Visibly Pushdown Automata and Streaming

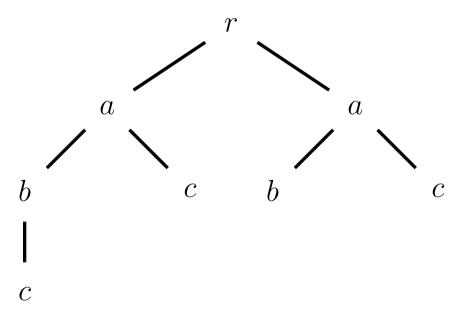
Olivier Serre

LIAFA, CNRS & Université Paris 7

www.liafa.jussieu.fr/~serre

serre@liafa.jussieu.fr

Fact: In real word XML documents are not trees but words obtained by streaming the document.



Associated stream: $r \ a \ b \ c \ \overline{c} \ \overline{b} \ c \ \overline{c} \ \overline{a} \ a \ b \ \overline{b} \ c \ \overline{c} \ \overline{a} \ \overline{r}$

Olivier Serre.

VPAs and Streaming - p. 2/17

Validation problems for streaming tree documents (1/2)

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Definition (DTD) d, equiv. a regular tree language L_d , one sets $Streams(L_d)$ for the set of streaming of trees from L_d .

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Definition (DTD) d, equiv. a regular tree language L_d , one sets $Streams(L_d)$ for the set of streaming of trees from L_d .

Strong validation / Strongly recognizable DTDs:

Given a DTD *d*, can one check that a stream belongs to $Streams(L_d)$ using finite memory.
 Equiv. Is $Streams(L_d)$ a regular language?

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Definition (DTD) d, equiv. a regular tree language L_d , one sets $Streams(L_d)$ for the set of streaming of trees from L_d .

Strong validation / Strongly recognizable DTDs:

- Given a DTD d, can one check that a stream belongs to $Streams(L_d)$ using finite memory. Equiv. Is $Streams(L_d)$ a regular language?
- Strong validation is decidable [Segoufin& Vianu, 2002].

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Definition (DTD) d, equiv. a regular tree language L_d , one sets $Streams(L_d)$ for the set of streaming of trees from L_d .

Strong validation / Strongly recognizable DTDs:

- Given a DTD *d*, can one check that a stream belongs to $Streams(L_d)$ using finite memory. Equiv. Is $Streams(L_d)$ a regular language?
- Strong validation is decidable [Segoufin& Vianu, 2002].
- There exists DTDs that cannot be strongly validated, e.g. trees with a single arbitrary long branched made only of nodes labeled by a: Streams(L_d) = { $ra^n \overline{a}^n \overline{r} \mid n \ge 0$ }.

Validation problems for streaming tree documents (2/2)

Assume that one proceeds only well formed streams: one can now validate the previous DTD with a finite automaton accepting $ra^*\overline{a}^*\overline{r}$.

Assume that one proceeds only well formed streams: one can now validate the previous DTD with a finite automaton accepting $ra^*\overline{a}^*\overline{r}$.

Validation / Recognizable DTDs:

 Given a DTD *d*, can one check that a stream in Streams(Trees) belongs to $Streams(L_d)$ using finite memory. Equiv. Is there a regular language *R* such that

 $Streams(L_d) = R \cap Streams(Trees)$?

Assume that one proceeds only well formed streams: one can now validate the previous DTD with a finite automaton accepting $ra^*\overline{a}^*\overline{r}$.

Validation / Recognizable DTDs:

 Given a DTD *d*, can one check that a stream in Streams(Trees) belongs to $Streams(L_d)$ using finite memory. Equiv. Is there a regular language *R* such that

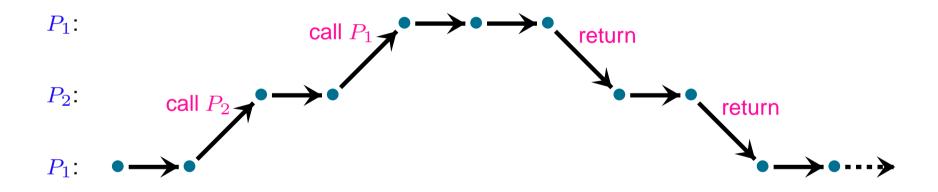
 $Streams(L_d) = R \cap Streams(Trees)$?

- DTDs that can be validated are said to be recognizable.
- Segoufin& Vianu, 2002] provides necessary conditions and also sufficient conditions (but no characterization is known).

Formal languages: regularity is not enough...

Regularity does not capture all we would like:

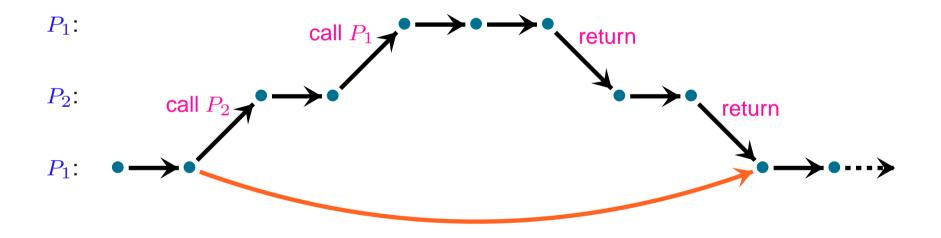
Specifications for verification/games.



Formal languages: regularity is not enough...

Regularity does not capture all we would like:

Specifications for verification/games.



Regularity does not capture all we would like:

- Specifications for verification/games.
- To work with semi-structure data.

Example: HTML/XML document using opening/closing tags

<html>...</html>

... but context free languages are not very handy

Closure properties:

	U	\cap	complement	concatenation	Kleene-*
Regular	Yes	Yes	Yes	Yes	Yes
CFL	Yes	No	No	Yes	Yes
DCFL	No	No	Yes	No	No

Closure properties:

	U	\cap	complement	concatenation	Kleene-*
Regular	Yes	Yes	Yes	Yes	Yes
CFL	Yes	No	No	Yes	Yes
DCFL	No	No	Yes	No	No

Decision problems:

	emptiness	equivalence	inclusion
Regular (NFA)	NLOG	PSPACE	PSPACE
CFL	PTIME	undecidable	undecidable
DCFL	PTIME	decidable	undecidable

Closure properties:

	U	\cap	complement	concatenation	Kleene-*
Regular	Yes	Yes	Yes	Yes	Yes
CFL	Yes	No	No	Yes	Yes
DCFL	No	No	Yes	No	No

Decision problems:

	emptiness	equivalence	inclusion
Regular (NFA)	NLOG	PSPACE	PSPACE
CFL	PTIME	undecidable	undecidable
DCFL	PTIME	decidable	undecidable

Something in between?

... Visibly pushdown languages are good

Closure properties:

	U	\cap	complement	concatenation	Kleene-*
Regular	Yes	Yes	Yes	Yes	Yes
CFL	Yes	No	No	Yes	Yes
DCFL	No	No	Yes	No	No
VPL	Yes	Yes	Yes	Yes	Yes

... Visibly pushdown languages are good

Closure properties:

	U	\cap	complement	concatenation	Kleene-*
Regular	Yes	Yes	Yes	Yes	Yes
CFL	Yes	No	No	Yes	Yes
DCFL	No	No	Yes	No	No
VPL	Yes	Yes	Yes	Yes	Yes

Decision problems:

	emptiness	equivalence	inclusion
Regular (NFA)	NLOG	PSPACE	PSPACE
CFL	PTIME	undecidable	undecidable
DCFL	PTIME	decidable	undecidable
VPL	PTIME	EXPTIME	EXPTIME

Olivier Serre.

VPAs and Streaming – p. 7/17

Why are context-free languages not robust?

Intersection/union for finite automata:

- Use a product construction.
- Adapt the acceptance condition.

- Use a product construction.
- Adapt the acceptance condition.

Intersection/union of deterministic context-free languages: may not be context-free.

- Use a product construction.
- Adapt the acceptance condition.

Intersection/union of deterministic context-free languages: may not be context-free.

- Where is the problem in the product construction for pushdown automata?

- Use a product construction.
- Adapt the acceptance condition.

Intersection/union of deterministic context-free languages: may not be context-free.

- Where is the problem in the product construction for pushdown automata? The stacks are not synchronized.

Stack is input driven: for each input letter is associated a stack operation.

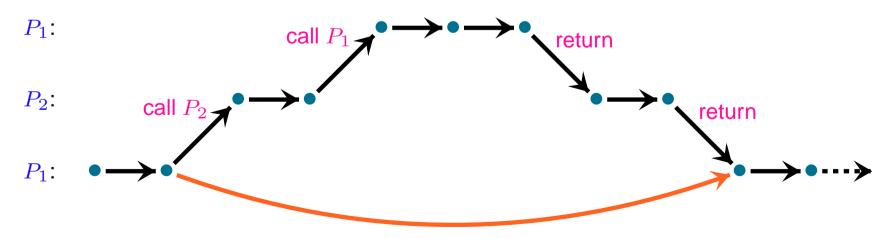
- Call: push.
- Return: pop.
- Internal action: skip.

Stack is input driven: for each input letter is associated a stack operation.

- Call: push.
- Return: pop.
- Internal action: skip.

This restriction is natural:

Verification of recursive programs.



Stack is input driven: for each input letter is associated a stack operation.

- Call: push.
- Return: pop.
- Internal action: skip.
- This restriction is natural:
- Semi-structure data.

<html>...</html>

Visibly pushdown automata

Partitioned alphabet : $A = \langle A_c, A_r, A_{int} \rangle$

- A_c : calls.
- \blacksquare A_r : returns.
- \blacksquare A_{int} : internal actions.

- \checkmark Q : finite set of states.
- \blacksquare A : partitioned input alphabet.
- Γ : finite stack alphabet.
- \perp : bottom of stack symbols.
- \blacksquare Q_{in} : set of initial states.
- Acc : acceptance condition.
- **9** Δ : transition function.

- \checkmark Q : finite set of states.
- \blacksquare A : partitioned input alphabet.
- Γ : finite stack alphabet.

$$\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$$

- \checkmark Q : finite set of states.
- A : partitioned input alphabet.
- Γ : finite stack alphabet.

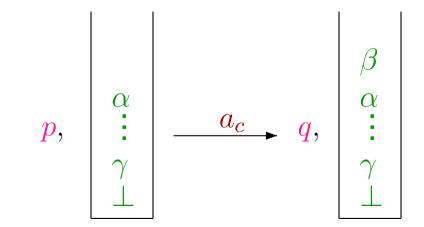
• $\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$

 $(p, a_c, q, \beta) \in \Delta$:

$$p, \qquad egin{array}{c} lpha \ dots \ lpha \ dots \ \gamma \ ot \end{array}$$

- \checkmark Q : finite set of states.
- A : partitioned input alphabet.
- Γ : finite stack alphabet.

 $\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$



Olivier Serre.

 $(p, a_c, q, \beta) \in \Delta$:

- \checkmark Q : finite set of states.
- A : partitioned input alphabet.
- Γ : finite stack alphabet.

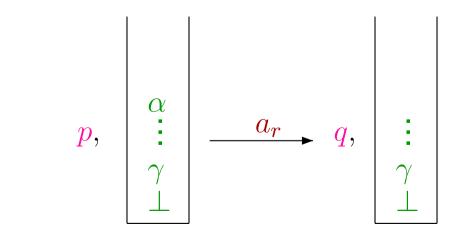
 $\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$

 $(p, a_r, \alpha, q) \in \Delta$:

$$p, \qquad egin{array}{c} lpha \ dots \ \gamma \ ot \end{array} \ ec \gamma \ ot \end{array}$$

- \checkmark Q : finite set of states.
- A : partitioned input alphabet.
- Γ : finite stack alphabet.

 $\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$



Olivier Serre.

 $(p, a_r, \alpha, q) \in \Delta$:

- \checkmark Q : finite set of states.
- \blacksquare A : partitioned input alphabet.
- Γ : finite stack alphabet.

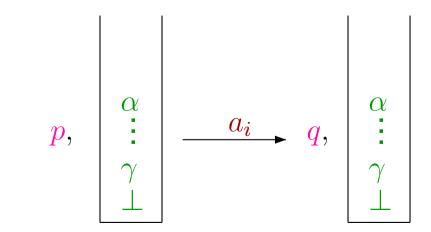
$$\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$$

 $(p, a_i, q) \in \Delta$:

$$p, \left| egin{array}{c} lpha \\ ec s \\ \gamma \\ ot \end{array} \right|$$

- \checkmark Q : finite set of states.
- A : partitioned input alphabet.
- Γ : finite stack alphabet.

$$\Delta \subseteq \begin{cases} Q \times A_c \times Q \times (\Gamma \setminus \{\bot\}) \\ Q \times A_r \times (\Gamma \setminus \{\bot\}) \times Q \\ Q \times A_{int} \times Q. \end{cases}$$



Olivier Serre.

 $(p, a_i, q) \in \Delta$:

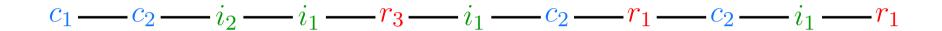
- Finite words case:
 - $Acc = F \subseteq Q$, set of final states.
 - w ∈ A* is accepted by \mathcal{M} iff there exists a run that ends in a configuration (q, σ), q ∈ F.
 - $L(\mathcal{M}) = \{ w \in A^* \mid w \text{ accepted by } \mathcal{M} \}.$
- Other extensions exist:
 - infinite words,
 - trees.

Matching positions

$$A_c = \{c_1, c_2\}, A_c = \{r_1, r_2, r_3\} \text{ and } A_{int} = \{i_1, i_2\}$$

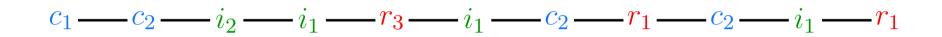
Matching positions

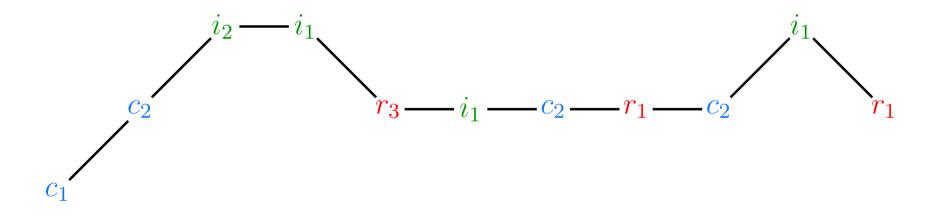
$$A_c = \{c_1, c_2\}, A_c = \{r_1, r_2, r_3\} \text{ and } A_{int} = \{i_1, i_2\}$$



Matching positions

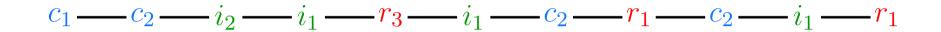
$$A_c = \{c_1, c_2\}, A_c = \{r_1, r_2, r_3\} \text{ and } A_{int} = \{i_1, i_2\}$$

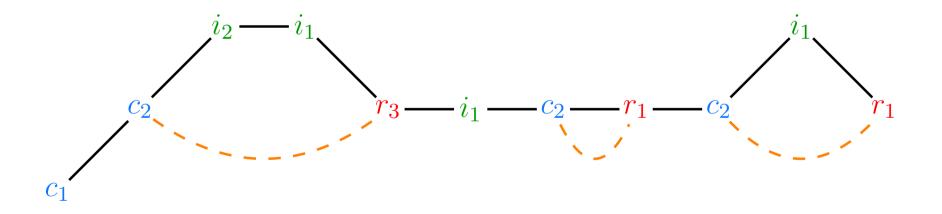




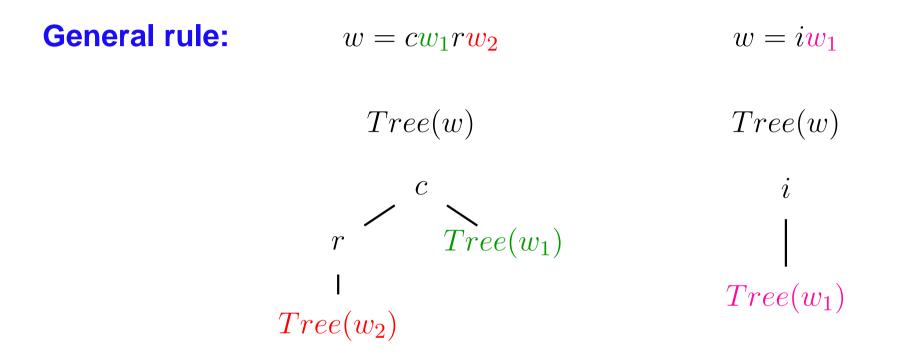
Matching positions

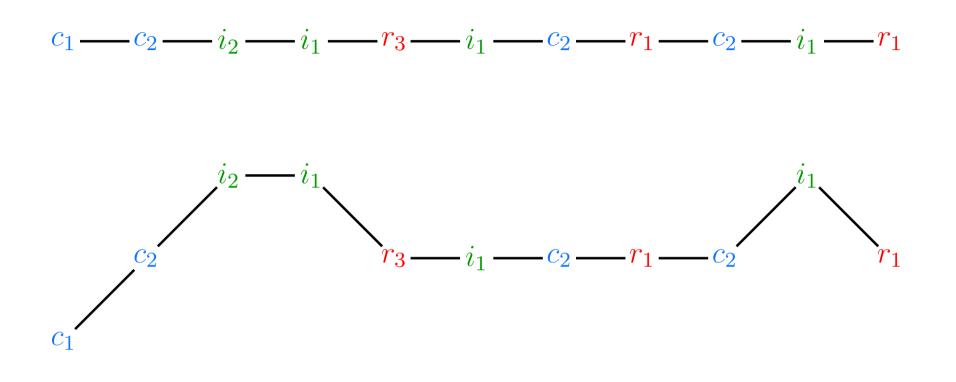
$$A_c = \{c_1, c_2\}, A_c = \{r_1, r_2, r_3\} \text{ and } A_{int} = \{i_1, i_2\}$$

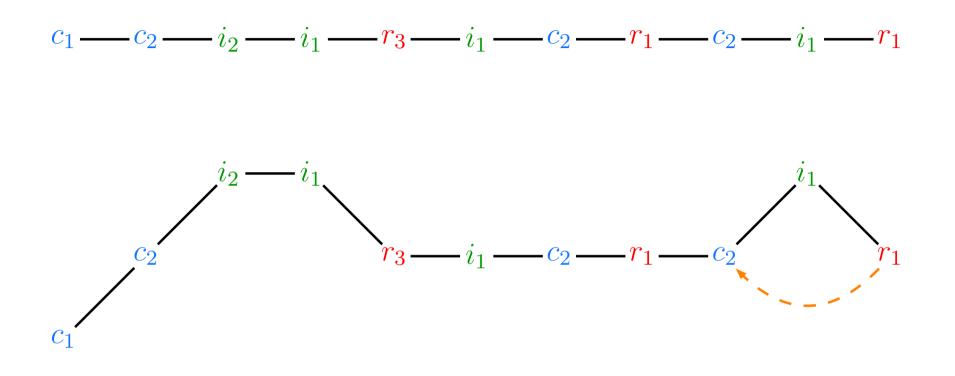




From words to trees

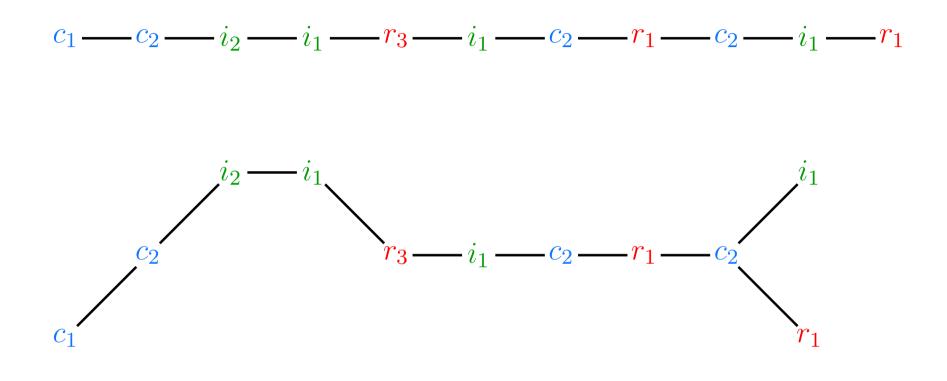


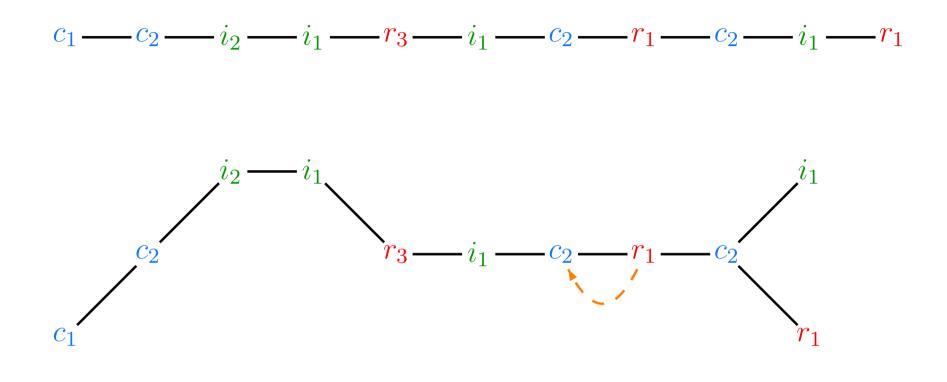




Olivier Serre.

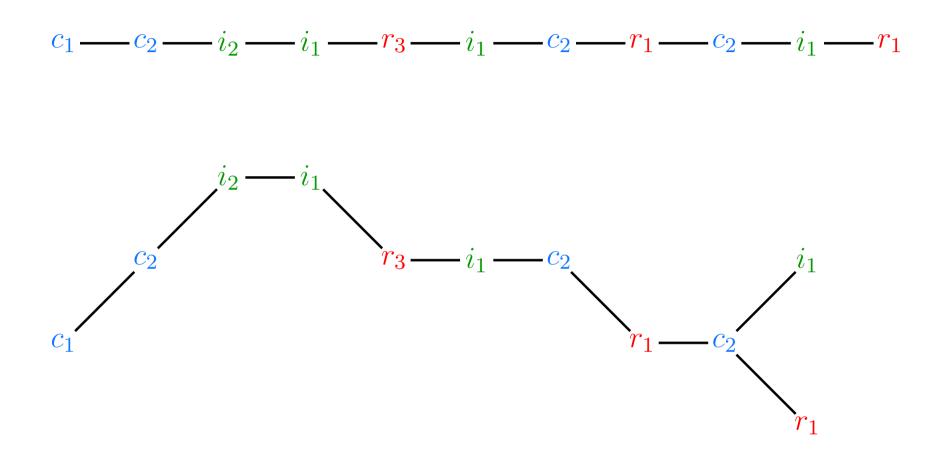
VPAs and Streaming -p. 14/17

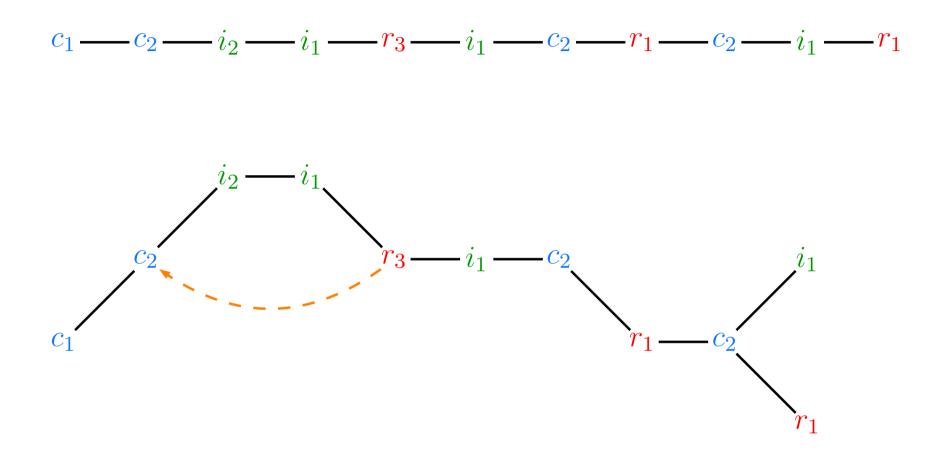


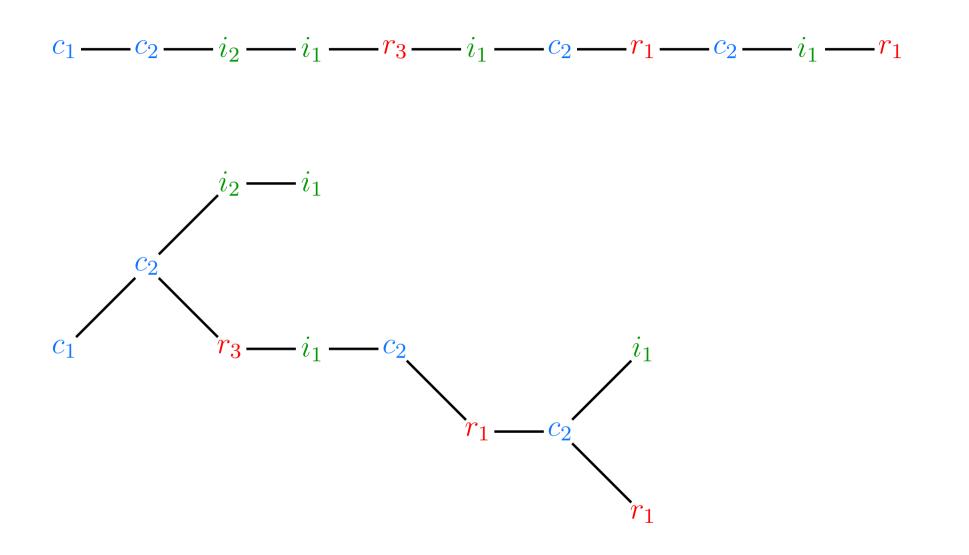


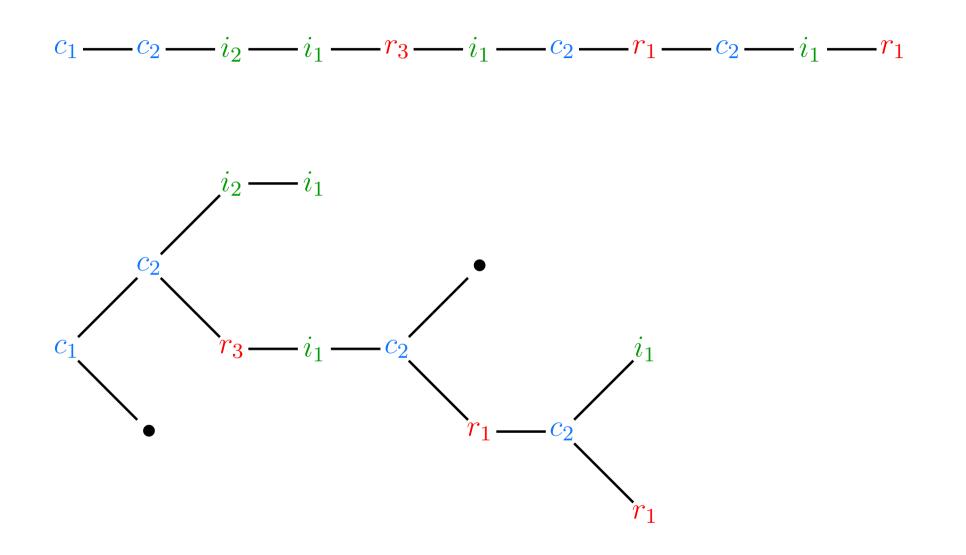
Olivier Serre.

VPAs and Streaming - p. 14/17









Theorem.[Alur&Madhusudan] A language L is VPL iff Tree(L) is regular.

Sketch of Proof. (
$$\Rightarrow$$
) $(q_0, \gamma) \xrightarrow{c} (q_1, \gamma') \xrightarrow{w_1} (q_2, \gamma') \xrightarrow{r} (q_3, \gamma) \xrightarrow{w_2}$
 $Tree(w)$
 $r \xrightarrow{c} \sum_{Tree(w_1)}$
 I
 $Tree(w_2)$

(\Leftarrow) Store the left son's state in the stack and retrieve it later. **Theorem.** A tree language L is regular iff Streams(L) is VPL.

Restating validation

Strong validation

- Input: a visibly pushdown language L.
- Output: is L regular?

Restating validation

Strong validation

- Input: a visibly pushdown language L.
- Output: is L regular?

Validation

- Input: a visibly pushdown language L.
- Output: is there R Regular such that $L = R \cap L_{Strwmw}$?

Theorem[Stearns'67]. Regularity is decidable for visibly pushdown languages.

Theorem[Stearns'67]. Regularity is decidable for visibly pushdown languages.

Theorem[Bárány, Löding,Serre]. Given a VPL language L, one can decide whether there exists a regular language R such that

 $L = R \cap L_{wmw}$

Theorem[Stearns'67]. Regularity is decidable for visibly pushdown languages.

Theorem[Bárány, Löding,Serre]. Given a VPL language L, one can decide whether there exists a regular language R such that

 $L = R \cap L_{wmw}$

A general problem

- **9** Input: a VPL language K
- Is the following decidable: given a visibly pushdown language L is there R regular such that $L = R \cap K$?