
Multi-Peer GAXML
systems

Albert and Loic, discussed with Serge

Multi-Peer AXML systems Docflow, May 19-20 – p. 1/33

Motivations
Distributed multi-peer GAXML systems

Reuse existing models of GAXML
[Serge-Luc-Victor, PODS08]

Reuse existing concurrent models of systems
equipped with a nice notion of parallel
composition (assoc and commut)

Specialize the models in the context of
GAXML

Use this for various purposes: interfaces

Multi-Peer AXML systems Docflow, May 19-20 – p. 2/33

Motivations (cont’d)

Distributed multi-peer GAXML systems

Concurrent Transition Systems; transition
relations relating pre- and post-variables

Central tool: relative patterns, which play the
role of (local) variables of the CTS

Queries play the role of Transition Relations

Multi-Peer AXML systems Docflow, May 19-20 – p. 3/33

Contents

1 Concurrent Transition Systems

2 From CTS to Multipeer GAXML and
Execution Schemes

3 Interfaces

4 Single Peer model for Mailorder

5 MultiPeer model for Mailorder

6 Interfaces for Mailorder

Multi-Peer AXML systems Docflow, May 19-20 – p. 4/33

The Model: CTS
Concurrent Transition System (CTS):
S = (P ,T, F0), where

P ⊆ P: variables; state: F ∈ D(P)

T: set of transitions
t = 〈F−, F+〉 ∈ D(Q−) × D(Q+) where
Q−,Q+ ⊆ P: variables read and written by t

F0 ∈ D(P): initial state

Firing Sequence: t(1), t(2), . . . ,
t(k) = 〈F−(k), F+(k)〉, such that, ∀k ≥ 1:
F−(k) = Fk−1|Q−(k) , Fk = F+(k) ⊎ Fk−1|P\Q+(k)

Multi-Peer AXML systems Docflow, May 19-20 – p. 5/33

CTS: executions
p q

P1, P2, P Q, Q1, Q2

A concurrent form
for the executions,
where transitions are
only partially ordered
by causality.

Multi-Peer AXML systems Docflow, May 19-20 – p. 6/33

CTS: Parallel
Composition

CTS compose as follows:

S1 ‖ S2 = (P ,T, (F1,0, F2,0))

where

P = P1 ∪ P2

T = T1 ∪ T2

Fi,0 = projPi
(F0)

Parallel composition ‖ is commutative and
associative.

Multi-Peer AXML systems Docflow, May 19-20 – p. 7/33

CTS - Specialization

T1 ∩ T2 = ∅ (not mandatory but convenient)

A system has variables it can write (no one
else can write them) and variables it can read
that are written by other systems

Transitions can be defined intensionally using
transition relations (constraints between
variables and “next” variables)

Multi-Peer AXML systems Docflow, May 19-20 – p. 8/33

CTS - Specialization
p q

P1, P2, P Q, Q1, Q2

Composition of two CTS,
one per each peer.

Multi-Peer AXML systems Docflow, May 19-20 – p. 9/33

From CTS to GAXML
Specialize variables, states, and transitions

AXML concept CTS concept

≥ 1 peer 1 CTS
global document global state

relative pattern variable
relative query transition relation

Multi-Peer AXML systems Docflow, May 19-20 – p. 10/33

Relative
Patterns/Queries

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Main

Product

Pname

X

MailOrder

Pname

X

self

relative patterns operate on documents

by returning the set of all possible matchings

(⇔ CTS-variables evaluate on states)

Relative Pattern

Multi-Peer AXML systems Docflow, May 19-20 – p. 11/33

Relative
Patterns/Queries

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Main

Catalog

Product

Pname

X

Price

Y

MailOrder

Pname

X

self

−→ Bill, self

Pname

X

Amount

Y

!Invoice
relative queries

define

transition relations

Relative Query
Multi-Peer AXML systems Docflow, May 19-20 – p. 12/33

Relative
Patterns/Queries

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

Bill

Pname

Nikon

Amount

199

!Invoice

Relative Queries define Transition Relations

Multi-Peer AXML systems Docflow, May 19-20 – p. 13/33

Relative
Patterns/Queries

Main

Catalog

Product

Pname

Canon

Price

120

Product

Pname

Nikon

Price

199

!Mailorder MailOrder

Order-Id

1234567

Cname

Serge

Pname

Nikon

!Bill !Deliver !Reject

Main

Product

Pname

X

MailOrder

Pname

X

self

relative patterns operate on documents

by returning the set of all possible matchings

(⇔ CTS-variables evaluate on states)

relative patterns are not independent

Relative Pattern

Multi-Peer AXML systems Docflow, May 19-20 – p. 14/33

An Order on Relative
Patterns

P ′ ≤ P if there exists a total mapping ν, from the
nodes of to the nodes of ′, such that

(i) self maps to self;

(ii) / maps to / and // maps to descendants linked
by a path with arbitrary branch labels; and

(iii) the labels of the nodes are preserved

Lemma If P ′ ≤ P holds, then, for any document (F, n),
any matching µ′ of P ′ into (F, n) gives raise to a matching
µ = µ′ ◦ ν of P into (F, n).

Multi-Peer AXML systems Docflow, May 19-20 – p. 15/33

GAXML seen as CTS

AXML concept CTS concept

≥ 1 peer 1 CTS
global document global state

relative pattern variable
relative query transition relation

function argument query
return query

Multi-Peer AXML systems Docflow, May 19-20 – p. 16/33

Functions

ret(f)-head

pq

arg(f)-head

arg(f)-body

ret(f)-bodyreturn

argument

γ(f)

ρ(f)

argument: owned by p

return: owned by q

only internal functions are considered; external
functions will be replaced by interface information

Multi-Peer AXML systems Docflow, May 19-20 – p. 17/33

Mail Order example

function owner caller

MailOrder Customer MOSystem

Bill MOSystem MOSystem

Invoice Customer MOSystem

Deliver external MOSystem

Reject external MOSystem

CustomerMOSystem

Deliver

Reject

MailOrder

Bill Invoice

See paper for details

Multi-Peer AXML systems Docflow, May 19-20 – p. 18/33

Interfaces
Specifying how a GAXML system can interact
with the external world:

Which properties are expected from the
external functions;

Which properties the considered system
offers when called from the external world.

Multi-Peer AXML systems Docflow, May 19-20 – p. 19/33

Interfaces

services
offered

services
required

C1

. . .@p11 @p12

S1

services
offered

services
required

C2

. . .

S2

@p21 @p22

‖

‖

Multi-Peer AXML systems Docflow, May 19-20 – p. 20/33

Interfaces

ret(f)-Head

pq

arg(f)-Head

arg(f)-Body

ret(f)-Body

γ(f)

ρ(f)

pq

Body(g′)

Head(g′)(X̄′)

pq

Body(g)

Head(g)(X̄)

Multi-Peer AXML systems Docflow, May 19-20 – p. 21/33

Interfaces
pq

Body(g′)

Head(g′)(X̄′)

pq

Body(g)

Head(g)(X̄)

what the caller
expects
from the service

what the callee
offers

Multi-Peer AXML systems Docflow, May 19-20 – p. 22/33

Interfaces:
Qpatterns/Qqueries

pq

Body(g′)

Head(g′)(X̄′)

pq

Body(g)

Head(g)(X̄)

interfaces refer to
variables known
to the document
as well as
variables unknown
from the document

Qpatterns & Qqueries

Multi-Peer AXML systems Docflow, May 19-20 – p. 23/33

Interfaces:
Qpatterns/Qqueries

source: Tree-LTL [Serge, Luc, Victor, PODS2008]

Qpattern: P (X̄), where P is a relative pattern
and X̄ is a subset of its variables, designated as
free. Other variables of P are seen as quantified
existentially, locally to P . So, formally, P (X̄)
means ∃Ȳ .P , where Ȳ is the set of variables of P
not belonging to X̄. Define

P ′(X̄ ′) ≤ P (X̄)

by simply ignoring the mention of X̄.
Multi-Peer AXML systems Docflow, May 19-20 – p. 24/33

Interfaces:
Qpatterns/Qqueries

Qquery: P (X̄) = Body → Head(X̄), where
Body is a pattern and Head(X̄) is a Qpattern
such that, ∀H(X̄) ∈ Head(X̄):

its internal nodes have labels in Σ and its
leaves have labels in Σ ∪ F ! ∪ V;

there is no repeated variable in H(X̄) and
each free variable occurring in it also occurs
in Body ; and

there is one designated node c in H called
the constructor node, such that the subtree
rooted at c contains all variables in H.

Multi-Peer AXML systems Docflow, May 19-20 – p. 25/33

Implementation
relation

f |=int g′ iff

{

arg-Head(f) ≤ Body(g)

ret-Body(f) ≤ Head(g)(X̄)

f |=ext g′ iff

{

arg-Body(f) ≤ Body(g′)

ret-Head(f) ≤ Head(g′)(X̄)

f |= (g, g′) iff f |=int g and f |=ext g′

Multi-Peer AXML systems Docflow, May 19-20 – p. 26/33

Implementation
relation

f |=int g′ iff

arg-Head(f) ≤ Body(g)

ret-Body(f) ≤ Head(g)(X̄)

f |=ext g′ iff

arg-Body(f) ≤ Body(g′)

ret-Head(f) ≤ Head(g′)(X̄)

ret(f)-Head

pq

arg(f)-Head

arg(f)-Body

ret(f)-Body

γ(f)

ρ(f)

pq

Body(g′)

Head(g′)(X̄′)

pq

Body(g)

Head(g)(X̄)

Multi-Peer AXML systems Docflow, May 19-20 – p. 27/33

Implementation
relation

For C an interface and S a schema, say that S
implements C, written S |= C, if

1. every external Qfunction of C either occurs
on S or is implemented by some function that
is called but not owned by S; and

2. every internal Qfunction of C that can be
called from outside the peer is implemented
by some internal function of S.

Multi-Peer AXML systems Docflow, May 19-20 – p. 28/33

Implementation
relation

MOSystem

Deliver

Reject

MailOrder

InvoiceBill

CustomerMOSystem

Deliver

Reject

MailOrder

Bill Invoice

Customer

MailOrder

Invoice

Multi-Peer AXML systems Docflow, May 19-20 – p. 29/33

Interface
compatibility

For g, g′ internal and an external Qfunctions:

g and g′ compatible iff ∃f : f |= (g, g′)

Compatibility means absence of contradiction: g ≈ g′ does not imply

that g and g′ are the two “faces” of a same service. They may indeed

correspond to different services, but these two services should be

compatible, i.e., should not contradict themselves.

Multi-Peer AXML systems Docflow, May 19-20 – p. 30/33

Interface
compatibility

For g, g′ internal and an external Qfunctions:

g and g′ compatible iff ∃f : f |= (g, g′)

Two interfaces C and C ′ are called compatible if,
for each pair (g, g′) such that g is an external
Qfunction of C and g′ is an internal Qfunction of
C ′, or vice-versa, then g ≈ g′ holds.

Multi-Peer AXML systems Docflow, May 19-20 – p. 31/33

Revisiting
composition

Schemas were not given a precise semantics for
their external functions. We propose to replace
external functions by external Qfunctions:

S = (Φint, Φext)

S1 ‖s S2 = (Φint, Φext), where

Φint = Φ1
int ‖ Φ2

int, and

Φext = (Φ1
ext \ Φ2

int) ∪ (Φ2
ext \ Φ1

int)

Multi-Peer AXML systems Docflow, May 19-20 – p. 32/33

Substituability

Theorem 0.1 Assume that two interfaces C ′ and
C ′′ are compatible, and set C = C ′ ‖ C ′′. Then,

S ′ |= C ′

S ′′ |= C ′′

}

=⇒ S ′ ‖s S ′′ |= C

Multi-Peer AXML systems Docflow, May 19-20 – p. 33/33

	Motivations
	Motivations (cont'd)
	Contents
	The Model: cts
	cts : executions
	CTS: Parallel Composition
	CTS - Specialization
	CTS - Specialization
	From CTS to BAXML
	Relative Patterns/Queries
	Relative Patterns/Queries
	Relative Patterns/Queries
	Relative Patterns/Queries
	An Order on Relative Patterns
	BAXML seen as cts
	Functions
	Mail Order example
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces: Qpatterns/Qqueries
	Interfaces: {color {red}Qpatterns}/Qqueries
	Interfaces: {Qpatterns}/{color {red}Qqueries}
	Implementation relation
	Implementation relation
	Implementation relation
	Implementation relation
	Interface compatibility
	Interface compatibility
	Revisiting composition
	Substituability

