Symbolic model checking

Transition systems as boolean functions

» Assume each state is uniquely labeled
> L(s) = L(s") implies s=¢’
» no restriction: if needed extend AP and label states
uniquely
» Assume a fixed total order on propositions:
a<a<...<ag
» Represent a state by a boolean function
» over boolean variables xy through xx such that

[s] = xf A X3 A ..o A Xk

> where the literal x; equals x; if ; € L(s), and — x; otherwise
= no need to explicitly represent function L
» Represent / and — by their characteristic (boolean)
functions
> eg., f([s],[«],[t]) =1ifand only if s+t

Boolean functions

» Boolean functions f : B" — B for n > 0 where B = { 0,1}
» examples: f(x1,Xx2) = x1 A (X2 V —xq), and
f(X1,X2) = X1 <> X2
» Finite sets are boolean functions
> let|S|=Nand 2" < N<2"
» encode each element s € S as boolean vector of length n:
[1:S—B"
» T C Sis represented by fr such that:

fr([s])=1 iff seT

» this is the characteristic function of T
» Relations are boolean functions
» R C S x Sisrepresented by fr such that:

fR(IsLIt) =1 if (s)er

Representing boolean functions

representation | compact? sat A v -

propositional

formula often hard easy easy easy

DNF | sometimes easy hard easy hard

CNF | sometimes hard easy hard hard
(ordered)

truth table never hard hard hard hard
reduced ordered
binary

decision diagram often easy | medium medium easy

Binary decision trees

» Let X be a set of boolean variables.

> Let < be a total order on X
» Binary decision tree (BDT) is a complete binary tree over
(X, <)
> each leaf v is labeled with a boolean value val(v) € B
> non-leaf v is labeled by a boolean variable Var(v) € X
» such that for each non-leaf v and vertex w:

w e { left(v), right(v)} = (Var(v) < Var(w) Vv wis a leaf)

= On each path from root to leaf, variables occur in the same
order

Considerations on BDTs

» BDTs are not compact

» a BDT for boolean function f : B® — B has 2" leafs

= they are as space inefficient as truth tables!
= BDTs contain quite some redundancy
» all leafs with value one (zero) could be collapsed into a
single leaf

» a similar scheme could be adopted for isomorphic subtrees

» The size of a BDT does not change if the variable order
changes

Shannon expansion

» Each boolean function f : B" — B can be written as:

f(Xt,...,xn) = (Xi A fxi:=1]) v (=X A flx;:=0])
» where f[x; := 1] stands for f(xy,...,Xi_1, 1, Xit1,...,Xn)
» and f[x; := 0] for f(x,...,Xi—1,0, Xit1,...,Xn)
» The boolean function fz(v) represented by vertex v in BDT
B is:
» for v aleaf: fz(v) = val(v)
» otherwise:

fa(v) = (Var(v) A fa(right(v))) v (- Var(v) A fs(lef(v)))

» fg = fg(v) where v is the root of B

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

» A ordered binary decision diagram (OBDD) is a directed
graph over (X, <) with:
> each leaf v is labeled with a boolean value val(v) € {0,1}
» non-leaf v is labeled by a boolean variable Var(v) € X
» such that for each non-leaf v and vertex w:

w e { lef(v), right(v)} = (Var(v) < Var(w) v wis a leaf)

= An OBDD is acyclic
» fg for OBDD B is obtained as for BDTs

Reduced OBDDs

OBDD B over (X, <) is called reduced iff:

1. for each leaf v, w: (val(v) = vallw)) = v=w
= identical terminal vertices are forbidden

2. for each non-leaf v: left(v) # right(v)
= non-leafs may not have identical children

3. for each non-leaf v, w:

(Var(v) = Var(w) A right(v) = right(w) A left(v) = lef(w)) = v=w
= vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B’ over (X, <) we have:

(fs = fg/) implies B and B’ are isomorphic

= for a fixed variable ordering, any boolean function
can be uniquely represented by an ROBDD (up to isomorphism)

Dynamic generation of ROBDDs

Main idea:
» Construct directly an ROBDD from a boolean expression
» Create vertices in depth-first search order
» On-the-fly reduction by applying hashing
» on encountering a new vertex v, check whether:
» an equivalent vertex w has been created (same label and

children)
> left(v) = right(v), i.e., vertex v is a “don’t care” vertex

The importance of canonicity

» Absence of redundant vertices

» if fz does not depend on x;, ROBDD B does not contain an

Xj vertex

» Test for equivalence: f(xq,...,Xn) = g(X1,...,Xn)?

» generate ROBDDs By and By, and check isomorphism
» Test for validity: f(xq,...,X,) =17

» generate ROBDD By and check whether it is the 1-leaf
» Test for implication: f(x1,...,Xn) = g(X1,...,Xn)?

» generate ROBDD B; A —Bg and check if it is the O-leaf
» Test for satisfiability

» fis satisfiable if and only if By is not the 0-leaf

Variable ordering

Different ROBDDs are obtained for different variable
orderings

The size of the ROBDD depends on the variable ordering

» Some boolean functions have linear and exponential
ROBDDs

» Some boolean functions only have polynomial ROBDDs
» Some boolean functions only have exponential ROBDDs

v

v

Symmetric functions

f[X1 I:b1,...,Xn Z:bn]:f[X1 Z:b,'w...,X,' =

In

for each permutation (i, ..., i) of (1,...,n)

= The value of f depends only on the number of ones!

D

Xy @ ... D Xp,

Examples: f(D .
f 1iff > k variables x; are true

)
(.)

symmetric boolean functions have ROBDDs of size in O(?)

The even parity function

f(x1,...,Xn) = 1iff the number of variables x; with value 1 is even

truth table or propositional formula for f has exponential size

but an ROBDD of linear size is possible

The function stable with exponential ROBDD

The ROBDD of f(X,¥) = (X1 <> y1) A ... A (Xn 4> ¥n)

has 3-2"” — 1 vertices under ordering X1 < ... < Xp < y1 < ... < ¥n

The function stable with linear ROBDD

The ROBDD of f(X,¥) = (X1 > ¥1) A ... A (Xn > ¥n)

has 3-n+ 2 vertices under ordering Xy < y1 < ... < Xn < ¥n

Optimal variable ordering

v

The size of ROBDDs is dependent on the variable ordering
Is it possible to determine < such that the ROBDD has
minimal size?

» the optimal variable ordering problem for ROBDDs is

NP-complete (Bollig & Wegener, 1996)

There are many boolean functions with large ROBDDs
How to deal with this problem in practice?

» guess a variable ordering in advance

» rearrange the variable ordering during the manipulations of
ROBDDs

v

v

v

