Multi-Peer GAXML systems

Albert and Loic, discussed with Serge

Motivations

Distributed multi-peer GAXML systems

- Reuse existing models of GAXML [Serge-Luc-Victor, PODS08]
- Reuse existing concurrent models of systems equipped with a nice notion of parallel composition (assoc and commut)
- Specialize the models in the context of GAXML
- Use this for various purposes: interfaces

Motivations (cont'd)

Distributed multi-peer GAXML systems

- Concurrent Transition Systems; transition relations relating pre- and post-variables
- Central tool: relative patterns, which play the role of (local) variables of the CTS
- Queries play the role of Transition Relations

Contents

- **1** Concurrent Transition Systems
- 2 From CTS to Multipeer GAXML and Execution Schemes
- 3 Interfaces
- 4 Single Peer model for Mailorder
- 5 MultiPeer model for Mailorder
- 6 Interfaces for Mailorder

The Model: CTS

Concurrent Transition System (CTS): $S = (\mathcal{P}, \mathbf{T}, \mathbf{F}_0)$, where $\mathbf{P} \subseteq \mathbb{P}$: variables; state: $\mathbf{F} \in D(\mathcal{P})$ T: set of *transitions* $\mathbf{t} = \langle F_{-}, F_{+} \rangle \in D(\mathcal{Q}_{-}) \times D(\mathcal{Q}_{+})$ where $\mathcal{Q}_{-}, \mathcal{Q}_{+} \subseteq \mathcal{P}$: variables *read* and *written* by t • $F_0 \in D(\mathcal{P})$: initial state Firing Sequence: $t(1), t(2), \ldots$, $\mathbf{t}(k) = \langle F_{-}(k), F_{+}(k) \rangle$, such that, $\forall k \geq 1$: $F_{-}(k) = F_{k-1|\mathcal{Q}_{-}(k)}, F_{k} = F_{+}(k) \ \ \forall \ \ F_{k-1|\mathcal{P}\setminus\mathcal{Q}_{+}(k)}$

CTS: executions

A concurrent form for the executions, where transitions are only partially ordered by causality.

CTS: Parallel Composition

CTS compose as follows:

 $S_1 \parallel S_2 = (\mathcal{P}, \mathbf{T}, (F_{1,0}, F_{2,0}))$

where

$$\begin{aligned} \mathcal{P} &= \mathcal{P}_1 \cup \mathcal{P}_2 \\ \mathbf{T} &= \mathbf{T}_1 \cup \mathbf{T}_2 \\ \mathbf{F}_{i,0} &= \mathbf{proj}_{\mathcal{P}_i}(\mathbf{F}_0) \end{aligned}$$

Parallel composition \parallel is commutative and associative.

Multi-Peer AXML systems

CTS - Specialization

- **T**₁ \cap **T**₂ = \emptyset (not mandatory but convenient)
- A system has variables it can write (no one else can write them) and variables it can read that are written by other systems
- Transitions can be defined intensionally using transition relations (constraints between variables and "next" variables)

CTS - Specialization

Composition of two CTS, one per each peer.

From CTS to GAXML

Specialize variables, states, and transitions

AXML concept	CTS concept	
≥ 1 peer	1 CTS	
global document	global state	
relative pattern	variable	
relative query	transition relation	

Docflow, May 19-20 – p. 12/33

Relative Queries define Transition Relations

Multi-Peer AXML systems

Docflow, May 19-20 – p. 13/33

Relative Pattern

Multi-Peer AXML systems

An Order on Relative Patterns

 $P' \leq P$ if there exists a total mapping ν , from the nodes of to the nodes of ', such that

- (i) self maps to self;
- (ii) / maps to / and // maps to descendants linked by a path with arbitrary branch labels; and
- (iii) the labels of the nodes are preserved

Lemma If $P' \leq P$ holds, then, for any document (F, n), any matching μ' of P' into (F, n) gives raise to a matching $\mu = \mu' \circ \nu$ of P into (F, n).

GAXML seen as CTS

AXML concept	CTS concept	
$\geq 1 \text{ peer}$	1 CTS	
global document	global state	
relative pattern	variable	
relative query	transition relation	
function	argument query	
	return query	

Functions

only internal functions are considered; external functions will be replaced by interface information

Mail Order example

function	owner	caller
MailOrder	Customer	MOSystem
Bill	MOSystem	MOSystem
Invoice	Customer	MOSystem
Deliver	external	MOSystem
Reject	external	MOSystem

See paper for details

Multi-Peer AXML systems

Interfaces

Specifying how a GAXML system can interact with the external world:

- Which properties are expected from the external functions;
- Which properties the considered system offers when called from the external world.

Interfaces

Multi-Peer AXML systems

Interfaces

what the caller expects from the service

what the callee offers

Interfaces: Qpatterns/Qqueries

interfaces refer to variables known to the document as well as variables unknown from the document

Qpatterns & Qqueries

Interfaces: Qpatterns/Qqueries

source: Tree-LTL [Serge, Luc, Victor, PODS2008]

Qpattern: $P(\bar{X})$, where P is a relative pattern and \bar{X} is a subset of its variables, designated as *free*. Other variables of P are seen as quantified existentially, locally to P. So, formally, $P(\bar{X})$ means $\exists \bar{Y}.P$, where \bar{Y} is the set of variables of Pnot belonging to \bar{X} . Define

$$P'(\bar{X}') \leq P(\bar{X})$$

by simply ignoring the mention of \bar{X} .

Interfaces: Qpatterns/Qqueries

Qquery: $P(\bar{X}) = Body \rightarrow Head(\bar{X})$, where *Body* is a pattern and $Head(\bar{X})$ is a Qpattern such that, $\forall H(\bar{X}) \in Head(\bar{X})$:

- its internal nodes have labels in Σ and its leaves have labels in $\Sigma \cup \mathcal{F}^! \cup \mathcal{V}$;
- there is no repeated variable in H(X) and each free variable occurring in it also occurs in Body; and
- there is one designated node c in H called the constructor node, such that the subtree rooted at c contains all variables in H.

-

$$f \models_{int} g \text{ iff } \begin{cases} arg-\text{Head}(f) \leq \text{Body}(g) \\ ret-\text{Body}(f) \leq \text{Head}(g)(\bar{X}) \end{cases}$$
$$f \models_{ext} g' \text{ iff } \begin{cases} arg-\text{Body}(f) \leq \text{Body}(g') \\ ret-\text{Head}(f) \leq \text{Head}(g')(\bar{X}) \end{cases}$$
$$f \models (g,g') \text{ iff } f \models_{int} g \text{ and } f \models_{ext} g'$$

For C an interface and S a schema, say that S implements C, written $S \models C$, if

- 1. every external Qfunction of C either occurs on S or is implemented by some function that is called but not owned by S; and
- 2. every internal Qfunction of C that can be called from outside the peer is implemented by some internal function of S.

Interface compatibility

For g, g' internal and an external Qfunctions: g and g' compatible iff $\exists f : f \models (g, g')$

Compatibility means absence of contradiction: $g \approx g'$ does not imply that g and g' are the two "faces" of a same service. They may indeed correspond to different services, but these two services should be compatible, i.e., should not contradict themselves.

Interface compatibility

For g, g' internal and an external Qfunctions:

g and g' compatible iff $\exists f : f \models (g, g')$

Two interfaces C and C' are called *compatible* if, for each pair (g, g') such that g is an external Qfunction of C and g' is an internal Qfunction of C', or vice-versa, then $g \approx g'$ holds.

Revisiting composition

Schemas were not given a precise semantics for their external functions. We propose to replace external functions by external Qfunctions:

$$S = (\Phi_{\text{int}}, \Phi_{\text{ext}})$$

$$S_1 \parallel_s S_2 = (\Phi_{\text{int}}, \Phi_{\text{ext}}), \text{ where}$$

$$\Phi_{\text{int}} = \Phi_{\text{int}}^1 \parallel \Phi_{\text{int}}^2, \text{ and}$$

$$\Phi_{\text{ext}} = (\Phi_{\text{ext}}^1 \setminus \Phi_{\text{int}}^2) \cup (\Phi_{\text{ext}}^2 \setminus \Phi_{\text{int}}^1)$$

Substituability

Theorem 0.1 Assume that two interfaces C' and C'' are compatible, and set $C = C' \parallel C''$. Then,

$$\begin{cases} S' \models C' \\ S'' \models C'' \end{cases} \implies S' \parallel_s S'' \models C \end{cases}$$