Multi-Peer GAXML
systems

Albert and Loic, discussed with Serge

Multi-Peer AXML systems Docflow, May 19-20 — p. 1/33

Motivations

Distributed multi-peer GAXML systems

m Reuse existing models of GAXML
Serge-Luc-Victor, PODSO08]

m Reuse existing concurrent models of systems
equipped with a nice notion of parallel
composition (assoc and commut)

m Specialize the models in the context of
GAXML

m Use this for various purposes: interfaces

Motivations (cont’d)

Distributed multi-peer GAXML systems

m Concurrent Transition Systems; transition
relations relating pre- and post-variables

m Central tool: relative patterns, which play the
role of (local) variables of the CTS

m Queries play the role of Transition Relations

Contents

1 Concurrent Transition Systems

2 From CTS to Multipeer GAXML and
Execution Schemes

3 Interfaces

4 Single Peer model for Mailorder
5 MultiPeer model for Mallorder

6 Interfaces for Mailorder

The Model: CTS

Concurrent Transition System (CTS):
S = (P, T,Fy), where

= P C PP: variables; state: F € D(P)

m T set of transitions
t = (F_,F,) € D(Q_)x D(Q,) where
Q_, 9, CP:variables read and written by t

mFy € D(P): initial state

m Firing Sequence: t(1),t(2), ...,
t(k) = (F_(k), F\(k)), such that, Vk > 1:
F (k) =Fr11g_), Fr = Fy(k) W Froypo, i)

CTS: executions

p q
P17P27P Qa Qla Q2

N
N A concurrent form
mmm for the executions,
where transitions are
only partially ordered
by causality.

1 1

Multi-Peer AXML systems Docflow, May 19-20 — p. 6/33

CTS: Parallel
Composition

CTS compose as follows:
Sil|S2 = (P, T,(Fio,F2))
where

P = PLUPs
T T, UT,

Fio = projp,(Fo)

Parallel composition || is commutative and
associative.

CTS - Specialization

m T, N'T, = 0 (not mandatory but convenient)

m A system has variables it can write (no one
else can write them) and variables it can read
that are written by other systems

m Transitions can be defined intensionally using
transition relations (constraints between
variables and “next” variables)

Multi-Peer AXML systems Docflow, May 19-20 — p. 8/33

CTS - Specilalization

p q
P17 P27P Qa Qla Q2
N
N
_— Composition of two CTS,

_ﬁ one per each peer.

From CTS to GAXML

Specialize variables, states, and transitions

AXML concept

CTS concept

> 1 peer

1CTS

global document

global state

relative pattern

variable

relative query

transition relation

Docflow, May 19-20 — p. 10/33

Relative |
Patterns/Queries

Main
/
Catalog IMailorder MailOrder
VRN — \T—_
Product Product Order-ld Cname Pname !Bill !'Deliver !'Reject
/7 \ 7/ \ I | |
Pname Price Pname Price 1234567 Serge Nikon
| | | |
Canon 120 Nikon 199
Main _
R relative patterns operate on documents
Product MailOrder _ _ _
I 7/ \ by returning the set of all possible matchings
Pname Pname self _
I I (< CTS-variables evaluate on states)
X X

Relative Pattern

Multi-Peer AXML systems

Docflow, May 19-20 — p. 11/33

Relative |
Patterns/Queries

Main
/
Catalog IMailorder MailOrder
VRN _— " \T—_
Product Product Order-ld Cname Pname !Bill !'Deliver !'Reject
7/ \ /7 \ | | |
Pname Price Pname Price 1234567 Serge Nikon
| | | |
i Canon 120 Nikon 199
Main Bill, self _ _
Z N\ P RN relative queries
Catalog MailOrder Pname Amount !Invoice _
| / \ I I define
Product Pname self X Y N _
7/ \ | transition relations

Pname Price X

I I
X Y

Relative Query

Multi-Peer AXML systems Docflow, May 19-20 — p. 12/33

Relative |
Patterns/Queries

Main
/
Catalog IMailorder MailOrder
e AN — / T~
Product Product Order-Id Cname Pname !BIll
7/ \ 7/ \ | I I
Pname Price Pname Price 1234567 Serge Nikon
I I I I
Canon 120 Nikon 199
: Main
/
Catalog IMailorder MailOrder
e N _—— |
Product Product Order-Id Cname Pname Bill
7/ \ 7/ \ I I I N
Pname Price Pname Price 1234567 Serge Nikon Pname Amount !lInv
I | I I I I
Canon 120 Nikon 199 Nikon 199

Relative Queries define Transition Relations

Multi-Peer AXML systems Docflow, May 19-20 — p. 13/33

Relative |
Patterns/Queries

Main
/
Catalog IMailorder MailOrder
PN _——/ \T—_
Product Product Order-ld Cname Pname !Bill !'Deliver !'Reject
/7 \ 7/ \ I | |
Pname Price Pname Price 1234567 Serge Nikon
| | | |
i Canon 120 Nikon 199
Main relative patterns operate on documents
Z X\ | | .
Proc‘iuct Maloger by returning the set of all possible matchings

Pname Pname self (< CTS-variables evaluate on states)

| |
X X relative patterns are not independent

Relative Pattern

Multi-Peer AXML systems Docflow, May 19-20 — p. 14/33

An Order on Relative
Patterns

P’ < P if there exists a total mapping v, from the
nodes of to the nodes of’, such that

(1) self maps to self;

. () /' maps to / and // maps to descendants linked
by a path with arbitrary branch labels; and

(1) the labels of the nodes are preserved

Lemma If P" < P holds, then, for any document (F, n),
any matching i’ of P’ into (F, n) gives raise to a matching
= ovof Pinto (F,n).

GAXML seen as CTS

AXML concept

CTS concept

> 1 peer

1CTS

global document

global state

relative pattern

variable

relative query

transition relation

function

argument query
return query

Docflow, May 19-20 — p. 16/33

Functions

q p
—— ——

(f) -
argument % arg(f)-body _|

_ ret(f)-body

return —
% ret(f)-head _|_ /

— —1 /]

argument. owned by p
return. owned by ¢

only internal functions are considered; external
functions will be replaced by interface information

Multi-Peer AXML systems Docflow, May 19-20 — p. 17/33

function owner caller
MailOrder | Custoner | MOSystem
Bill MOSystem | MOSyst em
Invoice Cust orer | MOSyst em
Deliver external MOSyst em
Reject external MOSyst em

See paper for detalls

Multi-Peer AXML systems

Mail Order example

Cust oner
——1

MailOrder
=
Bill Invoice

Deliver

Reject

Docflow, May 19-20 — p. 18/33

Interfaces

Specifying how a GAXML system can interact
with the external world:

= Which properties are expected from the
external functions;

= Which properties the considered system
offers when called from the external world.

Docflow, May 19-20 — p. 19/33

Multi-Peer AXML systems

Interfaces

' ™
C
services
offered
services
required

_ Y,

-
&

services
offered

services

required
\-

J

Docflow, May 19-20 — p. 20/33

Interfaces

-
BOdY(9) e
X) ¥ 1
L L
= =
(f)
arg(f)-Body mmm 4
\ e 07 (f)-Head = BOdY(g)
— p(f) 1
e 7€t (f)-Body . Head(g)(X)
ret(f)-Head / L
; —— —/— —/—

Multi-Peer AXML systems Docflow, May 19-20 — p. 21/33

Interfaces

what the caller

| expects
| Head(g")(X) ;‘ | from the service
1, 2
1 _Body(g)
1 what the callee
=@ Gtfers

Multi-Peer AXML systems Docflow, May 19-20 — p. 22/33

Interfaces: |
patterns/Qqueries

Interfaces refer to
variables known
1 to the document

= =L as well as
q p .
— variables unknown

— from the document

Qpatterns & Qqueries

Multi-Peer AXML systems Docflow, May 19-20 — p. 23/33

Interfaces: |
Qpatterns/Qqgueries

source: Tree-LTL [Serge, Luc, Victor, PODS2008]

Qpattern: P(X), where P is a relative pattern

| and X is a subset of its variables, designated as
free. Other variables of P are seen as quantified
existentially, locally to P. So, formally, P(X)

means 3Y.P, where Y is the set of variables of P
not belonging to X. Define

PI(X') < P(X)

by simply ignoring the mention of X .

Interfaces: |
Qpatterns/Qquerles

Qquery: P(X) = Body — Head(X), where
Body is a pattern and Head(X) is a Qpattern
such that, VH(X) € Head(X):
m its internal nodes have labels in > and its
leaves have labels in X U F' U V;

m there is no repeated variable in H(X) and
each free variable occurring in it also occurs
INn Body; and

m there is one designated node c in H called
the constructor node, such that the subtree
rooted at ¢ contains all variables in H.

Implementation

=int g 1T <

\

. arg-Body/(f)
—ex " iff
9 { ret-Head(f)

= (g,9') iff f

relation

[arg-Head(f)
ret-Body/(f)

VARVA

VARVA

—int J and f

Body(g)
Head(g)(X)

Body(g')
Head(g')(X)

| /
—ext 9

Implementation
relation

= R
N _ arg-Head(f) < Body(g)] ,
f Fint g 'ﬁ{ ret-Body(f) < Head(g)(X) Bot() 1
[arg-Body(f) < Body(g')
ret-Head(f) < Head(g')(X) Hoad(g) (X) LY BB
L L
= R
V() L R
arg(f)-BodY
\ —— 07g(f)-Head T
— p(f) ~= o (9)
= 7€l (f)-Bod 1 _
ret(f)-Head / y — Head(g) (X
; — T

Multi-Peer AXML systems Docflow, May 19-20 — p. 27/33

Implementation
relation

For C' an interface and S a schema, say that .S
Implements C', written S = C, If

1. every external Qfunction of C either occurs
on S or is implemented by some function that
IS called but not owned by S; and

2. every internal Qfunction of C that can be
called from outside the peer is implemented
by some internal function of S.

Implementation
relation

Cust oner Cust oner
——1 ——1

MailOrder > MailOrder
Bill { Invoice > Invoice

Deliver Deliver

: Reject Reject

Multi-Peer AXML systems Docflow, May 19-20 — p. 29/33

Interface
compatibility

For ¢, ¢’ internal and an external Qfunctions:

g and ¢’ compatible iff 3f: f = (g,4")

Compatibility means absence of contradiction: g ~ ¢’ does not imply

that ¢ and ¢’ are the two “faces” of a same service. They may indeed
correspond to different services, but these two services should be

compatible, i.e., should not contradict themselves.

Multi-Peer AXML systems Docflow, May 19-20 — p. 30/33

Interface
compatibility

For ¢, ¢’ internal and an external Qfunctions:

g and ¢’ compatible iff 3f: f = (g,4")

Two interfaces C' and C" are called compatible fif,
. for each pair (g, ¢') such that ¢ is an external
Qfunction of C' and ¢’ is an internal Qfunction of
C’, or vice-versa, then g ~ ¢’ holds.

Docflow, May 19-20 — p. 31/33

Revisiting
composition

Schemas were not given a precise semantics for
their external functions. We propose to replace
external functions by external Qfunctions:

S = ((I)intyq)ext)

Sills S2 = (Pint, Pext), Where
Pint = (I)ilnt ’(I)ian and
Dext = ((I)éxt \ (I)iQnt) U ((I)(Qext \ (I)ilnt)

Substituability

Theorem 0.1 Assume that two interfaces ¢’ and
C" are compatible, and set C' = C’ || C”. Then,

\

S/ | C/

[/ sl = S| S"EC

/

	Motivations
	Motivations (cont'd)
	Contents
	The Model: cts
	cts : executions
	CTS: Parallel Composition
	CTS - Specialization
	CTS - Specialization
	From CTS to BAXML
	Relative Patterns/Queries
	Relative Patterns/Queries
	Relative Patterns/Queries
	Relative Patterns/Queries
	An Order on Relative Patterns
	BAXML seen as cts
	Functions
	Mail Order example
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces: Qpatterns/Qqueries
	Interfaces: {color {red}Qpatterns}/Qqueries
	Interfaces: {Qpatterns}/{color {red}Qqueries}
	Implementation relation
	Implementation relation
	Implementation relation
	Implementation relation
	Interface compatibility
	Interface compatibility
	Revisiting composition
	Substituability

