
Static Analysis of AXML Services

Serge Abiteboul   Luc Segoufin   Victor Vianu

Bordeaux, October 2007



Organization

• Introduction: motivation and goals

• The GAXML model (AXML with guards)

• Temporal properties

• Results



Motivation

• Documents evolving in time via function calls 

– That compute locally

– That receive data from external sources and thereby 

interact with their environment

• This is in the spirit of business artifacts that are 

used to model activities

– The states of documents or of portions of documents 

correspond to process states in workflow systems 

• We want to reason about such documents 

– Verify temporal properties 



Goals

• Model such documents using GAXML

– Some nonmonotonicity (vs. positive AXML)

– But very limited so that decidable 

• Model properties of the evolution using temporal 

logics

• Results:  boundary of tractability of verification of 

temporal properties



Basics of the model

• Unordered labeled trees and set semantics 

– No isomorphic sibling subtrees

– Internal nodes are labeled by tags

– Leaves are labeled by tags, data, or function symbols

• Trees with constraints of 2 kinds

– DTDs adapted to unordered trees

– Boolean combinations of tree patterns

I know this is not very elegant but accept it for now



GAXML vs. positive AXML

• Distinction between call and return of functions

1. A call is fired (data is passed as argument)

2. It is evaluated in some workspace

3. The evaluation terminates and the result is returned

• Calls are controlled by guards

– Call guards and return guards

– Boolean combinations of tree patterns = BCTP

• Limited monmonotone features

– Nonpositive guards

– Some functions terminate (can be captured by guards)  



• Function calls

– ?f : intentional call

– !f : call has been activated

– f : workspace where the call is evaluated

?f

gf

!f ?g!g



• Data is returned

• Function call terminates – call disappears

• Continuous call – call remains

• Run:  infinite sequence of consecutive 

instances satisfying the static constraints

?f

gf

!f ?g!g



GAXML schema specification

• Some document names 

– Possibly with static constraints: DTD & BCTP

• Internal functions specification

• External functions specifications

Note: A single peer in the current model.  

This can be easily introduced if desired.



Internal Function Specification

• Kind: continuous or non-continuous

• Call and return guards: BCTP 

Two tree pattern queries

• Argument query: defines data to pass as argument

• Return query: defines data to return as result



Internal Function Specification

• Kind: continuous or non-continuous

• Call and return guards: BCTP 

Two tree pattern queries

• Argument query: defines data to pass as argument

• Return query: defines data to return as result

Intuition: unknown specification or interaction with

external users/applications

External



What is a (relative) tree pattern?
(guards are Boolean combination of TPs)

• Tree

– Internal nodes are labeled by tags

– Leaves are labeled by tags, function 
symbols, data values or variables

• Edges labeled by /  or // (descendant)

• Condition on data variables

– Boolean combination of (in)equalities  
X = Y,  X = a 

• Relative: also uses “self” 

– self is a specific tag

– Refers to a specific node

SYS

MailOrder

Cname

X

!Bill

self



What is a query?
(for argument and result queries)

Expression  Body   Head where:

• Body is a tree pattern

• Head is labeled tree (possibly with variables from Body)

• Informal semantics (classical) = forest 

SYS

MailOrder

Cname

X

!Bill

self

Request

Cname

X



Example: Mail Order

The database consists of Catalog providing prices

A customer initializes a MailOrder
User name (Cname), product name (Pname), system supplied OrderId

The MailOrder systems sends out an Invoice with

Cname, Pname, price of product from Catalog

The customer responds with a Payment with 

Pname, amount, and kind of payment (credit or check)
If payment is incorrect (amount not equal to catalog price)

the product is rebilled - !Bill is a continous function
If the payment is correct and by check 

the product is delivered and we terminate
If the payment is correct and by card

the system asks for a CreditCheck
if the credit rating is Good, 

the product is delivered and we terminate
otherwise the order is rejected and we terminate 



Workflow for MailOrder

Mail

Order

Send

Invoice

Receive

Payment

Incorrect

By check

Choose

Deliver
Check 

credit OK

Reject
KO

By card
Correct

Continuous



Mail Order Schema

The DTD
SYS:    Catalog  (!MailOrder XOR  ?MailOrder) ( MailOrder )*         

Catalog:   (Product) *              

Product: Pname  Price 

MailOrder: Order-id  Cname Pname 

AND (!Bill XOR ?Bill) (Payment) *

AND (!Credit-Check XOR ?CreditCheck XOR CreditRating)   

AND (!Deliver XOR ?Deliver XOR Delivered)   

AND (!Reject  XOR ?Reject XOR Rejected)

Payment: Pname Amount  Kind                                       

Kind: Credit  XOR  Check

CreditRating: Good XOR Bad       

Order-id, Price, Pname, Cname, Pname, Amount:   dom

Rejected, Delivered, Good, Bad:   empty  (leaves) 

Shorthand:   A stands for |A| = 1,   A* stands for |A| >= 0, concat is AND



Guards

Call guard: block a function from the client/caller 

perspective 

– Do not call  !deliver unless 

Paid-check-ok OR Credit-ok 

– Stop accepting return values from !Bill 

After the first correct  payment

Return guard: block from the server perspective 

(called one)



Schema (cont’d):   Data constraints 

• There are no distinct MailOrders with the same id

SYS

Catalog provides a unique price for each 

product  (similar negative pattern)  

Shorthand:  variable 

repetitions instead of 

explicit equalities.

All edges are labeled 

here by / (omitted)

NOT  ( )

MailOrder MailOrder

OrderId Cname Pname

X Y Z

OrderId Cname Pname

X Y’ Z’

Y ≠ Y’ or Z ≠ Z’



Function specifications

• All functions are external in this application

• !MailOrder

– Kind: continuous

– Call guard:  true 

– Argument:  empty

• We keep receiving MailOrders till the end of the world



!Bill

• !Bill 

– Kind: continuous

– Call guard 

The usefulness of the guard: Once the customer has paid the proper 

amount, the guard becomes negative and the function is disabled

Self binds to node 

labeled !Bill

at which the call is made

SYS
NOT  ( )

Catalog MailOrder

Product

Pname=X Price=Y Name=X

Payment !Bill

Amount=Y
self



!Bill continued

SYS

Catalog MailOrder

Product

Pname=X Price=Y Name=X

Product  !Bill

self

Invoice

Name=X Amount=Y

The query argument



!CreditCheck

• Noncontinuous

• Call guard

• Argument 

query

SYS

Catalog MailOrder

Product

Pname=X Price=Y Name=X

Payment !CreditCheck

Amount=Y
self

Kind

CreditSYS

MailOrder

Cname

X

!CreditCheck

self

Request

Cname

X



!Deliver

Kind:  non-continuous

Call guard: Paid-check-ok OR Credit-ok

SYS

Catalog MailOrder

Product

Price=Y Name=X

Payment !Deliver

Amount=Y
self

Kind

Check

Paid-check-ok

PName=X

Credit-ok

SYS

MailOrder

!Deliver

self

Credit-rating

Good



!Deliver - continued

• Argument query

SYS

MailOrder

Pname

X

CName

Y

Delivery

PName=X CName=Y
!Deliver

self



!Reject

• Kind: noncontinuous

• Call guard

• Arg query

SYS

MailOrder

Pname

X

CName

Y

Reject-order

PName=X CName=Y
!Reject

self

SYS

MailOrder

!Deliver

self

Credit-rating

Bad



Specification of temporal properties: 

Tree-LTL

• Boolean combinations of tree patterns and LTL operators

• Syntax of Tree-LTL

φ :- pattern | φ and φ | φ or φ | not φ | φ U φ | X φ

• pattern(X1,…,Xn) : all other variables are seen as 

existentially quantified 

• X: next  U: until

– Also G: always,  F: eventually, etc

• Tree-LTL sentence  φ

– All free variables are quantified universally at the end

– These are all the free variables from patterns



 X   [  G (  (T1(X )  F (T2 (X)   T3 (X) ) )  ] 

where

T1(X ):  T2(X ):

T3(X)  : like T2(X)  with Rejected instead of Delivered

This property is false the customer may forever pay the wrong amount

SYS

MailOrder

Order-id

X

SYS

MailOrder

Order-id

X

Delivered

Example

Every mail order is eventually completed (delivered or 

rejected)



Semantics

• Natural extension of LTL, where each tree pattern is 

interpreted as a proposition in each instance of the run

• A run satisfies  a Tree-LTL sentence  X  φ(X) if it 

satisfies φ(h(X)) for every valuation h of  X into the set 

of data values used in the run

Here φ(h(X)) is obtained by replacing in all patterns, each 

free occurrence of a variable Y in X by the data value 

h(Y)

• A service satisfies a Tree-LTL sentence  X  φ(X)

if every run of the service satisfies it



Every product for which a correct payment by check has been made 

is eventually delivered

 X   Z [  G (  (T1(X,  Z )  F (T2 (X, Z) ) )  ]      

where 

T1(X,Z):

T2(X,Z):

Is this property satisfied ?

Example – continued 

SYS

Catalog MailOrder

Product

Price=Y Name=X

Payment Order-id

Amount=Y ZKind

Check

PName=X

SYS

MailOrder

Delivered Order-id

Z



Answer: NO! There is a bug in the spec:  it allows 

the customer to pay the correct amount for a different 

product than the one initially ordered and eventually 

delivered !   

Note: this can be fixed by adding as a data constraint

X ≠Y

SYS

NOT  ( )

Catalog MailOrder

Pname=Y

Name=X

Payment

Notation for //



Other properties expressible in Tree-LTL

• No  mail order can be rejected and later delivered  (true)

• A check payment may never be made after a  credit card 

payment attempt for the same order (false)

• A rejected order is blocking   (no further function calls can 

be made)  (true)

• An order can be rejected only if a payment attempt by 

credit card was made (true)



Other properties reducible to 

Tree-LTL sentences

• Confluence 

• Termination  

all runs eventually reach a blocking instance

• Successful termination 

all runs eventually reach a blocking instance     

with no running calls



Results

• Focus: deciding whether a service S satisfies a 
Tree-LTL sentence 

• Decidable for bounded services 

syntactic restriction ensuring that all runs reach a 
blocking instance after a constant number of 
function calls (basically acyclicity of function 
calls)

• Undecidable as soon as any of the syntactic 
restrictions are relaxed 

– Very careful analysis to obtain decidability (LS-VV)



Relaxations that lead to undecidability

• Continuous functions

• Arbitrary number of occurrences of !f in 

correct trees

• Arbitrary services even in absence of data

• Cyclic call graph (even with non continuous 

functions)

• Tree patterns with negated subpatterns

• Branching temporal quantifiers 



The following are decidable for bounded 

services:

• successful termination

every run eventually reaches a blocking    

instance with no running calls

• confluence

all runs from the same initial instance reach  

the same final instance

Corollary



merci


