
.

Visibly Pushdown Automata and Streaming

Olivier Serre

LIAFA, CNRS & Université Paris 7

www.liafa.jussieu.fr/~serre

serre@liafa.jussieu.fr

– p. 1/17

Streaming

Fact: In real word XML documents are not trees but words obtained by
streaming the document.

r

a a

b c

c

b c

Associated stream: r a b c c b c c a a b b c c a r

Olivier Serre. VPAs and Streaming – p. 2/17

Validation problems for streaming tree documents (1/2)

toto

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Defintion (DTD) d, equiv. a regular tree language
Ld, one sets Streams(Ld) for the set of streaming of trees from Ld.

Olivier Serre. VPAs and Streaming – p. 3/17

Validation problems for streaming tree documents (1/2)

toto

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Defintion (DTD) d, equiv. a regular tree language
Ld, one sets Streams(Ld) for the set of streaming of trees from Ld.

Strong validation / Strongly recognizable DTDs:

Given a DTD d, can one check that a stream belongs to Streams(Ld)
using finite memory.
Equiv. Is Streams(Ld) a regular language?

Olivier Serre. VPAs and Streaming – p. 3/17

Validation problems for streaming tree documents (1/2)

toto

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Defintion (DTD) d, equiv. a regular tree language
Ld, one sets Streams(Ld) for the set of streaming of trees from Ld.

Strong validation / Strongly recognizable DTDs:

Given a DTD d, can one check that a stream belongs to Streams(Ld)
using finite memory.
Equiv. Is Streams(Ld) a regular language?

Strong validation is decidable [Segoufin& Vianu, 2002].

Olivier Serre. VPAs and Streaming – p. 3/17

Validation problems for streaming tree documents (1/2)

toto

Adapted from [Segoufin&Vianu, 2002]

Given a Document Type Defintion (DTD) d, equiv. a regular tree language
Ld, one sets Streams(Ld) for the set of streaming of trees from Ld.

Strong validation / Strongly recognizable DTDs:

Given a DTD d, can one check that a stream belongs to Streams(Ld)
using finite memory.
Equiv. Is Streams(Ld) a regular language?

Strong validation is decidable [Segoufin& Vianu, 2002].

There exists DTDs that cannot be strongly validated, e.g. trees with a
single arbitrary long branched made only of nodes labeled by a:
Streams(Ld) = {rananr | n ≥ 0}.

Olivier Serre. VPAs and Streaming – p. 3/17

Validation problems for streaming tree documents (2/2)

toto

Assume that one proceeds only well formed streams: one can now
validate the previous DTD with a finite automaton accepting ra∗a∗r.

Olivier Serre. VPAs and Streaming – p. 4/17

Validation problems for streaming tree documents (2/2)

toto

Assume that one proceeds only well formed streams: one can now
validate the previous DTD with a finite automaton accepting ra∗a∗r.

Validation / Recognizable DTDs:

Given a DTD d, can one check that a stream in Streams(Trees)
belongs to Streams(Ld) using finite memory.
Equiv. Is there a regular language R such that

Streams(Ld) = R ∩ Streams(Trees)?

Olivier Serre. VPAs and Streaming – p. 4/17

Validation problems for streaming tree documents (2/2)

toto

Assume that one proceeds only well formed streams: one can now
validate the previous DTD with a finite automaton accepting ra∗a∗r.

Validation / Recognizable DTDs:

Given a DTD d, can one check that a stream in Streams(Trees)
belongs to Streams(Ld) using finite memory.
Equiv. Is there a regular language R such that

Streams(Ld) = R ∩ Streams(Trees)?

DTDs that can be validated are said to be recognizable.

[Segoufin& Vianu, 2002] provides necessary conditions and also
sufficient conditions (but no characterization is known).

Olivier Serre. VPAs and Streaming – p. 4/17

Formal languages: regularity is not enough. . .

toto

Regularity does not capture all we would like:

Specifications for verification/games.

• •

• •

• • •

• •

• •

call P2

call P1 return

return

P1:

P2:

P1:

Olivier Serre. VPAs and Streaming – p. 5/17

Formal languages: regularity is not enough. . .

toto

Regularity does not capture all we would like:

Specifications for verification/games.

• •

• •

• • •

• •

• •

call P2

call P1 return

return

P1:

P2:

P1:

Olivier Serre. VPAs and Streaming – p. 5/17

Formal languages: regularity is not enough. . .

toto

Regularity does not capture all we would like:

Specifications for verification/games.

To work with semi-structure data.

Example: HTML/XML document using opening/closing tags

<html>... </html>

Olivier Serre. VPAs and Streaming – p. 5/17

. . . but context free languages are not very handy

Closure properties:

∪ ∩ complement concatenation Kleene-⋆

Regular Yes Yes Yes Yes Yes

CFL Yes No No Yes Yes

DCFL No No Yes No No

Olivier Serre. VPAs and Streaming – p. 6/17

. . . but context free languages are not very handy

Closure properties:

∪ ∩ complement concatenation Kleene-⋆

Regular Yes Yes Yes Yes Yes

CFL Yes No No Yes Yes

DCFL No No Yes No No

Decision problems:

emptiness equivalence inclusion

Regular (NFA) NLOG PSPACE PSPACE

CFL PTIME undecidable undecidable

DCFL PTIME decidable undecidable

Olivier Serre. VPAs and Streaming – p. 6/17

. . . but context free languages are not very handy

Closure properties:

∪ ∩ complement concatenation Kleene-⋆

Regular Yes Yes Yes Yes Yes

CFL Yes No No Yes Yes

DCFL No No Yes No No

Decision problems:

emptiness equivalence inclusion

Regular (NFA) NLOG PSPACE PSPACE

CFL PTIME undecidable undecidable

DCFL PTIME decidable undecidable

Something in between?

Olivier Serre. VPAs and Streaming – p. 6/17

. . . Visibly pushdown languages are good

Closure properties:

∪ ∩ complement concatenation Kleene-⋆

Regular Yes Yes Yes Yes Yes

CFL Yes No No Yes Yes

DCFL No No Yes No No

VPL Yes Yes Yes Yes Yes

Olivier Serre. VPAs and Streaming – p. 7/17

. . . Visibly pushdown languages are good

Closure properties:

∪ ∩ complement concatenation Kleene-⋆

Regular Yes Yes Yes Yes Yes

CFL Yes No No Yes Yes

DCFL No No Yes No No

VPL Yes Yes Yes Yes Yes

Decision problems:

emptiness equivalence inclusion

Regular (NFA) NLOG PSPACE PSPACE

CFL PTIME undecidable undecidable

DCFL PTIME decidable undecidable

VPL PTIME EXPTIME EXPTIME

Olivier Serre. VPAs and Streaming – p. 7/17

Why are context-free languages not robust?

toto

Intersection/union for finite automata:

Olivier Serre. VPAs and Streaming – p. 8/17

Why are context-free languages not robust?

toto

Intersection/union for finite automata:

Use a product construction.

Adapt the acceptance condition.

Olivier Serre. VPAs and Streaming – p. 8/17

Why are context-free languages not robust?

toto

Intersection/union for finite automata:

Use a product construction.

Adapt the acceptance condition.

Intersection/union of deterministic context-free langua ges: may not
be context-free.

Olivier Serre. VPAs and Streaming – p. 8/17

Why are context-free languages not robust?

toto

Intersection/union for finite automata:

Use a product construction.

Adapt the acceptance condition.

Intersection/union of deterministic context-free langua ges: may not
be context-free.

{anbncm | n, m ≥ 0} ∩ {anbmcm | n, m ≥ 0} = {anbncn | n ≥ 0}

Where is the problem in the product construction for pushdown
automata?

Olivier Serre. VPAs and Streaming – p. 8/17

Why are context-free languages not robust?

toto

Intersection/union for finite automata:

Use a product construction.

Adapt the acceptance condition.

Intersection/union of deterministic context-free langua ges: may not
be context-free.

{anbncm | n, m ≥ 0} ∩ {anbmcm | n, m ≥ 0} = {anbncn | n ≥ 0}

Where is the problem in the product construction for pushdown
automata? The stacks are not synchronized.

Olivier Serre. VPAs and Streaming – p. 8/17

Solution

toto

Stack is input driven: for each input letter is associated a stack
operation.

Call: push.

Return: pop.

Internal action: skip.

Olivier Serre. VPAs and Streaming – p. 9/17

Solution

toto

Stack is input driven: for each input letter is associated a stack
operation.

Call: push.

Return: pop.

Internal action: skip.

This restriction is natural:

Verification of recursive programs.

• •

• •

• • •

• •

• •

call P2

call P1 return

return

P1:

P2:

P1:

Olivier Serre. VPAs and Streaming – p. 9/17

Solution

toto

Stack is input driven: for each input letter is associated a stack
operation.

Call: push.

Return: pop.

Internal action: skip.

This restriction is natural:

Semi-structure data.

<html>... </html>

Olivier Serre. VPAs and Streaming – p. 9/17

Visibly pushdown automata

toto

Partitioned alphabet : A = 〈Ac, Ar, Aint〉

Ac : calls.

Ar : returns.

Aint : internal actions.

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

⊥ : bottom of stack symbols.

Qin : set of initial states.

Acc : acceptance condition.

∆ : transition function.

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

(p, ac, q, β) ∈ ∆:

p,

⊥
γ

...
α

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

(p, ac, q, β) ∈ ∆:

p,

⊥
γ

...
α

ac q,

⊥
γ

...
α

β

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

(p, ar, α, q) ∈ ∆:

p,

⊥
γ

...
α

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

(p, ar, α, q) ∈ ∆:

p,

⊥
γ

...
α

ar q,

⊥
γ

...

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

(p, ai, q) ∈ ∆:

p,

⊥
γ

...
α

Olivier Serre. VPAs and Streaming – p. 10/17

Visibly pushdown automata

toto

Visibly pushdown automaton (VPA) M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Q : finite set of states.

A : partitioned input alphabet.

Γ : finite stack alphabet.

∆ ⊆

Q × Ac × Q × (Γ \ {⊥})

Q × Ar × (Γ \ {⊥}) × Q

Q × Aint × Q.

(p, ai, q) ∈ ∆:

p,

⊥
γ

...
α

ai q,

⊥
γ

...
α

Olivier Serre. VPAs and Streaming – p. 10/17

Associated languages (VPL)

toto

Visibly pushdown automaton M = (Q, A, Γ,⊥, Qin, Acc, ∆) :

Finite words case:

Acc = F ⊆ Q, set of final states.

w ∈ A∗ is accepted by M iff there exists a run that ends in a
configuration (q, σ), q ∈ F .

L(M) = {w ∈ A∗ | w accepted by M}.

Other extensions exist:

infinite words,

trees.

Olivier Serre. VPAs and Streaming – p. 11/17

Matching positions

toto

Ac = {c1, c2}, Ac = {r1, r2, r3} and Aint = {i1, i2}

Olivier Serre. VPAs and Streaming – p. 12/17

Matching positions

toto

Ac = {c1, c2}, Ac = {r1, r2, r3} and Aint = {i1, i2}

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

Olivier Serre. VPAs and Streaming – p. 12/17

Matching positions

toto

Ac = {c1, c2}, Ac = {r1, r2, r3} and Aint = {i1, i2}

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2 r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 12/17

Matching positions

toto

Ac = {c1, c2}, Ac = {r1, r2, r3} and Aint = {i1, i2}

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2 r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 12/17

From words to trees

toto

General rule: w = cw1rw2 w = iw1

Tree(w) Tree(w)

c

r Tree(w1)

Tree(w2)

i

T ree(w1)

Olivier Serre. VPAs and Streaming – p. 13/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2 r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2 r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2 r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2 r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2

r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2

r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2

r1 c2

i1

r1

Olivier Serre. VPAs and Streaming – p. 14/17

From words to trees: example

c1 c2 i2 i1 r3 i1 c2 r1 c2 i1 r1

c1

c2

i2 i1

r3 i1 c2

r1 c2

i1

r1

•

•

Olivier Serre. VPAs and Streaming – p. 14/17

Relation to tree languages

toto

Theorem. [Alur&Madhusudan] A language L is VPL iff Tree(L) is regular.

Sketch of Proof. (⇒) (q0, γ)
c

−→ (q1, γ
′)

w1−→ (q2, γ
′)

r
−→ (q3, γ)

w2−→

Tree(w)

c

r Tree(w1)

Tree(w2)

(⇐) Store the left son’s state in the stack and retrieve it later.

Theorem. A tree language L is regular iff Streams(L) is VPL.

Olivier Serre. VPAs and Streaming – p. 15/17

Restating validation

Strong validation

Input: a visibly pushdown language L.

Output: is L regular?

Olivier Serre. VPAs and Streaming – p. 16/17

Restating validation

Strong validation

Input: a visibly pushdown language L.

Output: is L regular?

Validation

Input: a visibly pushdown language L.

Output: is there R Regular such that L = R ∩ LStrwmw?

Olivier Serre. VPAs and Streaming – p. 16/17

Related results

toto

Theorem [Stearns’67] . Regularity is decidable for visibly pushdown
languages.

Olivier Serre. VPAs and Streaming – p. 17/17

Related results

toto

Theorem [Stearns’67] . Regularity is decidable for visibly pushdown
languages.

Theorem [Bárány, Löding,Serre] . Given a VPL language L, one can
decide whether there exists a regular language R such that

L = R ∩ Lwmw

Olivier Serre. VPAs and Streaming – p. 17/17

Related results

toto

Theorem [Stearns’67] . Regularity is decidable for visibly pushdown
languages.

Theorem [Bárány, Löding,Serre] . Given a VPL language L, one can
decide whether there exists a regular language R such that

L = R ∩ Lwmw

A general problem

Input: a VPL language K

Is the following decidable: given a visibly pushdown language L is
there R regular such that L = R ∩ K?

Olivier Serre. VPAs and Streaming – p. 17/17

