
Symbolic model checking

Boolean functions

! Boolean functions f : Bn → B for n ≥ 0 where B = {0,1 }
! examples: f (x1, x2) = x1 ∧ (x2 ∨ ¬x1), and

f (x1, x2) = x1 ↔ x2

! Finite sets are boolean functions
! let |S| = N and 2n−1 < N ≤ 2n

! encode each element s ∈ S as boolean vector of length n:
[[]] : S → Bn

! T ⊆ S is represented by fT such that:

fT ([[s]]) = 1 iff s ∈ T

! this is the characteristic function of T

! Relations are boolean functions
! R ⊆ S × S is represented by fR such that:

fR([[s]], [[t]]) = 1 iff (s, t) ∈ R

Lecture 9

Transition systems as boolean functions

! Assume each state is uniquely labeled
! L(s) = L(s′) implies s = s′

! no restriction: if needed extend AP and label states
uniquely

! Assume a fixed total order on propositions:
a1 < a2 < . . . < aK

! Represent a state by a boolean function
! over boolean variables x1 through xK such that

[[s]] = x∗
1 ∧ x∗

2 ∧ . . . ∧ x∗
K

! where the literal x∗
i equals xi if ai ∈ L(s), and ¬ xi otherwise

⇒ no need to explicitly represent function L

! Represent I and → by their characteristic (boolean)
functions

! e.g., f→([[s]], [[α]], [[t]]) = 1 if and only if s α−−→ t

Lecture 9

Representing boolean functions

representation compact? sat ∧ ∨ ¬

propositional
formula often hard easy easy easy

DNF sometimes easy hard easy hard

CNF sometimes hard easy hard hard

(ordered)
truth table never hard hard hard hard

reduced ordered
binary

decision diagram often easy medium medium easy

Binary decision trees

! Let X be a set of boolean variables.

! Let < be a total order on X
! Binary decision tree (BDT) is a complete binary tree over

⟨X , <⟩
! each leaf v is labeled with a boolean value val(v) ∈ B

! non-leaf v is labeled by a boolean variable Var(v) ∈ X
! such that for each non-leaf v and vertex w :

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ On each path from root to leaf, variables occur in the same
order

Shannon expansion

! Each boolean function f : Bn −→ B can be written as:

f (x1, . . . , xn) = (xi ∧ f [xi := 1]) ∨ (¬ xi ∧ f [xi := 0])

! where f [xi := 1] stands for f (x1, . . . , xi−1, 1, xi+1, . . . , xn)
! and f [xi := 0] for f (x1, . . . , xi−1, 0, xi+1, . . . , xn)

! The boolean function fB(v) represented by vertex v in BDT
B is:

! for v a leaf: fB(v) = val(v)
! otherwise:

fB(v) = (Var(v) ∧ fB(right(v))) ∨ (¬Var(v) ∧ fB(left(v)))

! fB = fB(v) where v is the root of B

Considerations on BDTs

! BDTs are not compact
! a BDT for boolean function f : Bb → B has 2n leafs
⇒ they are as space inefficient as truth tables!

⇒ BDTs contain quite some redundancy
! all leafs with value one (zero) could be collapsed into a

single leaf
! a similar scheme could be adopted for isomorphic subtrees

! The size of a BDT does not change if the variable order
changes

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

! A ordered binary decision diagram (OBDD) is a directed
graph over ⟨X , <⟩ with:

! each leaf v is labeled with a boolean value val(v) ∈ { 0, 1 }
! non-leaf v is labeled by a boolean variable Var(v) ∈ X
! such that for each non-leaf v and vertex w :

w ∈ { left(v), right(v) } ⇒ (Var(v) < Var(w) ∨ w is a leaf)

⇒ An OBDD is acyclic
! fB for OBDD B is obtained as for BDTs

Reduced OBDDs

OBDD B over ⟨X , <⟩ is called reduced iff:

1. for each leaf v ,w : (val(v) = val(w)) ⇒ v = w
⇒ identical terminal vertices are forbidden

2. for each non-leaf v : left(v) ̸= right(v)
⇒ non-leafs may not have identical children

3. for each non-leaf v ,w :

(Var(v) = Var(w) ∧ right(v) ∼= right(w) ∧ left(v) ∼= left(w)) ⇒ v = w

⇒ vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Dynamic generation of ROBDDs

Main idea:

! Construct directly an ROBDD from a boolean expression

! Create vertices in depth-first search order
! On-the-fly reduction by applying hashing

! on encountering a new vertex v , check whether:
! an equivalent vertex w has been created (same label and

children)
! left(v) = right(v), i.e., vertex v is a “don’t care” vertex

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B′ over ⟨X , <⟩ we have:

(fB = fB′) implies B and B′ are isomorphic

⇒ for a fixed variable ordering, any boolean function

can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

! Absence of redundant vertices
! if fB does not depend on xi , ROBDD B does not contain an

xi vertex

! Test for equivalence: f (x1, . . . , xn) ≡ g(x1, . . . , xn)?
! generate ROBDDs Bf and Bg , and check isomorphism

! Test for validity: f (x1, . . . , xn) = 1?
! generate ROBDD Bf and check whether it is the 1-leaf

! Test for implication: f (x1, . . . , xn) → g(x1, . . . , xn)?
! generate ROBDD Bf ∧ ¬Bg and check if it is the 0-leaf

! Test for satisfiability
! f is satisfiable if and only if Bf is not the 0-leaf

Variable ordering

! Different ROBDDs are obtained for different variable
orderings

! The size of the ROBDD depends on the variable ordering

! Some boolean functions have linear and exponential
ROBDDs

! Some boolean functions only have polynomial ROBDDs

! Some boolean functions only have exponential ROBDDs

The even parity function

f (x1, . . . , xn) = 1 iff the number of variables xi with value 1 is even

truth table or propositional formula for f has exponential size

but an ROBDD of linear size is possible

Symmetric functions

f [x1 := b1, . . . , xn := bn] = f [x1 := bi1 , . . . , xin := bin]

for each permutation (i1, . . . , in) of (1, . . . ,n)

⇒ The value of f depends only on the number of ones!

Examples: f (. . .) = x1 ⊕ . . .⊕ xn,
f (. . .) = 1 iff ≥ k variables xi are true

symmetric boolean functions have ROBDDs of size in O(n2)

The function stable with exponential ROBDD

y1y1 y1 y1 y1 y1 y1 y1

x1

1

y3

x2 x2

x3 x3 x3x3

y2

y3

y2 y2 y2

The ROBDD of f (x , y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·2n − 1 vertices under ordering x1 < . . . < xn < y1 < . . . < yn

The function stable with linear ROBDD

x1

y1 y1

x2

y2 y2

x3

y3

1

y3

The ROBDD of f (x , y) = (x1 ↔ y1) ∧ . . . ∧ (xn ↔ yn)

has 3·n + 2 vertices under ordering x1 < y1 < . . . < xn < yn

Optimal variable ordering

! The size of ROBDDs is dependent on the variable ordering
! Is it possible to determine < such that the ROBDD has

minimal size?
! the optimal variable ordering problem for ROBDDs is

NP-complete (Bollig & Wegener, 1996)

! There are many boolean functions with large ROBDDs
! How to deal with this problem in practice?

! guess a variable ordering in advance
! rearrange the variable ordering during the manipulations of

ROBDDs

