{0,1\}$
examples: $f\left(x_{1}, x_{2}\right)=x_{1} \wedge\left(x_{2} \vee \neg x_{1}\right)$, and $f\left(x_{1}, x_{2}\right)=x_{1} \leftrightarrow x_{2}$
- Finite sets are boolean functions
- let $|S|=N$ and $2^{n-1}<N \leq 2^{n}$
encode each element $s \in S$ as boolean vector of length n :
$\llbracket \rrbracket: S \rightarrow \mathbb{B}^{n}$
- $T \subseteq S$ is represented by f_{T} such that:

$$
f_{T}(\llbracket s \rrbracket)=1 \quad \text { iff } \quad s \in T
$$

- this is the characteristic function of T
- Relations are boolean functions
- $\mathcal{R} \subseteq S \times S$ is represented by $f_{\mathcal{R}}$ such that:

$$
f_{\mathcal{R}}(\llbracket s \rrbracket, \llbracket t \rrbracket)=1 \quad \text { iff } \quad(s, t) \in \mathcal{R}
$$

Representing boolean functions

representation	compact?	sat	\wedge	\vee	\neg
propositional					
formula	often	hard	easy	easy	easy
DNF	sometimes	easy	hard	easy	hard
CNF	sometimes	hard	easy	hard	hard
(ordered) truth table	never	hard	hard	hard	hard
reduced ordered binary					
decision diagram					

Let X be a set of boolean variables.

- Let $<$ be a total order on X
- Binary decision tree (BDT) is a complete binary tree over $\langle X,<\rangle$
each leaf v is labeled with a boolean value $v a l(v) \in \mathbb{B}$
non-leaf v is labeled by a boolean variable $\operatorname{Var}(v) \in X$
such that for each non-leaf v and vertex w :

$$
w \in\{\operatorname{left}(v), \operatorname{right}(v)\} \Rightarrow(\operatorname{Var}(v)<\operatorname{Var}(w) \vee w \text { is a leaf })
$$

\Rightarrow On each path from root to leaf, variables occur in the same order

Shannon expansion

- Each boolean function $f: \mathbb{B}^{n} \longrightarrow \mathbb{B}$ can be written as:
$f\left(x_{1}, \ldots, x_{n}\right)=\left(x_{i} \wedge f\left[x_{i}:=1\right]\right) \vee\left(\neg x_{i} \wedge f\left[x_{i}:=0\right]\right)$
where $f\left[x_{i}:=1\right]$ stands for $f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)$
- and $f\left[x_{i}:=0\right]$ for $f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right)$
- The boolean function $f_{B}(v)$ represented by vertex v in BDT B is:
- for v a leaf: $f_{\mathrm{B}}(v)=v a l(v)$
otherwise:
$f_{\mathrm{B}}(v)=\left(\operatorname{Var}(v) \wedge f_{\mathrm{B}}(\operatorname{right}(v))\right) \vee\left(\neg \operatorname{Var}(v) \wedge f_{\mathrm{B}}(l\right.$ eft $\left.(v))\right)$
- $f_{B}=f_{B}(v)$ where v is the root of B

Considerations on BDTs

- BDTs are not compact
\rightarrow a BDT for boolean function $f: \mathbb{B}^{b} \rightarrow \mathbb{B}$ has 2^{n} leafs
\Rightarrow they are as space inefficient as truth tables!
\Rightarrow BDTs contain quite some redundancy
- all leafs with value one (zero) could be collapsed into a single leaf
a similar scheme could be adopted for isomorphic subtrees
- The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

- A ordered binary decision diagram (OBDD) is a directed graph over $\langle X,<\rangle$ with:
- each leaf v is labeled with a boolean value $v a l(v) \in\{0,1\}$
non-leaf v is labeled by a boolean variable $\operatorname{Var}(v) \in X$
such that for each non-leaf v and vertex w :
$w \in\{$ left $(v), \operatorname{right}(v)\} \Rightarrow(\operatorname{Var}(v)<\operatorname{Var}(w) \vee w$ is a leaf $)$
\Rightarrow An OBDD is acyclic
- f_{B} for OBDD B is obtained as for BDTs

Reduced OBDDs

OBDD B over $\langle X,<\rangle$ is called reduced iff:

1. for each leaf $v, w:(v a l(v)=v a l(w)) \Rightarrow v=w$
\Rightarrow identical terminal vertices are forbidden
2. for each non-leaf v : left $(v) \neq \operatorname{right}(v)$
\Rightarrow non-leafs may not have identical children
3. for each non-leaf v, w :
$(\operatorname{Var}(v)=\operatorname{Var}(w) \wedge \operatorname{right}(v) \cong \operatorname{right}(w) \wedge \operatorname{left}(v) \cong \operatorname{left}(w)) \Rightarrow v=w$ \Rightarrow vertices may not have isomorphic sub-dags
this is what is mostly called BDD; in fact it is an ROBDD!

Dynamic generation of ROBDDs

Main idea:

- Construct directly an ROBDD from a boolean expression
- Create vertices in depth-first search order
- On-the-fly reduction by applying hashing
on encountering a new vertex v, check whether:
an equivalent vertex w has been created (same label and children)
left $(v)=\operatorname{right}(v)$, i.e., vertex v is a "don't care" vertex

ROBDDs are canonical
[Fortune, Hopcroft \& Schmidt, 1978]

$$
\begin{gathered}
\text { For ROBDDs } \mathrm{B} \text { and } \mathrm{B}^{\prime} \text { over }\langle X,<\rangle \text { we have: } \\
\left(f_{\mathrm{B}}=f_{\mathrm{B}^{\prime}}\right) \text { implies } \mathrm{B} \text { and } \mathrm{B}^{\prime} \text { are isomorphic }
\end{gathered}
$$

\Rightarrow for a fixed variable ordering, any boolean function can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

- Absence of redundant vertices
- if f_{B} does not depend on x_{i}, ROBDD B does not contain an if f_{B} does
x_{i} vertex
- Test for equivalence: $f\left(x_{1}, \ldots, x_{n}\right) \equiv g\left(x_{1}, \ldots, x_{n}\right)$?
- generate ROBDDs B_{f} and B_{g}, and check isomorphism
- Test for validity: $f\left(x_{1}, \ldots, x_{n}\right)=1$?
- generate ROBDD B_{f} and check whether it is the 1-leaf
- Test for implication: $f\left(x_{1}, \ldots, x_{n}\right) \rightarrow g\left(x_{1}, \ldots, x_{n}\right)$?
- generate ROBDD $\mathrm{B}_{f} \wedge \neg \mathrm{~B}_{g}$ and check if it is the 0-lea
- Test for satisfiability
- f is satisfiable if and only if B_{f} is not the 0-leaf

Variable ordering

- Different ROBDDs are obtained for different variable orderings
- The size of the ROBDD depends on the variable ordering
- Some boolean functions have linear and exponential ROBDDs
Some boolean functions only have polynomial ROBDDs
- Some boolean functions only have exponential ROBDDs

Symmetric functions

$$
\begin{gathered}
f\left[x_{1}:=b_{1}, \ldots, x_{n}:=b_{n}\right]=f\left[x_{1}:=b_{i_{1}}, \ldots, x_{i_{n}}:=b_{i_{n}}\right] \\
\quad \text { for each permutation }\left(i_{1}, \ldots, i_{n}\right) \text { of }(1, \ldots, n)
\end{gathered}
$$

$$
\Rightarrow \text { The value of } f \text { depends only on the number of ones }
$$

Examples: $f(\ldots)=x_{1} \oplus \ldots \oplus x_{n}$,
$f(\ldots)=x_{1} \oplus \ldots \oplus x_{n}$,
$f(\ldots)=1$ iff $\geq k$ variables x_{i} are true
symmetric boolean functions have ROBDDs of size in $\mathcal{O}\left(n^{2}\right)$

The even parity function

$f\left(x_{1}, \ldots, x_{n}\right)=1$ iff the number of variables x_{i} with value 1 is even

truth table or propositional formula for f has exponential size
but an ROBDD of linear size is possible

The function stable with exponential ROBDD

The ROBDD of $f(\bar{x}, \bar{y})=\left(x_{1} \leftrightarrow y_{1}\right) \wedge \ldots \wedge\left(x_{n} \leftrightarrow y_{n}\right)$
has $3 \cdot 2^{n}-1$ vertices under ordering $x_{1}<\ldots<x_{n}<y_{1}<\ldots<y_{n}$

The function stable with linear ROBDD

The ROBDD of $f(\bar{x}, \bar{y})=\left(x_{1} \leftrightarrow y_{1}\right) \wedge \ldots \wedge\left(x_{n} \leftrightarrow y_{n}\right)$ has $3 . n+2$ vertices under ordering $x_{1}<y_{1}<\ldots<x_{n}<y_{n}$

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine < such that the ROBDD has minimal size?
- the optimal variable ordering problem for ROBDDs is NP-complete
(Bollig \& Wegener, 1996)
- There are many boolean functions with large ROBDDs
- How to deal with this problem in practice?
- guess a variable ordering in advance ROBDDs

