Symbolic model checking

Boolean functions

Transition systems as boolean functions Assume each state is uniquely labeled L(s) = L(s') implies s = s' no restriction: if needed extend AP and label states uniquely Assume a fixed total order on propositions: a1 < a2 < ... < aK Represent a state by a boolean function over boolean variables x1 through xK such that [s]] = x1* ∧ x2* ∧ ... ∧ xK* where the literal xi* equals xi if ai ∈ L(s), and ¬xi otherwise ⇒ no need to explicitly represent function L

- ⇒ no need to explicitly represent function L
 Represent *I* and → by their characteristic (boolean) functions
 - e.g., $f_{\rightarrow}([[s]], [[\alpha]], [[t]]) = 1$ if and only if $s \xrightarrow{\alpha} t$

Lecture 9

Representing boolean functions

representation	compact?	sat	\wedge	V	-
propositional	- (1	المرب ما			
formula	otten	naro	easy	easy	easy
DNF	sometimes	easy	hard	easy	hard
CNF	sometimes	hard	easy	hard	hard
(ordered) truth table	never	hard	hard	hard	hard
reduced ordered binary decision diagram	often	easy	medium	medium	easy

Binary decision trees

- ▶ Let X be a set of boolean variables.
- ► Let < be a total order on X
- Binary decision tree (BDT) is a complete binary tree over $\langle X, < \rangle$
 - each leaf v is labeled with a boolean value $val(v) \in \mathbb{B}$
 - ▶ non-leaf v is labeled by a boolean variable $Var(v) \in X$
 - such that for each non-leaf v and vertex w:
 - $w \in \{ \text{left}(v), \text{right}(v) \} \Rightarrow (Var(v) < Var(w) \lor w \text{ is a leaf})$
- ⇒ On each path from root to leaf, variables occur in the same order

Shannon expansion

• Each boolean function $f : \mathbb{B}^n \longrightarrow \mathbb{B}$ can be written as:

 $f(x_1,...,x_n) = (x_i \land f[x_i := 1]) \lor (\neg x_i \land f[x_i := 0])$

- where $f[x_i := 1]$ stands for $f(x_1, ..., x_{i-1}, 1, x_{i+1}, ..., x_n)$
- and $f[x_i := 0]$ for $f(x_1, ..., x_{i-1}, 0, x_{i+1}, ..., x_n)$
- The boolean function f_B(v) represented by vertex v in BDT B is:
 - for v a leaf: $f_{B}(v) = val(v)$
 - otherwise:
 - $f_{\mathsf{B}}(v) = (Var(v) \land f_{\mathsf{B}}(right(v))) \lor (\neg Var(v) \land f_{\mathsf{B}}(left(v)))$
- $f_{B} = f_{B}(v)$ where v is the root of B

Considerations on BDTs

- BDTs are not compact
 - ▶ a BDT for boolean function $f : \mathbb{B}^b \to \mathbb{B}$ has 2^n leafs
 - \Rightarrow they are as space inefficient as truth tables!
- \Rightarrow BDTs contain quite some redundancy
 - all leafs with value one (zero) could be collapsed into a single leaf
 - ► a similar scheme could be adopted for isomorphic subtrees
- The size of a BDT does not change if the variable order changes

Ordered Binary Decision Diagram

share equivalent expressions [Akers 76, Lee 59]

► A ordered binary decision diagram (OBDD) is a directed graph over (X, <) with:</p>

- each leaf v is labeled with a boolean value $val(v) \in \{0, 1\}$
- ▶ non-leaf *v* is labeled by a boolean variable $Var(v) \in V$.
- such that for each non-leaf v and vertex w:

 $w \in \{ left(v), right(v) \} \Rightarrow (Var(v) < Var(w) \lor w \text{ is a leaf})$

\Rightarrow An OBDD is acyclic

► *f*_B for OBDD B is obtained as for BDTs

Reduced OBDDs

OBDD B over $\langle X, < \rangle$ is called **reduced** iff: 1. for each leaf $v, w: (val(v) = val(w)) \Rightarrow v = w$ \Rightarrow identical terminal vertices are forbidden

2. for each non-leaf v: $left(v) \neq right(v)$ \Rightarrow non-leafs may not have identical children

3. for each non-leaf v, w:
 (Var(v) = Var(w) ∧ right(v) ≅ right(w) ∧ left(v) ≅ left(w)) ⇒ v = w
 ⇒ vertices may not have isomorphic sub-dags

this is what is mostly called BDD; in fact it is an ROBDD!

Dynamic generation of ROBDDs

Main idea:

- Construct directly an ROBDD from a boolean expression
- Create vertices in depth-first search order
- On-the-fly reduction by applying hashing
 - on encountering a new vertex v, check whether:
 - an equivalent vertex w has been created (same label and children)
 - left(v) = right(v), i.e., vertex v is a "don't care" vertex

ROBDDs are canonical

[Fortune, Hopcroft & Schmidt, 1978]

For ROBDDs B and B' over $\langle X, \langle \rangle$ we have: $(f_{B} = f_{B'})$ implies B and B' are isomorphic

 \Rightarrow for a fixed variable ordering, any boolean function can be uniquely represented by an ROBDD (up to isomorphism)

The importance of canonicity

- Absence of redundant vertices
 - if f_B does not depend on x_i, ROBDD B does not contain an x_i vertex
- ► Test for equivalence: f(x₁,...,x_n) ≡ g(x₁,...,x_n)?
 ▶ generate ROBDDs B_f and B_g, and check isomorphism
- Test for validity: $f(x_1, \ldots, x_n) = 1$?
- generate ROBDD B_f and check whether it is the 1-leaf
- Test for implication: f(x₁,...,x_n) → g(x₁,...,x_n)?
 generate ROBDD B_f ∧ ¬B_g and check if it is the 0-leaf
- Test for satisfiability
 - f is satisfiable if and only if B_f is not the 0-leaf

Variable ordering

- Different ROBDDs are obtained for different variable orderings
- The size of the ROBDD depends on the variable ordering
- Some boolean functions have linear and exponential ROBDDs
- Some boolean functions only have polynomial ROBDDs
- Some boolean functions only have exponential ROBDDs

The even parity function

 $f(x_1, \ldots, x_n) = 1$ iff the number of variables x_i with value 1 is even

truth table or propositional formula for *f* has exponential size but an ROBDD of linear size is possible

Symmetric functions

- $f[x_1 := b_1, \ldots, x_n := b_n] = f[x_1 := b_{i_1}, \ldots, x_{i_n} := b_{i_n}]$
 - for each permutation (i_1, \ldots, i_n) of $(1, \ldots, n)$
- \Rightarrow The value of *f* depends only on the number of ones!
- Examples: $f(\ldots) = x_1 \oplus \ldots \oplus x_n$, $f(\ldots) = 1$ iff $\geq k$ variables x_i are true

symmetric boolean functions have ROBDDs of size in $O(n^2)$

The function stable with exponential ROBDD

The ROBDD of $f(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$ has $3 \cdot 2^n - 1$ vertices under ordering $x_1 < \ldots < x_n < y_1 < \ldots < y_n$

The function stable with linear ROBDD

The ROBDD of $f(\overline{x}, \overline{y}) = (x_1 \leftrightarrow y_1) \land \ldots \land (x_n \leftrightarrow y_n)$ has $3 \cdot n + 2$ vertices under ordering $x_1 < y_1 < \ldots < x_n < y_n$

Optimal variable ordering

- The size of ROBDDs is dependent on the variable ordering
- Is it possible to determine < such that the ROBDD has minimal size?
 - the optimal variable ordering problem for ROBDDs is NP-complete (Bollig & Wegener, 1996)
- There are many boolean functions with large ROBDDs
- ► How to deal with this problem in practice?
 - guess a variable ordering in advance
 - rearrange the variable ordering during the manipulations of ROBDDs