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A non-monotonic orchestration

T S =
/
S; first S, first
Ts, = Ts, =2

Overall latency : 75, + 75, = 12



Colored, Occurrence Nets: to model orchestrations



Petri Nets

N = (PvTafyMO)

P : Set of Places
T : Set of Transitions
F C(PxT)U(T xP): Flow Relation

Mo : P — N: Initial Marking
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Firing of transition t;
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Petri Nets

A configuration is a sub-net « s.t.:

1. K is causally closed.
If x € k and x’ < x, then x’ € k.

2. k is conflict-free.
Ax,x' € k s.t. x#x'



Occurrence Nets

A safe net N is called an occurrence net iff

1. No node of N is in self-conflict.

2. <is a partial order

3. [t] ={x € N | x < t} is finite for all transitions of N.
4. |*p| <1 for all places of N.



Our Model: OrchNets
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OrchNets

o Tokens have colors: (value, date)

e A transition t has functions (¢¢, 7¢) that modify the token
colors.
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OrchNets: Definition

An OrchNet is a tuple N = (N, ®, T, Tinit)

e N : occurrence net with token attributes ¢ = (value, date).

® = (¢pt)ter : family of value functions.

T = (7t)ter : family of latency functions.

Tinit = (7p)pemin(p) : family of initial date functions.
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In general, ¢; and 7 are non-deterministic functions.



w € €2, a daemon variable that resolves non-determinism.



w € €2, a daemon variable that resolves non-determinism.

For a given value of w, ¢% and 7 are deterministic functions.
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For a fixed w

d

A + s /Q\

7=0
d“ = max{ds, d¢ + 5} ()
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For a fixed w

Actually occurring configuration for a given w: (N, w)
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When d¥ < d*, &N, w) is..

dg’

Tm

dy’ +
T=0

d¥ = max{dy’, d§’ + i}

Ts



Execution Time

Execution Time of a maximal configuration & of N/:

E.(’R,N) = {max(d?) | x € K}



Execution Time

For a given w, execution time of \:

E.(N) = EL(R(N,w),N)
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When d¥ < d'v..

d¥ = max{dy’, d§’ + i}

Ts




Characterising Monotony..



Pre-Orchnets

Call pre-OrchNet a tuple N = (N, ®, T, T;,it) where,



Pre-Orchnets

Call pre-OrchNet a tuple N = (N, ®, T, T;,it) where,
1. N,® : as before.



Pre-Orchnets

Call pre-OrchNet a tuple N = (N, ®, T, T;,it) where,
1. N,® : as before.

2. T: sets of families of latency functions T.



Pre-Orchnets

Call pre-OrchNet a tuple N = (N, ®, T, T;,it) where,
1. N,® : as before.
2. T: sets of families of latency functions T.

3. Tinit: sets of families of initial date functions Tiy;t.



Pre-Orchnets

Call pre-OrchNet a tuple N = (N, ®, T, T;,it) where,
1. N,® : as before.
2. T: sets of families of latency functions T.

3. Tinit: sets of families of initial date functions Tiy;t.



Pre-Orchnets

Call pre-OrchNet a tuple N = (N, ®, T, T;,it) where,
1. N,® : as before.
2. T: sets of families of latency functions T.

3. Tinit: sets of families of initial date functions Tiy;t.

Write N € N if there exists T € T and Tinit € Tinit S-t.

N = (Naq)a Ta Tinit)
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Pre-Orchnets: Order Relation

For two families T and T’ of latency functions, write
T>T

ifYweQVteT — 7 >7%.

For NN’ € N, write
N >N

if T> T and Tint > T/ .. both hold.

init



Monotony: Definition



Monotony: Definition

Pre-Orchnet N = (N, ®, T, T},;;) is called monotonic if,
YN, N eN s.t. N>N,

E.(N) = E,(N')

holds.
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A Sufficient Condition for Monotony..

Pre-Orchnet N = (N, ®, T, Tjy;¢) is monotonic if:
VN EN, VweQ, VEe V(N),
E,(R,N) =z Eu(R(N,w),N)

where V (N) is the set of all maximal configurations of N.

Proof:  Let N7 > N, then

EW(N,) = EW(E('N’/vw)vN/) EW(E(NI’w)vN)

E.(R(NV,w),N) = E,(N)

(AVANAY,



A Necessary !!ondition ..



A Necessary Condition ..

If the sufficient condition

VN EN, VweQVEecV(N),

EW(E,N) > Ew(E(Naw)w/\[)

is violated,



A Necessary Condition ..

If the sufficient condition
VN €N, Ywe QVreV(N),
E,(%,N) > E,(R(N,w),N)
is violated, and for any two OrchNets A/, N7 s.t N € N,
N >N = N eN

holds, then N is not monotonic.



A structural condition for monotony...



Workflow nets (WFnets)
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We consider safe WF nets, without any loops.

(W, &, T, Tinit) :  pre-WFnet

Unfolding W gives the occurrence net Ny, and a corresponding
Orchnet

(Nw, ®w, Tw, Tinit)



A



Clusters.

For a safe net N, a cluster is a minimal set c of places and
transitions of N such that

Vtec = *tCc , Vpec = p*Cc



Clusters

Ve

t1, tp, t3 are in the same cluster



Sufficient Condition for Monotony of WFnets
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Sufficient Condition for Monotony of WFnets

W: WFnet, Ny : unfolding of W.

Pre-Orchnet Ny = (Nw, Pw, Tw, Tinit) is monotonic if every
cluster ¢ of W satisfies:

Vi, €c, 1 £tp = t°=1t"°



Only a very restricted class of nets are indeed monotonic.



Conditional Monotony..

Conditional Monotony: Compare execution times only for identical
responses.



In Conclusion..

o |dentified and defined the problem of monotony in service
compositions.

e Insights and reconsideration into the formulation of contracts.



Future Work..

e Extend the notion of monotony to probabilistic contracts.



Future Work..

e Extend the notion of monotony to probabilistic contracts.

e Consider more, QoS parameters in our study.



Thank you..



