A Highly Flexible Data Structure for Multi-level
Visibility of P2P Communities*

Debmalya Biswas! and Krishnamurthy Vidyasankar?

! IRISA/INRIA, Campus Universitaire de Beaulieu, Rennes, France 35042
dbiswas@irisa.fr
2 Dept. of Computer Science, Memorial University of Newfoundland, St. John’s, NL,
Canada A1B 3X5
vidya@cs.mun.ca

Abstract. Peer to Peer (P2P) communities (or “interest groups”) are
referred to as nodes that share a common interest. Each peer in the
system claims to have some interests and, accordingly, would like to
become a member of these groups. The available interest groups are
arranged according to a hierarchical semantics ontology, and managed
with a semantic overlay network. P2P community structure is highly
dynamic: a peer may be added to or deleted from a community; commu-
nities may be added or deleted; communities may be merged or split; and
sub-communities may become parent-level communities and vice versa.
In this paper, we propose a highly flexible multi-level data structure to
capture the visibility aspect of P2P communities. The data structure is
simple, facilitates dynamic changes easily and efficiently in a decentral-
ized fashion, and is highly scalable.

1 Introduction

Over the past few years, Peer to Peer (P2P) systems have gained widespread
acceptance as a result of their decentralized control, high scalability and avail-
ability. However, their commercial use has been mostly restricted to informa-
tion/file sharing systems. As a result, work has already been initiated towards
the use of P2P systems for collaborative work [1I2]. A related application area
where we also need to consider “groups” of peers is that of Interest Groups, e.g.,
Yahoo Groups [3]. Basically, the peers in an interest group share some common
interests. The notion of P2P Communities [4] has been proposed to model such
interest groups. We generalize P2P communities as an abstraction for a group
of peers, which work collaboratively to perform a specific task or share some
common interests.

By default, each peer has knowledge of (visibility over) the rest of the peers in
its own community. Now, for a community to grow, it needs visibility over other

* D. Biswas’s work is supported by the ANR DOCFLOW and CREATE ACTIVEDOC
projects. K. Vidyasankar’s work is supported in part by the Natural Sciences and
Engineering Research Council of Canada Discovery Grant 3182.

S. Rao et al. (Eds.): ICDCN 2008, LNCS 4904, pp. 363-374] 2008.
© Springer-Verlag Berlin Heidelberg 2008

364 D. Biswas and K. Vidyasankar

communities and their peers. Similarly, a peer would like to have information
about communities catering to “related” interests. Current P2P systems either
function as independent entities (peers/communities) or assume that each peer is
aware of all the other peers and communities ([§]). Allowing each peer to have full
information, about all the other communities and their peers, is not a practical
solution. For dynamic and heterogeneous environments such as P2P systems,
trust and anonymity issues may force a peer (or community) to be restrictive in
the visibility it allows to others. Thus, a fundamental issue to address in P2P
communities is how to capture the visibility a peer (or community) has over the
other peers and communities.

Towards this end, we introduce a visibility graph formalism for P2P commu-
nities. The communities are often organized hierarchically corresponding to a
hierarchical semantics ontology, for example, as shown in Fig.[Il Our formalism
is a multi-level graph to facilitate community visibility at different levels of the
hierarchy. Note that the P2P community structure is highly dynamic: a peer
may be added to or deleted from a community; communities may be added or
deleted; communities may be merged into bigger ones or split into smaller ones;
and sub-communities may become parent-level communities and vice versa. The
multi-level visibility graphs facilitate performing query evaluation and structural
updates in a decentralized and scalable fashion to accommodate the inherent
dynamism.

I/‘ﬂpus-;:\\
)

Slyl?ﬂf
= gl
= (=
— e
@ {fc'i:) i REE;_W:)
= — = —
IS T
w w
e L
{-] Pop > —-\M‘Fusmn_-;,l

Fig. 1. A sample hierarchical ontology

The rest of the paper is organized as follows: The visibility graph formalism
is introduced in section 2. Sections 3 and 4 outline algorithms for query evalua-
tion and for performing structural updates on visibility graphs, respectively. In
section 5, we discuss some implementation details of visibility graphs. Section 6
presents some related work. Section 7 concludes the paper and provides some
directions for future work.

A Highly Flexible Data Structure 365
2 Visibility Graph

2.1 Multi-level Visibility

We present a graph model to represent the visibilities of the peers and communi-
ties in a P2P system. Let P be the set of peers and C be the set of communities
in a P2P system S. Peers are represented by nodes. We use the same notation to
refer to the nodes as well as the peers they represent. An edge between peers Py
and P, indicates that P; is visible to P, and vice versa. The visibility is assumed
to be symmetric in this paper. Peers are grouped into communities, which may
further be grouped into higher level communities, and so on. The communities
are usually arranged according to one or more hierarchical semantics ontologies.
Fig.Dlshows a sample hierarchy of music related interests (as given in [5]). Fig.
illustrates a hierarchical organization. At the bottom level, there are several com-
munities. We call them level-1 communities. We use single (solid, and different
dotted and broken) lines for the intra-community edges. The communities are
grouped into three higher level communities. In each group, connections between
communities are shown in double line edges. These are level-2 communities. All
these groups of communities belong to an even higher level (level-3) community
shown in triple line edges. For example, Fig. 2l may correspond partly to Fig. [T,
with level-1 communities of Soft, Dance, Pop, etc., level-2 communities of Rock,
Jazz, etc., and level-3 community of Music.

In our model, we represent a parent-level community through certain peers
of its children communities called seers. The seers are connected by edges iden-
tifying the community. In Fig. 2 the double line edges connect seers of level-1
communities, and similarly, triple line edges connect seers of level-2 communi-
ties. Thus, the actual connections will be as shown in Fig. Bl We note that each
node will be incident to single line edges (as long as its community has at least
two peers). Then, some nodes may be incident to other (double line, triple line,
etc.) edges too. In Fig. Bl there are nodes incident to (i) single line and double
line edges, (ii) single, double, and triple line edges, and also (iii) single and triple
line edges. That is, a peer may be a seer for a higher level (e.g., level-3) commu-
nity, and not for a lower level (e.g., level-2) community. Thus, the edges of the
visibility graph are of different level communities in the hierarchy.

2.2 Data Structure

Let H be a set of hierarchies that may exist in a P2P system S. We confine our
initial discussion and the graph formalism to one hierarchy H € H. Fig. @l shows
the hierarchy used in our previous example. We use Fig. Ml to illustrate some
notations and concepts. Each node in the figure represents a community at some
level of the hierarchy. We assume that each peer forms its own unit community.
We call this level-0 community. The nodes, and the corresponding communities,
are named locally (within that level) and globally with the sequence of local
labels of nodes in the path from the root to that node. For example, e is the
local name and a/b/e is the global name of a node in the figure. We use the

366 D. Biswas and K. Vidyasankar

::'.: . . o I.’ ,/!
Fig. 3. Actual connections of the hierarchy in Fig.

global name to indicate the corresponding path also. We define a prefix af of
a global name « as the sequence of labels of the nodes in a prefix of the path
corresponding to a. On the same lines, we define an extension a® of a global
name « as the sequence of labels of the nodes of a global name g which contains
a as one of its prefixes, that is, 38, 57 = a. For example, for « equal to a/b/e,
a/b and a are the prefixes, and a/b/e/P; and a/b/e/Ps are extensions. We also
denote the immediate prefix by af and an immediate extension by a”. For a/b/e,
the immediate prefix is a/b, and both the extensions in Fig. [are immediate
extensions. Finally, for a global name a, we use *a and a* to denote the set of
its prefixes and extensions, respectively.

We note that only the leaf nodes in H (Fig. M) correspond to peers in S.
They have labels as in the figure. (Labels of only some nodes are shown for easy
readability.) All non-leaf nodes are virtual. Essentially, H describes all (lower
and higher level) communities in S. Each peer belongs to several, hierarchically
related, communities. To be precise, a peer with label « is a member of all the
communities with labels in *a.

For each node (with local or global name) « in the hierarchy, we define
two communities. The first one is the a-full-community, denoted with « in
square brackets as [a]-community. This consists of all the peers in the subtree
rooted at «. For example, [b]-community membership is { Py, P, Ps, Py, Ps}. The

A Highly Flexible Data Structure 367

P1 P2 PS P4 PS PG P7 PB PQ P10 P11

alble/P, alblfiP, alc/h/Pg alclj/Pg aldik/P,,

Fig. 4. Complete hierarchy with peers

second is a-seer-community, denoted with « in parentheses as («)-community.
For non-leaf nodes «, this will contain one or more peers from each of its chil-
dren communities, that is from those of each immediate extension of «; these
peers will be seers of the respective communities for [a]-community. For exam-
ple, (b)-community membership could be { Py, P, Ps}. For leaf nodes «, the local
name will be that of the respective peer, say P;, and both the full and the seer
communities will consist of just that peer. Note that each level-1 community is a
full as well as a seer community. Now, a peer can be a seer for several ancestral
communities. For a community C, we define a C-graph as the graph with node
set consisting of members of C' and edges, called C-edges, depicting the visibil-
ity among the members. When C' is a seer community, we refer to the graph as
C'-seer-graph also. In our model, we require that each seer graph is connected.

Definition. For a P2P system S, with peers P, hierarchy H, and related set of
(full) communities C, a global visibility graph is the union of C-seer-graphs of all
communities C' in C such that each seer graph is connected.

Example: A visibility graph for the P2P system in Fig. M is shown in Fig. Bl
Here:

— Pis {Pl, Pg, ...,Pll};

— Cis {[a], [b], ..., [k], [PA], [P2], ---, [P11] }5

— [P,] is the unit community containing peer P», and the corresponding seer
community (P;) also contains Ps;

— Both [e]- and (e)-communities have peers Py and Pe; Similarly, for each of
{f,9,...,k}, their full and seer communities have all their children shown in
the figure;

368 D. Biswas and K. Vidyasankar

— Each of {[al]-,[b]-,[c]-,[d]-} communities have all the peers in the leaf level
of the corresponding sub-trees in the hierarchy; For example, [b]-community
membership is { Py, ..., Ps }.

— The seer community membership is as follows: (b)-community has { Py, Ps, Ps },
(¢)-community has { Ps, Pr, P3 }, (d)-community has { Pi; }, and (a)-community
has {P3, Pg, Pll}-

In this example, the connected graph of each seer community is a tree, in
fact, a path. Note that Ps is a seer for (¢)-community but Py is the seer for
(a)-community. That is, different peers of a sub-tree may be seers for different
ancestral communities.

We point out that the visibility graph does not show the member peers of
higher level full communities explicitly. However, the property that for every full
community at every level its corresponding seer community must have at least
one peer from each of its children communities guarantees that all the members
of that community can be accessed if needed.

P1 P2 P3 P4 P5 PG P7 P8 PQ P10 P11
< AT AT
~—7 N ¢ e
~. ~ - -

Fig. 5. Complete visibility graph of Fig. H

3 Searching the Visibility Graph

Any search involves searching one or more communities. Search within a commu-
nity typically involves flooding, that is, searching each peer in the community.
Common search methods, when the peers within a community are arbitrarily
connected, are Breadth First and Depth First Searches, with or without using a
spanning tree. A search may be initiated from any node. It may also be initiated,
in parallel, from several nodes. In each case, the search results may be forwarded
to one or more initiating nodes, to some other nodes, or even to all the nodes. In
this paper, we will neither be concerned with the actual search method nor with
any specific way of forwarding the results. We denote searching a community C'
as C-search.

We explain a general search procedure with the graph in Fig. Bl Any query is
initiated at a peer. Suppose a query ¢ is initiated at P5. Then, first, the (P»)-search
and, if necessary, an (e)-search will be performed. If ¢ cannot be evaluated within
(e)-community, then P; (which is the seer of [e]-community for (b)-community, will
initiate a (b)-search. This will involve the graph consisting of P, P; and Ps. Then,
P5 may suggest that a (g)-search is appropriate, involving peers Py and Ps. On the
other hand, P3 may suggest that (the higher level) (a)-search, involving Ps, Py and
P11 may be appropriate. Taking up one or more suggestions and continuing the
search can be done either in a centralized or distributed fashion.

A Highly Flexible Data Structure 369

Thus, in comparison to traditional query resolution via flooding, our method
provides the following benefits: Privacy and security constraints are maintained
as queries are only forwarded to visible (trusted) peers. On the other hand, each
peer may be a member of different seer communities at different levels. And,
based on the information it has on each of these communities, it may be able to
direct the search to any of these levels. For example, in the above search process,
P;5 will be involved in the searches of (P3)-, (f)-, (b)- and (a)-communities.
Suppose (Ps)-search is the first one. The next search could be (a)-search, then
(f)-search, etc. This allows the searches to be mixed rather than being strictly
top-down or bottom-up. In (Ps)-search, its role is an individual peer; in (a)-
search, its role is a seer for [b]-community, and in that capacity it is supposed to
utilize some summary information of the [b]-community; and so on.

3.1 A Specific Example

We consider simple hierarchical path queries having the following syntax:

I := An area of interest in the underlying (hierarchical) ontology O.
Path := €|I/Path
Query := (n)Path|(Query A Query)|(Query V Query)

where n refers to the number of nodes to retrieve satisfying the Path criterion.
I/(sub-)I refers to a pair of parent-child interests in O. A sample query is given
below:

Query q. (1)music/classic A\ ((1)music/jazz/ fusionV (2)music/rock/soft).

Query ¢ can be interpreted as follows: Find a peer interested in music/classic
and a peer interested in music/jazz/ fusion, or a peer interested in music/
classic and two peers interested in music/rock/soft.

Given this, a search to evaluate query g over the global visibility graph
(Fig. B) would be as follows. (We assume that a, b, ¢ and d correspond to the
music, music/rock, music/jazz and music/classic communities, respectively.)

We assume that ¢ is submitted at peer Ps.

1. Ps initiates an (a)-search, that is, evaluates ¢ within the (a)-community.

2. If unsuccessful, Ps chooses nodes in the (a)-community (peers Py, P11, and
peer Pj itself) for propagating (the entire query or parts of) ¢ for further
evaluation. Peer P3 makes this decision based on the “similarity” between the
path criteria in ¢ and the global names of the nodes in the (a)-community.
Here, P35 would choose itself for the (sub)query (2)music/rock/soft, while
Py would be chosen for (1)music/jazz/ fusion and Pip for (1)music/classic.

3. The nodes Ps;, Py and Py initiate a (b)-search, (j)-search and (d)-search,
respectively. In the course of (j)-search, Py might find a need for, and initiate,
a (c)-search.

4. This continues until the appropriate peers are found, or all the peers in H
have been explored (in which case, there may not exist peers satisfying the

query).

370 D. Biswas and K. Vidyasankar

4 Visibility Structure Changes

P2P systems are highly dynamic in nature, with peers being added to or deleted
from communities, communities being added to or deleted from higher level
communities, merging and splitting of the communities, etc. All these operations
change the visibility graph. Our formalism facilitates these changes easily. We
outline the general procedures in the following, with examples from the hierarchy
of Fig. @ and Fig. Gl

I. Basic operations

(a) Adding a peer P to a community C. Add the node P and a C-edge between
P and some node already in C. Note that the addition of this single edge is
sufficient to keep the new C-graph connected. Of course, additional edges can
be added too. We restrict our description to the minimum requirements.

(b) Deleting a peer P from a community C. This may require several opera-
tions: (i) P is deleted from the C-graph; (ii) If this disconnects the C-graph, then
additional C-edges, between other peers in C, are added to keep the C-graph
connected; (iii) Suppose P is a seer of a sub-community C’ of C for C. If P is the
only such seer, then some other peer P’ of C’-community should be designated
as a seer for C' and added to C.

(c) Deleting a peer P from the P2P system S. Then P must be deleted from
every community it is part of (as a seer).

II. Other structural changes
Some of the other structural changes are:

— adding a community C to a higher level community C’;

— deleting a community C from a higher level community C’;

— merging two same level communities;

— splitting a community to two communities under the same parent
community;

— merging two different level communities; etc.

These, and several other operations involving combinations of those considered
above, can be executed. All these involve essentially some generic operations
like adding a node to a graph, deleting a node from the graph but keeping the
graph connected after the deletion, etc. Depending on how the graph (C-graph
for community C) is maintained (as a tree, arbitrary connected graph, complete
graph, etc.), these operations can be implemented efficiently. The key property of
our formalism is that a node may be incident to C-edges of several communities
C, and so the node may have to be deleted from some C-graphs and not from
some others.

5 Implementation and Discussion

As we know, P2P systems are very highly decentralized. Peers are far apart, they
are highly autonomous, they may join the system and drop out in an ad hoc

A Highly Flexible Data Structure 371

manner, their storage and processing capacities may be varied and limited, their
availability and accessibility may be different at different times, communication
between them may not be reliable, and so on. Therefore, implementation of the
algorithms for both searching the peers for query evaluation and for modify-
ing the structure of the visibility graph, outlined in the previous two sections,
requires special attention. For instance, in any distributed implementation, the
algorithms will be executed only lazily, that is, asynchronously. The algorithms
can be fine tuned for “safe” execution. For example, when a community is deleted
from another, and added to a different community, the addition part can be done
first, and then the deletion. This may result, in the worst case, in a concurrent
execution exploring more peers than necessary, but without loss of visibility.

We note that peers can execute their part of the algorithms autonomously.
For example (as discussed in section 3), a peer which is a seer for several (higher
level) communities could employ its own heuristics to decide on which order to
explore the various communities. The selection strategy could be different for a
different peer even for the same set of choices.

The core element of the implementation is the manipulation of C-graph for
each community C' in the hierarchy. Depending on the type of connectivity main-
tained, the amount of work in the manipulation will be different. Searching could
be more systematic and efficient with tree structure. On the other hand, updates
on the hierarchical structure may be implemented more efficiently with graphs
which are not trees.

With our model, several C-graphs have to be manipulated. However, each
can be manipulated independent of the others. So, the complexity of the im-
plementation will not increase very much with the increase in the number of
communities. With proper extensions to the underlying hierarchy, an increase
in the number of peers in the P2P system can be accommodated by increasing
the number of communities without substantially increasing the size of the cor-
responding seer-communities. Thus, our data structure and the algorithms are
highly scalable.

At an abstract level, multi-level visibility seems close to the notion of database
views [6]. For a set of relational tables in a database, a view allows us to summa-
rize their data based on some characteristics. Here, the peers can be considered
as data. The information on the various peers in a community can be summa-
rized and kept in the seers of that community. However, since a peer can be a
seer of a higher level ancestral community without being a seer of a lower level
one, hierarchical relationships of the communities cannot be represented directly.

Having said this, there is also sufficient overlap between the two concepts, for
a lot of the existing work for database/views to be used here, especially, with
respect to query optimization and rewriting. Also, we have not considered con-
current query and update of the visibility graph which is very relevant, especially,
for collaborative P2P systems. Database solutions [7] appear very attractive for
the above as well.

Finally (as mentioned earlier), we consider visibility graphs as an abstrac-
tion to capture the visibility aspect of P2P communities, and we expect other

372 D. Biswas and K. Vidyasankar

middleware aspects, e.g., security, monitoring, etc. to build on this abstraction. In
the sequel, we briefly show how visibility graphs facilitate P2P security. Security
for P2P communities is usually provided with the help of a Trust Management
scheme [8]. In this scheme, each peer maintains the trust rating of all the other
members in its own group (group-mates), based on its own dealings with them.
For inter-community accesses, “when a member p requests to acquire resources
from a member ¢ of another community, it sends a request to q. ¢ checks with
the group-mates of p if p is trustable and what kind of access privileges it has.
q then accepts or rejects the transaction with p”. The above can be modeled us-
ing visibility graphs as follows: The underlying assumption, that the seer graph
of each community is connected, allows a peer to monitor the activities of its
group-mates (that is, to maintain their trust ratings). Inter-community access
between peers P; € C; and P, € (3 may only occur via an access path from
a Cp-seer to a Cs-seer. Further, recall that visibility is symmetric. Thus, given
such an inter-community access, P, can backtrack along the access path, and
retrieve the trust rating of P, from the C-seer.

6 Related Works

The notion of P2P communities was introduced in [4]. They also represent visibil-
ity using intra-community and inter-community edges. They use only one type of
inter-community edges. Our formalism uses different edges for (seer communities
at) different levels of the hierarchy.

Further works [§], [9] and [I0] have extended the P2P community notion
as follows: [8] presents a Trust Management scheme for P2P communities. [9]
discusses efficient discovery for P2P communities based on the “type” of commu-
nities, e.g., co-operative, goal oriented, ad hoc communities, etc. [I0] presents a
gossip based discovery mechanism for P2P communities. However, none of them
consider the visibility aspect with respect to P2P systems.

No other work (that we are aware of) has attempted to formalize the visibility
aspect for P2P systems. Some of the works which have touched upon this aspect
are the following: [11] identifies real-life scenarios where there might be a need to
deviate from the inheritance of access rights upwards through the hierarchy in a
role-based access control system. [12] considers the visibility aspect with respect
to sending publish/subscribe notifications for event based systems. [I3] identi-
fies the need for visibility across levels of a supply chain management system as
follows: “The information required by downstream entities are mainly material
and capacity availability information from their suppliers. The information ac-
quired by an upstream entity is information about customer demand and orders.
The depth of information penetration can be specified in various degrees, e.g.,
isolated, upward one tier, upward two tiers, downward one tier, downward two
tiers, and so forth”.

In previous works [I4] and [I5], we have studied the visibility aspect for hi-
erarchical systems, especially, hierarchical Web Services compositions. In [14],
we introduced the notion of Sphere of Visibility (SoV) to capture the visibility

A Highly Flexible Data Structure 373

aspect, and showed its application in the context of performing compensation
under visibility constraints. However, [14] only considered vertical visibility (that
is, visibility over ancestors and descendants) as compared to the more generalized
notion of visibility presented in [I5] (visibility over siblings, uncles, cousins, etc.).
In [15], we also studied some inherent relationships which might exist among the
SoV’s of a group of providers, e.g., coherence, correlation, etc.

7 Conclusion and Future Work

In this paper, we have proposed a multi-level visibility graph formalism to cap-
ture the visibility of peers and communities in P2P systems. The formalism caters
to the grouping of peers in a hierarchical community organization. The graph
model accommodates, with equal ease, any number of levels in the hierarchy and
any number of communities in each level.

In this paper, we have assumed that at a level of the hierarchy, the node sets
of the children components are disjoint. When we consider multiple attributes,
the resulting components (at the same level) may be overlapping. This can be
accommodated in our model though the search and update algorithms would
become more complicated. For instance, in the event of such overlapping it may
no longer be sufficient to use the hierarchical path as the global name of a peer.

Further, the visibility graph formalism, and the search and update algorithms
in this paper have been defined for a single underlying hierarchy. The scenario
becomes more interesting as soon as we allow for multiple overlapping hierar-
chies. For example, in Fig. [l in addition to the hierarchical classification by
type, the peers may also be chronologically (again, hierarchically) classified by
the interest in decades, years and months. Given this, a query evaluation, after
some initial search with respect to the type hierarchy and determining the year
of production, might switch to a search by the chronological hierarchy. Our for-
malism can easily be extended for multiple hierarchies. We leave this extension
and the above issues as directions for future work.

References

Grid Computing, http://www.ogf.org/

Active XML (AXML) Systems, http://www.activexml.net

Yahoo Groups, http://groups.yahoo.com/

Khambatti, M., Ryu, K., Dasgupta, P.: Peer-to-Peer Communities: Formation and

Discovery. In: PDCS. Proceedings of the 14th IASTED Intl. Conf. Parallel and

Distributed Computing Systems, pp. 161-166 (2002)

5. Crespo, A., Garcia-Molina, H.: Semantic Overlay Networks for P2P Systems. Tech-
nical report, Stanford University, USA (2002)

6. Database Views, http://en.wikipedia.org/wiki/View_(database)

7. Abiteboul, S., Amann, B., Cluet, S., Eyal, A., Mignet, L., Milo, T.: Active Views for

Electronic Commerce. In: VLDB. Proceedings of the 25th International Conference

on Very Large Data Bases, pp. 138-149 (1999)

Ll

http://www.ogf.org/
http://www.activexml.net
http://groups.yahoo.com/
http://en.wikipedia.org/wiki/View_(database)

374

8.

10.

11.

12.

13.

14.

15.

D. Biswas and K. Vidyasankar

In, H.-P., Meintanis, K.A., Zhang, M., Im, E.-G.: Kaliphimos: A Community-
Based Peer-to-Peer Group Management Scheme. In: Yakhno, T. (ed.) ADVIS 2004.
LNCS, vol. 3261, pp. 533-542. Springer, Heidelberg (2004)

. Akram, A., Rana, O.F.: Structuring Peer-2-Peer Communities. In: P2P. Proceed-

ings of the 3rd International Conference on Peer-to-Peer Computing, pp. 194-195
(2003)

Khambatti, M.S., Ryu, K.D., Dasgupta, P.: Push-pull gossiping for information
sharing in peer-to-peer communities. In: PDPTA. Proceedings of the TASTED
International Conference on Parallel and Distributed Processing Techniques and
Applications, pp. 1393-1399 (2003)

Moffet, J.D.: Control principles and role hierarchies. In: RBAC. Proceedings of the
3rd ACM Workshop on Role-Based Access Control, pp. 63-69 (1998)

Fiege, L.: Visibility in Event-Based Systems. Ph.D. Thesis, Department of Com-
puter Science, Darmstadt University of Technology, Darmstadt, Germany (2005)

Lin, F.-R, Tan, G.W., Shaw, M.J.: Modeling Supply-Chain Networks by a Multi-
Agent System. In: HICSS. Proceedings of the 31st Annual Hawaii International
Conference on System Science, pp. 105-114 (1998)

Biswas, D., Vidyasankar, K.: Spheres of Visibility. In: ECOWS. Proceedings of the
3rd IEEE European Conference on Web Services, pp. 2-13 (2005)

Biswas, D., Vidyasankar, K.: Modeling Visibility in Hierarchical Systems. In: Em-
bley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 155-167.
Springer, Heidelberg (2006)

	Introduction
	Visibility Graph
	Multi-level Visibility
	Data Structure

	Searching the Visibility Graph
	A Specific Example

	Visibility Structure Changes
	Implementation and Discussion
	Related Works
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

