Monotony in Service Orchestrations

A. Bouillard S. Rosario A. Benveniste S. Haar

May 20, 2008

Contract, Contract Composition

Contract, Contract Composition

Overall latency : $\tau_{S_2} + \tau_{S_4} = 7$

Overall latency : $\tau_{S_1} + \tau_{S_3} = 12$

$$N=(\mathcal{P},\mathcal{T},\mathcal{F},M_0)$$

 $\ensuremath{\mathcal{P}}$: Set of Places

 $\ensuremath{\mathcal{T}}$: Set of Transitions

 $\mathcal{F}\subseteq (\mathcal{P}\times\mathcal{T})\cup (\mathcal{T}\times\mathcal{P})$: Flow Relation

 $M_0:\mathcal{P} \to \mathbb{N}$: Initial Marking

$$\begin{aligned} \textit{M}_0 &= \{\textit{p}_1 \to 2, \textit{p}_2 \to 1, \textit{p}_3 \to 0 \\ \textit{p}_4 &\to 0, \textit{p}_5 \to 0 \} \end{aligned}$$

$$M_0 = \{ p_1 \to 2, p_2 \to 1, p_3 \to 0 \\ p_4 \to 0, p_5 \to 0 \}$$

Preset of a node x: ${}^{\bullet}x$ for e.g, ${}^{\bullet}t_1 = \{p_1, p_2\}$

Preset of a node x: $^{\bullet}x$ for e.g, $^{\bullet}t_1 = \{p_1, p_2\}$

Postset of a node $x: x^{\bullet}$ for $e.g, t_1^{\bullet} = \{p_3\}$

Firing of transition t_1

Causality Relation : \leq for e.g, : $ho_3 < t_1 <
ho_1$ $t_1 < t_2 < t_4$

Causality Relation : ≤

for e.g, : $\emph{p}_3 < \emph{t}_1 < \emph{p}_1$

 $t_1 < t_2 < t_4$

Conflict Relation: #

for e.g, : $t_2 \# t_3$

Causality Relation : \leq

for e.g, : $p_3 < t_1 < p_1$

 $t_1 < t_2 < t_4$

Conflict Relation: #

for e.g, : $t_2\#t_3$

 $t_4 \# t_5$

A **configuration** is a sub-net κ s.t.:

1. κ is causally closed. If $x \in \kappa$ and x' < x, then $x' \in \kappa$.

A **configuration** is a sub-net κ s.t.:

- 1. κ is causally closed. If $x \in \kappa$ and x' < x, then $x' \in \kappa$.
- 2. κ is conflict-free. $\nexists x, x' \in \kappa \ s.t. \ x \# x'$

Occurrence Nets

A safe net N is called an occurrence net iff

- 1. No node of *N* is in self-conflict.
- $2. \le is a partial order$
- 3. $\lceil t \rceil = \{x \in N \mid x \le t\}$ is finite for all transitions of N.
- 4. $| \cdot p | \le 1$ for all places of N.

OrchNets

• Tokens have *colors*: (value, date)

OrchNets

- Tokens have colors: (value, date)
- A transition t has functions (ϕ_t, τ_t) that modify the token colors.

An *OrchNet* is a tuple $\mathcal{N} = (N, \Phi, T, T_{\text{init}})$

• N: occurrence net with token attributes c = (value, date).

- N: occurrence net with token attributes c = (value, date).
- $\Phi = (\phi_t)_{t \in \mathcal{T}}$: family of value functions.

- N: occurrence net with token attributes c = (value, date).
- $\Phi = (\phi_t)_{t \in \mathcal{T}}$: family of value functions.
- $T = (\tau_t)_{t \in \mathcal{T}}$: family of *latency functions*.

- N: occurrence net with token attributes c = (value, date).
- $\Phi = (\phi_t)_{t \in \mathcal{T}}$: family of value functions.
- $T = (\tau_t)_{t \in \mathcal{T}}$: family of *latency functions*.
- $T_{\text{init}} = (\tau_p)_{p \in \min(\mathcal{P})}$: family of *initial date functions*.

OrchNets: Example

OrchNets: Example

OrchNets: Example

 $\omega \in \Omega$, a **daemon** variable that resolves non-determinism.

 $\omega \in \Omega$, a **daemon** variable that resolves non-determinism.

For a given value of ω , ϕ_t^ω and τ_t^ω are deterministic functions.

Actually occurring configuration for a given ω : $\overline{\kappa}(\mathcal{N}, \omega)$

When $d^{\omega} < d'^{\omega}$, $\overline{\kappa}(\mathcal{N}, \omega)$ is..

When $d^{\omega} < d'^{\omega}$, $\overline{\kappa}(\mathcal{N}, \omega)$ is..

Execution Time

Execution Time of a maximal configuration $\overline{\kappa}$ of \mathcal{N} :

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) = \{ max(d_{x}^{\omega}) \mid x \in \overline{\kappa} \}$$

Execution Time

For a given ω , execution time of \mathcal{N} :

$$E_{\omega}(\mathcal{N}) = E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

When $d^{\omega} < d'^{\omega}$..

When $d^{\omega} < d'^{\omega}$...

$$E_{\omega}(\mathcal{N}) = d^{\omega} + \tau_{s}^{\omega}$$

Call pre-OrchNet a tuple $\mathbb{N} = (\textit{N}, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ where,

Call **pre-OrchNet** a tuple $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ where,

1. N, Φ : as before.

Call **pre-OrchNet** a tuple $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ where,

- 1. N, Φ : as before.
- 2. \mathbb{T} : sets of families of latency functions T.

Call **pre-OrchNet** a tuple $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{init})$ where,

- 1. N, Φ : as before.
- 2. \mathbb{T} : sets of families of latency functions T.
- 3. \mathbb{T}_{init} : sets of families of initial date functions \mathcal{T}_{init} .

Call **pre-OrchNet** a tuple $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{init})$ where,

- 1. N, Φ : as before.
- 2. \mathbb{T} : sets of families of latency functions T.
- 3. \mathbb{T}_{init} : sets of families of initial date functions \mathcal{T}_{init} .

Call **pre-OrchNet** a tuple $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ where,

- 1. N, Φ : as before.
- 2. \mathbb{T} : sets of families of latency functions T.
- 3. $\mathbb{T}_{\mathrm{init}}$: sets of families of initial date functions T_{init} .

Write $\mathcal{N} \in \mathbb{N}$ if there exists $T \in \mathbb{T}$ and $T_{\mathrm{init}} \in \mathbb{T}_{\mathrm{init}}$ s.t.

$$\mathcal{N} = (N, \Phi, \textit{T}, \textit{T}_{\rm init})$$

Pre-Orchnets: Order Relation

For two families T and T' of latency functions, write

$$T \geq T'$$

$$\text{if } \forall \omega \in \Omega, \forall t \in \mathcal{T} \implies \tau_t^\omega \geq \tau_t^{'\omega}.$$

Pre-Orchnets: Order Relation

For two families T and T^{\prime} of latency functions, write

$$\text{if }\forall\omega\in\Omega,\forall t\in\mathcal{T}\implies\tau_t^\omega\geq\tau_t^{'\omega}.$$

For $\mathcal{N}, \mathcal{N}' \in \mathbb{N}$, write

$$\mathcal{N} \geq \mathcal{N}'$$

if $T \geq T'$ and $T_{\rm init} \geq T'_{\rm init}$ both hold.

Monotony: Definition

Monotony: Definition

Pre-Orchnet $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ is called **monotonic** if, $\forall \mathcal{N}, \mathcal{N}' \in \mathbb{N}$ s.t. $\mathcal{N} \geq \mathcal{N}'$,

$$E_{\omega}(\mathcal{N}) \geq E_{\omega}(\mathcal{N}')$$

holds.

Pre-Orchnet $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ is monotonic if:

$$\forall \mathcal{N} \in \mathbb{N}, \quad \forall \omega \in \Omega, \ \forall \overline{\kappa} \in \overline{\mathcal{V}}(N),$$

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) \geq E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

Pre-Orchnet $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{init})$ is monotonic if:

$$\forall \mathcal{N} \in \mathbb{N}, \ \forall \omega \in \Omega, \ \forall \overline{\kappa} \in \overline{\mathcal{V}}(N),$$

$$E_{\omega}(\overline{\kappa},\mathcal{N}) \geq E_{\omega}(\overline{\kappa}(\mathcal{N},\omega),\mathcal{N})$$

where $\overline{\mathcal{V}}(N)$ is the set of all maximal configurations of N.

Proof: Let $\mathcal{N}' \geq \mathcal{N}$, then

Pre-Orchnet $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ is monotonic if:

$$\forall \mathcal{N} \in \mathbb{N}, \quad \forall \omega \in \Omega, \ \forall \overline{\kappa} \in \overline{\mathcal{V}}(N),$$

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) \geq E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

Proof: Let
$$\mathcal{N}' \geq \mathcal{N}$$
, then

$$E_{\omega}(\mathcal{N}') = E_{\omega}(\overline{\kappa}(\mathcal{N}',\omega),\mathcal{N}')$$

Pre-Orchnet $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{init})$ is monotonic if:

$$orall \mathcal{N} \in \mathbb{N}, \quad orall \omega \in \Omega, \ orall \overline{\kappa} \in \overline{\mathcal{V}}\left(\mathcal{N}\right),$$

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) \geq E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

Proof: Let
$$\mathcal{N}' \geq \mathcal{N}$$
, then
$$E_{\omega}(\mathcal{N}') = E_{\omega}(\overline{\kappa}(\mathcal{N}', \omega), \mathcal{N}') \ \geq \ E_{\omega}(\overline{\kappa}(\mathcal{N}', \omega), \mathcal{N})$$

Pre-Orchnet $\mathbb{N} = (N, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$ is monotonic if:

$$orall \mathcal{N} \in \mathbb{N}, \quad orall \omega \in \Omega, \ orall \overline{\kappa} \in \overline{\mathcal{V}}\left(\mathcal{N}\right),$$

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) \geq E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

Proof: Let
$$\mathcal{N}' \geq \mathcal{N}$$
, then

$$E_{\omega}(\mathcal{N}') = E_{\omega}(\overline{\kappa}(\mathcal{N}', \omega), \mathcal{N}') \geq E_{\omega}(\overline{\kappa}(\mathcal{N}', \omega), \mathcal{N})$$

$$\geq E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N}) = E_{\omega}(\mathcal{N})$$

A Necessary Condition ..

A Necessary Condition ..

If the sufficient condition

$$orall \mathcal{N} \in \mathbb{N}, \quad \forall \omega \in \Omega, \forall \overline{\kappa} \in \overline{\mathcal{V}}(N),$$

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) \geq E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

is violated,

A Necessary Condition ..

If the sufficient condition

$$orall \mathcal{N} \in \mathbb{N}, \quad orall \omega \in \Omega, orall \overline{\kappa} \in \overline{\mathcal{V}}(N),$$

$$E_{\omega}(\overline{\kappa}, \mathcal{N}) > E_{\omega}(\overline{\kappa}(\mathcal{N}, \omega), \mathcal{N})$$

is violated, and for any two OrchNets $\mathcal{N}, \mathcal{N}'$ s.t $\mathcal{N} \in \mathbb{N}$,

$$\mathcal{N}' \geq \mathcal{N} \implies \mathcal{N}' \in \mathbb{N}$$

holds, then \mathbb{N} is not monotonic.

Workflow nets (WFnets)

We consider safe WF nets, without any loops.

(W,

We consider safe WF nets, without any loops.

$$(W, \Phi, \mathbb{T}, \mathbb{T}_{init})$$
: pre-WFnet

We consider safe WF nets, without any loops.

$$(W, \Phi, \mathbb{T}, \mathbb{T}_{\mathrm{init}})$$
: pre-WFnet

Unfolding W gives the occurrence net N_W and a corresponding Orchnet

$$(N_W, \Phi_W, \mathbb{T}_W, \mathbb{T}_{init})$$

Clusters.

For a safe net N, a *cluster* is a minimal set \mathbf{c} of places and transitions of N such that

$$\forall t \in \mathbf{c} \implies {}^{\bullet}t \subseteq \mathbf{c} \quad , \quad \forall p \in \mathbf{c} \implies p^{\bullet} \subseteq \mathbf{c}$$

Clusters

 $t_1,\,t_2,\,t_3$ are in the same cluster

Sufficient Condition for Monotony of WFnets

W: WFnet, N_W : unfolding of W.

Sufficient Condition for Monotony of WFnets

W: WFnet, N_W : unfolding of W.

Pre-Orchnet $\mathbb{N}_W = (N_W, \Phi_W, \mathbb{T}_W, \mathbb{T}_{init})$ is monotonic if every cluster c of W satisfies:

Sufficient Condition for Monotony of WFnets

W: WFnet, N_W : unfolding of W.

Pre-Orchnet $\mathbb{N}_W = (N_W, \Phi_W, \mathbb{T}_W, \mathbb{T}_{\mathrm{init}})$ is monotonic if every cluster c of W satisfies:

$$\forall t_1, t_2 \in c, \ t_1 \neq t_2 \implies t_1^{\bullet} = t_2^{\bullet}$$

0	nly a very restricted class of nets are indeed monotonic.

Conditional Monotony..

Conditional Monotony: Compare execution times only for identical responses.

In Conclusion...

- Identified and defined the problem of monotony in service compositions.
- Insights and reconsideration into the formulation of contracts.

Future Work...

• Extend the notion of monotony to probabilistic contracts.

Future Work...

- Extend the notion of monotony to probabilistic contracts.
- Consider more, QoS parameters in our study.

