OPTIMIZATION OF WEB SERVICE CALLS IN THE AXML DOCUMENT

Sattanathan Subramanian ERCIM Fellow GEMO Team, INRIA-Saclay

May 20, 2008

Road Map

Aim and the expected outcomes
Type of Web service call
Idea of Grouping

Aim and the expected outcomes

- Aim: To optimize the number of Web service calls which are in the AXML document
- Expected outcomes are,
 - Reduction of remote service computation (especially when the Web service is connected with the databases)
 - Reduction of data transfer between the Web service requester (AXML Doc) and Web service provider
 - Last but not the least, reduction of marshalling/demarshalling process

Type of Web service call

The Web service calls which are targeting the same Web service function
independent i.e. located in leaf nodes of AXML doc
for example, sc₁@p₁(c₁), sc₂@p₁(c₂)
service calls sc₁ and sc₂ are targeting the same peer p₁ with its own condition c₁ or c₂ as parameter
c₁ and c₂ could be identical or subset/superset or different from one another

 sc_1 , sc_2 ,..., sc_n are the different id's of the same Web service function

Condition c_i is a bool combination of atom in the form of $A_i \theta_i V_i$, where θ_i belongs to $\{=,\neq,<,\geq,\geq\}$

Fig: Before Grouping

Two (or more) conditions are logically connected i.e. $c_i \not a$ c_i , where $\not a$ belongs to {V,^}. For example, condition c_1 could be $c_{11} \land c_{12}$.

10

In the grouped service call sc, condition c is $c_1 V c_2 V ... V c_n$

Example of an encoded condition

- Optimization while grouping the conditions,
 - **Given:** c_1 of sc_1 , c_2 of sc_2 .
 - Output: c
 - **I** If c_1 and c_2 are exactly same then $c=c_1$
 - Else if c_1 and c_2 are range type or < type or ≤ type or > type or ≥ type then
 - update the conditional values of c₁ by looking c₂ (min, max, or both)
 - if the expected results of c₁ and c₂ are different then add those into c₁

■ c=c₁

 $\blacksquare Else c=c_1 V c_2$

□ split could be done in two ways:

1) apply σ_{c_i} or Π_{c_i} in r, where c_i is the condition of service call sc_i

It additionally requires the conditional attributes and its values (which are given in c_i) in the service call result r

For example,

- sc1=select stockRate from StockService where
 companyType="MNC"
- sc₂=select stockRate from StockService where stockName="dell"
- sc₃=select stockRate from StockService where stockName="yahoo"
- sc₄=select stockRate from StockService where companyType="France"

- After grouping conditions,
 - sc=select stockRate from StockService where companyType="MNC" or stockName="yahoo" or stockName="dell" or companyType="France"
 - sc could produce the result something like, r(20\$, 25\$, ... 15\$)
 - It is difficult (or impossible) to separate the result r according to the conditions of sc₁ to sc₄
- To solve this, r should also have the conditional attributes and its values, the correct version of sc is,
 - sc=select stockRate, stockName, companyType from StockService where companyType="MNC" or stockName="yahoo" or stockName="dell" or companyType="France"

- 2) Web service itself should differentiate the results as per the disjunctive conditions which are supplied in the Web service call
 - For example, $sc(c_1 \lor c_2)$ should get the result in the form of $r(\langle r_1 \rangle, \langle r_2 \rangle)$ where the special brackets $\langle \rangle$ are differentiating the results which are produced with the condition c_1, c_2
 - But, it is difficult to extract the results of hidden condition

16

Thank you