
Complexity of Data Tree Patterns over XML

Documents⋆

Claire David

LIAFA, University Paris 7 and CNRS, France
cdavid@liafa.jussieu.fr

Abstract. We consider Boolean combinations of data tree patterns as a
specification and query language for XML documents. Data tree patterns
are tree patterns plus variable (in)equalities which express joins between
attribute values. Data tree patterns are a simple and natural formalism
for expressing properties of XML documents. We consider first the model
checking problem (query evaluation), we show that it is DP-complete1 in
general and already NP-complete when we consider a single pattern. We
then consider the satisfiability problem in the presence of a DTD. We
show that it is in general undecidable and we identify several decidable
fragments.

1 Introduction

The relational model and its popular query language SQL are widely used in
database systems. However, it does not fit well in the ever changing Internet
environment, since its structure is fixed by an initially specified schema which is
difficult to modify. When exchanging and manipulating large amounts of data
from different sources, a less structured and more flexible data model is prefer-
able. This was the initial motivation for the Extensible Markup Language (XML)
model which is now the standard for data exchange.

An XML document is structured as an unranked, labelled tree. The main dif-
ference with the relational model is that in XML, data is also extracted because
of its position in the tree and not only because of its value. Consequently, all
the tools manipulating XML data, like XML query languages and XML schema,
combine navigational features with classical data extraction ones. XPath2 is a
typical example. It has a navigational core, known as Core-XPath and studied
in [16], which is essentially a modal language that walks around in the tree.
XPath also allows restricted tests on data attributes. It is the building block of
most XML query languages (XQuery, XSLT...). Similarly, in order to specify in-
tegrity constraints in XML Schema, XML languages have navigational features
for description of walks in the tree and selection of nodes. The nodes are for
instance chosen according to a key or a foreign key [15].

⋆ Work partly supported by DocFlow (ANR-06-MDCA-05)

1 A problem DP is the intersection of a NP problem and a co-NP problem.
2 In all the paper, XPath refers to XPath1.0

In this paper, we study an alternative formalism as a building block for
querying and specifying XML data. It is based on Boolean combinations of data
tree patterns. A data tree pattern is essentially a tree with child or descendant
edges, labelled nodes and (in)equality constraints on data values. Intuitively, a
document satisfies a data tree pattern if there exists an injective mapping from
the tree pattern into the tree that respects edges, node labels and data value
constraints. Using patterns, one can express properties on trees in a natural,
visual and intuitive way. These properties can express queries, as well as some
integrity constraints.

At first glance, the injectivity requirement does not seem important; however,
it has some consequences in terms of expressive power. As we do not consider
horizontal order between siblings, without injectivity data tree patterns are in-
variant by bisimulation. Data tree patterns with injective semantics are strictly
more expressive than with non-injective semantics. For example, it is not pos-
sible to express desirable properties such as a node has two a-labelled children
without injectivity. Another consequence of injectivity appears when considering
conjunctions of data tree patterns. With non-injective semantics, the conjunction
of two patterns would be equivalent to a new pattern obtained by merging the
two patterns at the root. With injectivity this no longer works and we have to
consider conjunctions of tree patterns. This difference appears when we study the
complexity of the satisfiability problem: for one pattern the problem is PTime

while it is untractable for a conjunction of patterns.

XPath and data tree patterns are incomparable in terms of expressiveness.
Without data value, XPath queries are closed under bisimulation while data
tree patterns are not. On the other hand, XPath allows negation of subformulas
while we only allow negation of a full data tree pattern. For example XPath can
check whether a node has a-labelled children but no b-labelled child. This is not
possible with Boolean combinations of tree pattern. In terms of data comparison,
Xpath allows very limited joins because XPath queries cannot compare more
than two elements at a time, while a single pattern can compare simultaneously
an arbitrary number of elements.

In this paper, to continue this comparison, we study the complexity of two
questions related to data tree patterns: the model checking problem (query eval-
uation) and the satisfiability problem in the presence of schema.

The evaluation of XPath queries has been extensively studied (see [6] for a
detailed survey). The evaluation problem is PTime for general XPath queries.
In our case, this problem is more difficult: the combined complexity of the model
checking problem for Boolean combinations of data tree patterns is untractable.
We prove that it is DP-complete in general and already NP-complete when
considering only one tree pattern.

The satisfiability problem for XPath is undecidable in general [5]. However
for many fragments the problem is decidable with a complexity ranging from
NP to NExpTime. Similarly, for Boolean combinations of data tree patterns
the satisfiability problem is undecidable in general. We identify several decid-
able fragments by restraining the expressivity of tree patterns or by bounding

2

the depth of the documents. The corresponding complexities range from NP to
2ExpTime.

Related Work: Tree patterns have already been investigated in a database
context, often without data values [22, 3, 20]. The focus is usually optimisation
techniques for efficient navigation [1, 12, 7]. In this work, we focus on the diffi-
culty raised by data values and we are not interested in optimisation but in the
worst case complexity for the model checking and satisfiability problems.

Several papers considered the non injective semantics of tree pattern with
data constraints. First, [19] considered the satisfiability problem for one posi-
tive pattern while we consider Boolean combinations of tree pattern. Then, the
authors of [2] consider the type checking problem which is more powerful that
unsatisfiability but incomparable to the satisfiability problem.

Data tree patterns are used in [4] to specify data exchange settings. They
study two problems: the first one is consistency of data exchange settings, the
second one is query answering under data exchange settings. Given a conjunction
of data tree patterns and a DTD, we can construct a data exchange setting
such that the consistency of this setting is equivalent to the satisfiability of
the conjunction of patterns in the presence of the DTD. However the data tree
patterns they consider are less expressive than ours, in that they can not express
inequality constraints on data values nor Boolean combinations of data tree
patterns. The other problem considered in this paper is query answering. This
problem seems related to our model checking problem. However it does not seem
possible to use their result or their proof techniques.

Fragment of XPath: In [14], the authors consider an XPath fragment (simple
XPath) allowing only vertical navigation but augmented with data comparisons.
Negation is disallowed, both in the navigation part and in the comparison part.
A simple XPath expression can be viewed as a pattern with non-injective seman-
tics and only data equality. They study the inclusion problem of such expres-
sions wrt special schemes (SXIC) containing integrity constraints like inclusion
dependency. We cannot simulate inclusion dependency even with Boolean com-
binations of data tree patterns. Hence, their framework is incomparable to ours.

Conjunctive queries on trees: Conjunctive queries on trees can be expressed
by tree patterns. They were considered in [17, 8] without data values. Very re-
cently [9], an extension by schema constraints is proposed and in very few cases
they allow data comparison. Notice that, without sibling predicate, those con-
junctive queries are strictly less expressive than our framework because they do
not allow negation and do not have an injective semantic. It is shown that the
query satisfiability problem is NP-complete, whereas the query validity problem
is 2ExpTime-complete. Moreover, the validity of a disjunction of conjunctive
queries is shown to be undecidable. This last result corresponds to our undecid-
ability result but the proof is different.

Logics over infinite alphabets : Another related approach is to consider logic
for trees over an infinite alphabet. In [10, 11], the authors study an extension of
First Order Logic with two variables. In [13, 18], the focus is on temporal logic
and µ-calculus. These works are very elegant, but the corresponding complexities

3

are non primitive recursive. Our work can be seen as a continuation of this work
aiming for lower complexities.

Structure: Section 2 contains the necessary definitions. In Section 3, we
consider the model-checking problem. In Section 4, we consider the satisfiability
problem in general and the restricted cases. Section 5 contains a summary of our
results and a discussion. Omitted proofs can be found in the appendix available
at http://www.liafa.jussieu.fr/~cdavid/publi/mfcs08.pdf.

2 Preliminary

In this paper, we consider XML documents that are modeled as unordered,
unranked data trees, as considered e.g. in [10].

Definition 1 A data tree over a finite alphabet Σ is an unranked, unordered,
labelled tree with data values. Every node v has a label v.l ∈ Σ and a data value

v.d ∈ D, where D is an infinite domain.

We only consider equality tests between data values. The data part of a tree
can thus be seen as an equivalence relation ∼ on its nodes. In the following, we
write u ∼ v for two nodes u, v, if u.d = v.d and we use the term class without
more precision to denote an equivalence class for the relation ∼.

The data erasure of a data tree t over Σ is the tree obtained from t by
ignoring the data value v.d of each node v of t.

`

r

0

´

`

a

⊤

´

`

a

⊤

´

`

r

⊥

´ `

b

⊤

´

`

b

&

´

`

a

⊥

´

`

a

⊤

´

`

r

⊥

´ `

b

&

´

`

r

⊥

´

(a) data tree

r

a

a

r b

r

a

a

r b

r

(b) data erasure

root

a

r b

a

r b

∼ ≁

(c) pattern

Fig. 1. Examples

Data tree patterns are a natural way to express properties of data trees, or
to query such trees. They describe a set of nodes through their relative positions
in the tree, and (in)equalities between their data values.

Definition 2 A data tree pattern P = (p, C∼, C≁) consists of:

– an unordered, unranked tree p, with nodes labelled either by Σ or by the
wildcard symbol ∗, and edges labelled either by | (child edges) or by ‖ (de-
scendant edge), and

– two binary relations C∼ and C≁ on the set of nodes of p.

4

A data tree t satisfies a pattern P = (p, C∼, C≁), and we write t |= P , if
there exists an injective mapping f from the nodes of p to the nodes of t that
is consistent with the labelling, the relative positions of nodes, the branching
structure and the data constraints. Formally, we require the following:

– for every node v from p with v.l ∈ Σ, we have v.l = f(v).l,
– for every pair of nodes (u,v) from p, if (u, v) ∈ C∼ (resp. (u, v) ∈ C≁) then

f(u) ∼ f(v) (resp. f(u) ≁ f(v)),
– for every pair of nodes (u,v) from p, if (u, v) is an edge of p labelled by |

(resp. by ‖), then f(v) is a child (resp. a descendant) of f(u),
– for any nodes u,v,z from p, if (u, v) and (u, z) are both edges of p labelled

by ‖, then f(v) and f(z) are not related by the descendant relation in t.

A mapping f as above is called a witness of the pattern P in the data tree t.
Notice that the semantic does not preserve the least common ancestor and

asks for an injective mapping between the nodes of a pattern and those of the
tree. This enables patterns to express integrity constraints. We will discuss the
impact of those choices in Section 5. Data tree patterns can describe properties
that XPath cannot, see e.g. the pattern in Fig 1 (XPath cannot talk simultane-
ously about the two r-nodes and the two b-nodes).

We denote by Ptn(∼, |, ‖) the set of data tree patterns and by BC(∼, |, ‖)
the set of Boolean combinations of data tree patterns. We will also consider
restricted patterns, that do not use child relations or do not use descendant
relations (denoted respectively by Ptn(∼, ‖), Ptn(∼, |)). From these, we derive
the corresponding classes of Boolean combinations. Finally, BC+ (resp. BC−)
denotes conjunctions of patterns (resp. negations of patterns).

In proofs, we consider the parse tree of a Boolean formula ϕ over patterns,
denoted by T (ϕ). The leaves of this tree are labelled by (possibly negation of)
patterns and inner nodes are labelled by conjunctions or disjunctions. Such trees
are of linear size in the size of the formula and can be computed in PTime.

Given a pattern formula from BC(∼, |, ‖), the main problems we are inter-
ested in are the model-checking on a data tree (evaluation), the satisfiability
problem, in the general case as well as for interesting fragments. Because the
general structure of XML documents is usually constrained, we may consider
DTDs as additional inputs. DTDs are essentially regular constraints on the fi-
nite structure of the tree. Since we work on unordered, unranked trees, we use
as DTDs an unordered version of hedge automata. A DTD is a bottom-up au-
tomaton A where the transition to a state q′ with label a is given by a Boolean
combination of clauses of the form #q ≤ k where q is a state and k a constant
(unary encoded). A clause #q ≤ k is satisfied if there are at most k children in
state q. Adding a DTD constraint does not change the complexity results for
the model-checking, since checking whether the data erasure of a tree satisfies
a DTD is PTime. Therefore, we do not mention DTDs in the model-checking
part. We consider the following problems:

Problem 1. Given a data tree t and a pattern formula ϕ, the model-checking

problem asks whether t satisfies ϕ.

5

Problem 2. Given a pattern formula ϕ and a DTD L, the satisfiability problem
in the presence of a DTD asks whether ϕ is satisfied by some data tree whose
data erasure belongs to L.

3 Model Checking

Patterns provide a formalism for expressing properties. In this section, we see
how efficiently we can evaluate them. Our main result is the exact complexity
of the model-checking problem for pattern formulas from BC(∼, |, ‖).

Theorem 3 The model-checking problem for BC(∼, |, ‖) is DP-complete.

The class of complexity DP is defined as the class of problems that are the
conjunction of a NP problem and a co-NP problem [21]. In particular, DP
includes both NP and co-NP. A typical DP-complete problem is SAT/UNSAT:
given two propositional formulas ϕ1, ϕ2, it asks whether ϕ1 is satisfiable, and ϕ2

is unsatisfiable.
The key to the proof of Theorem 3 is the case where only one pattern is

present. This problem is already NP-complete.

Proposition 4 The model-checking problem for a single pattern from Ptn(∼, |, ‖)
is NP-complete.

Proof. The upper bound is obtained by an algorithm guessing a witness for the
pattern in the data tree and checking in PTime whether the witness is correct.
The lower bound is more difficult. It is obtained by a reduction of 3SAT.

Given a propositional formula ϕ in 3-CNF, we build a data tree tϕ and a
pattern Pϕ of polynomial size, such that tϕ � Pϕ iff ϕ is satisfiable. Because we
consider the model-checking problem, the data tree is fixed in the input. Thus,
it must contain all possible valuations of the variables and at least all possible
true valuations of each variable. Moreover, one positive data tree pattern should
identify a true valuation of the formula and check its consistency. Hence, it does
not seem possible to use previously published encodings of 3SAT into trees.

The pattern selects one valuation per variable and per clause. Its structure
ensures that only one valuation per variable and per literal is selected. The
constraints on data ensure the consistency of the selection. The data tree and
the tree of the pattern depend only on the number of variables and clauses of the
formula. Only the constraints on data of the pattern are specific to the formula.
They encode the link between variables and clauses.

Let Σ = {r, r, X, Y, Z, #, $} be the finite alphabet. Assume that ϕ has k

variables and n clauses. The data tree tϕ is composed of k copies of the tree tv
and n copies of the tree tc as depicted in Figure 2. Even if we consider unordered
trees, each copy of tv corresponds to a variable of the formula and each copy of
tc to a clause. The tree tϕ involves exactly three classes, denoted as 0,⊤,⊥.

Each subtree tv, see Figure 2(b), contains the two possible values for a vari-
able. The left (right) branch of the tree represents true (resp. false).

6

`

#

0

´

tv · · · tv tc · · · tc

(a) The data tree tϕ

`

$

0

´

`

r

⊤

´

`

r

⊥

´

`

r

⊥

´

`

r

⊤

´

(b) The subtree tv

`

$

0

´

`

$

0

´

`

X

⊤

´ `

Y

⊤

´ `

Y

⊥

´ `

Z

⊤

´ `

Z

⊥

´

`

$

0

´

`

X

⊥

´ `

Y

⊤

´ `

Z

⊤

´ `

Z

⊥

´

`

$

0

´

`

X

⊥

´ `

Y

⊥

´ `

Z

⊤

´

(1) (2) (3)
(c) The subtree tc

Fig. 2. The data tree tϕ

A clause is viewed here as the disjunction of three literals, say X , Y , and
Z. Each subtree tc, see Figure 2(c), is formed by three subtrees. Each of them
represents one of the three disjoint possibilities for a clause to be true: (1) X is
true, or (2) X is false and Y is true, or (3) X and Y are false and Z is true.

We now turn to the definition of the tree pattern Pϕ = (tpϕ, C∼, C≁), de-
picted in Figure 3. Similarly to tϕ, the tree tpϕ is formed by k copies of tpv (each
of them implicitly corresponding to a variable) and n copies of tpc (each of them
implicitly corresponding to a clause).

#

tpv · · · tpv tpc · · · tpc

(a) The tree tpϕ

$

r

r

$

$

X Y Z

(b) Subtrees tpv and tpc

Fig. 3. The tree tpϕ

The form of the data erasures of tϕ and tpϕ ensures that any witness of Pϕ in
tϕ selects exactly one value per variable and one (satisfying) valuation for each
clause. Note that this is ensured by the definition of witness, since the witness
mapping is injective.

It remains to define the data constraints C∼ and C≁ in order to guarantee
that each clause is satisfied. Assume that the first literal of clause c is a positive
variable x (resp. the negation of x). Then we add in C∼ the r-position (resp. the
r-position) of the subtree tpv corresponding to the variable x together with the
X-position of the subtree tpc corresponding to the clause c. The same can be

7

done with the literals Y and Z. Figure 4 gives the example of the pattern for
the formula ϕ with only the clause a ∨ ¬b ∨ c.

#

$

r

r

$

r

r

$

r

r

$

$

X Y Z

∼

∼

∼

Fig. 4. Pattern for ϕ = a ∨ ¬b ∨ c

We now prove that tϕ � Pϕ iff ϕ is satisfiable. Assume that the formula ϕ

is satisfiable. From any satisfying assignment of ϕ we derive a mapping of Pϕ

into tϕ: the subtree pv corresponding to the variable v is mapped on the left
branch of the corresponding tv if the value of v is true, and on the right branch
otherwise. Since each clause is satisfied, one of the three cases represented by
the subtree tc happens, and we can map the tpc corresponding to the clause on
the branch of the corresponding tc. The converse is similar. �

In the proofs of Proposition 4 and Theorem 3, the patterns use only the child
predicate. We can do the same with similar patterns using only the descendant
predicate. As a consequence, we have:

Theorem 5 The model-checking problem for both fragments BC(∼, ‖), BC(∼, |)
is DP-complete.

Corollary 6 The model-checking problem for BC+(∼, ‖), BC+(∼, |) and for
BC+(∼, |, ‖) is NP-complete.

Similarly, we can see that the model-checking problem of a (conjunction of)
negated pattern(s) is co-NP-complete. Notice that in the proof of Theorem 3,
the pattern formula of the lower bound is a conjunction of one pattern and
the negation of one pattern. Thus, the model-checking problem is already DP-
complete for a conjunction of one pattern and one negated pattern.

The model checking problem for conjunctive queries is also exponential (NP)
in relational databases. However, the algorithms work very well in practice, when
models or queries are simple. In particular, when the query is acyclic, the problem
becomes polynomial. The worst cases that lead to exponential behaviors do not
appear often. It would be interesting to know how the algorithms following from
our proofs behave on practical cases, and whether we can find some restriction
on the patterns that would lead to efficient evaluation in practice.

4 Satisfiability

In this section, we study the satifiability problem in the presence of DTDs.
Checking satisfiability of a query is useful for optimization of query evaluation

8

or minimization techniques. In terms of schema design, satisfiability corresponds
to checking the consistency of the specification.

We show that the satisfiability problem is undecidable in general. However the
reduction needs the combination of negation, child and descendant operations.
Indeed, removing any one of these features yields decidability, and we give the
corresponding precise complexities.

4.1 Undecidability

Theorem 7 The satisfiability problem for BC(∼, |, ‖) in the presence of DTD

is undecidable.

Proof sketch. We prove the undecidability by a reduction from the acceptance
problem of two-counter machines (or Minsky machines). Our reduction builds a
DTD and a pattern formula of size polynomial in the size of the machine whose
models are exactly the encodings of the accepting runs.

The encoding of a run can be split in three parts:

1. The general structure of the tree, which depends only on the data erasure,
and is controlled by the DTD.

2. The internal consistency of a configuration.
3. The evolution of counter values between two successive configurations.

The global structure contains a branch that is labelled by the sequence of
transitions. Ensuring that a tree is of this shape is done by the DTD. It recognizes
the data erasure of sequences of configurations. In particular it checks that a
counter is zero when this is required by the transition. It also ensures that the
sequence of transitions respects the machine’s rules (succession of control states,
initial and final configurations).

The data values allow us to control the evolution of the counters between
two consecutive configurations. In order to do so, we need to guarantee a certain
degree of structure and continuity of the values through a run. The data structure
and the evolution of counters are ensured by the pattern formula. �

The proof uses only conjunctions of negated patterns. Thus, the satisfiability
problem is already undecidable for the BC−(∼, |, ‖) fragment in the presence of a
DTD. Alternatively, the DTD can be replaced by a pattern formula. To do so, we
need a few positive patterns to constrain initial and final configurations in the
coding. Thus, the satisfiability problem is undecidable for BC(∼, |, ‖) without
DTDs. It is interesting to notice that the satisfiability problem of BC(∼, |, ‖) is
undecidable on word models. We will discuss this in Section 5.

4.2 Decidable Restrictions

We can obtain decidability by restraining either the expressive power of pattern
formulas or the data trees considered. For the first part, using only one kind of
edge predicate (| or ‖) leads to decidability. For the second part, restricting the
trees to bounded depth leads to decidability. We provide the exact complexities.

9

Restricted Fragments: The proof of undecidability uses both ‖ and | in the
pattern to count unbounded values of the counters. If we restrict expressivity of
patterns to use either ‖ or |, we can’t do this anymore and the problem becomes
decidable. The key to both lower bounds is that patterns can still count up to a
polynomial value and thus compare positions of a tree of polynomial depth. We
use this idea to encode exponential size configurations of a Turing machine into
the leaves of polynomial depth subtrees.

Theorem 8 The satisfiability problem of BC(∼, |) in the presence of a DTD is

2ExpTime-complete.

Proof sketch. The upper bound is obtained by a small model property. We can
prove that a pattern formula ϕ of BC(∼, |) is satisfiable in the presence of a given
DTD iff it has a model with a number of classes that is doubly exponential in
the size of the formula. We can recognize the data erasure of such small models
with an automaton of size doubly exponential in the size of the formula. Because
emptiness of such automata is PTime, we have the 2ExpTime upper bound.

The lower bound is obtained by a coding of accepting runs of AExpSpace

Turing machines. We can build a DTD and a pattern formula from BC(∼, |)
such that a data tree is a model on the pattern formula and respects the DTD
iff it is the encoding of an accepting run of the machine. �

Theorem 9 The satisfiability problem of BC(∼, ‖) in the presence of a DTD is

NExpTime-complete.

Bounded Depth restrictions: In the context of XML documents, looking at
the satisfiability problem restricted to data trees of bounded depth is a crucial
restriction. This restriction leads to decidability for BC(∼, <, +1).

Problem 3. Consider a pattern formula ϕ, an integer d and a DTD L. The
problem of bounded depth satisfiability in the presence of a DTD asks
whether ϕ is satisfiable by a data tree of depth smaller than d whose data erasure
belongs to L.

Theorem 10 If d is fixed, the bounded depth satisfiability problem in the pres-

ence of a DTD for BC(∼, ‖, |) is Σ2-complete.

Theorem 11 If d is part of the input, the bounded depth satisfiability problem

in the presence of a DTD for BC(∼, ‖, |) is NExpTime-complete.

Other remarks: All the lower bound results of this section only use conjunc-
tions of negated patterns. Thus these results hold for the BC− fragments.

Proposition 12 The satisfiability problem of a single pattern is PTime.

Proposition 13 The satisfiability problem for BC+(∼, |, ‖) is NP-complete in
the presence of DTD.

10

5 Conclusion

The table below summarizes our results. bnd (resp. bndf) Sat stands for Bounded
depth Satisfiability when the bound is part of the input (resp. fixed). The gray
parts of the table gives complexity results for data words models. Data words
are the linear model corresponding to data trees. This model is studied in the
verification area [11, 13]. Data patterns can also be considered for data words.
The proofs are more complex and will be available in a longer version.

Fragments Model-Checking Satisfiability bnd Sat bndf Sat

BC(∼, ‖, |) DP-complete Undecidable NExpTime-complete Σ2-complete

BC(∼, |) DP-complete 2ExpTime-complete NExpTime-complete Σ2-complete
Data Word PTime PSpace-complete

BC(∼, ‖) DP-complete NExpTime-complete NExpTime-complete Σ2-complete
Data Word DP-complete Σ2-complete

BC−(∼, ‖, |) coNP-complete Undecidable NExpTime-complete Σ2-complete
Data Word coNP-complete undecidable

BC+(∼, ‖, |) NP-complete NP-complete NP-complete NP-complete
Data Word NP-complete NP-complete

Discussion:

– In our framework we use the unordered version of trees. If we consider the
next-sibling predicate, the situation is different. For the model checking prob-
lem all results hold with similar proofs. However, the complexity of the sat-
isfiability problem can increase when negation is allowed. In particular the
satisfiability problem for bounded depth tree becomes undecidable since we
can encode data words.

– Recall that our pattern formalism does not preserve the least common an-
cestor. All results hold if we add the least common ancestor.

– An important issue of semi-structured databases is the containment prob-
lem. Given a DTD and two pattern formulas we want to know whether every
tree satisfying the DTD and the first formula also satisfies the second one.
When the set of formulas we consider is closed under negation, we can de-
cide whether a formula ϕ1 is more constraining than ϕ2 by checking the
satisfiability of ϕ2 ∧ ¬ϕ1. In Boolean combinations, we have closure under
negation, hence the inclusion problem reduces to the satisfiability problem.
For the positive fragment, the precise complexity seems harder to state and
the question is left open.

– In terms of expressiveness, our pattern formalism is incomparable to XPath.
In terms of tractability, evaluation of XPath queries is PTime whereas
model-checking of one data tree pattern is already NP-hard. A question is to
find good notions of constraints in order to isolate interesting fragments with
lower complexity. Considering the complexity of the satisfiability problem,
XPath and our pattern formalism behave similarly.

– In this paper, we only consider patterns as filters in order to define properties
on the data trees. Defining a query language would be a natural extension
of this work. To do this, some of the variables of the patterns can be chosen
as output variables.

11

References

1. S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu, N. Koudas, and D. Srivastava.
Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In ICDE,
pages 141–153. IEEE, 2002.

2. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. XML with data values:
typechecking revisited. J. Comput. Syst. Sci., 66(4):688–727, 2003.

3. S. Amer-Yahia, S. Cho, L. V. S. Lakshmanan, and D. Srivastava. Minimization of
tree pattern queries. SIGMOD Rec., 30(2):497–508, 2001.

4. M. Arenas and L. Libkin. XML data exchange: consistency and query answering.
In PODS, pages 13–24, 2005.

5. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
In PODS, pages 25–36, 2005.

6. M. Benedikt and C. Koch. XPath Leashed. To appear in ACM Computing Surveys.
7. V. Benzaken, G. Castagna, and C. Miachon. CQL: a pattern-based query language

for XML. In BDA, pages 469–490, 2004.
8. H. Björklund, W. Martens, and T. Schwentick. Conjunctive Query Containment

over Trees. In DBPL, LNCS 4797, pages 66–80. Springer, 2007.
9. H. Björklund, W. Martens, and T. Schwentick. Optimizing Conjunctive Queries

over Trees using Schema Information. To appear in MFCS, 2008.
10. M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. Two-

variable logic on data trees and XML reasoning. In PODS, pages 10–19, 2006.
11. M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin, and C. David. Two-

Variable Logic on Words with Data. In LICS, pages 7–16. IEEE, 2006.
12. N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins: optimal XML pattern

matching. In SIGMOD Conference, pages 310–321. ACM, 2002.
13. S. Demri and R. Lazic. LTL with the Freeze Quantifier and Register Automata.

In LICS, pages 17–26. IEEE, 2006.
14. A. Deutsch and V. Tannen. Containment and integrity constraints for xpath. In

KRDB, volume 45 of CEUR Workshop Proceedings. CEUR-WS.org, 2001.
15. W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs. J.

ACM, 49(3):368–406, 2002.
16. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath

queries. ACM Trans. Database Syst., 30(2):444–491, 2005.
17. G. Gottlob, C. Koch, and K. U. Schulz. Conjunctive queries over trees. J. ACM,

53(2):238–272, 2006.
18. M. Jurdzinski and R. Lazic. Alternation-free modal mu-calculus for data trees. In

LICS, pages 131–140. IEEE, 2007.
19. L. V. S. Lakshmanan, G. Ramesh, H. Wang, and Z. J. Zhao. On Testing Satisfia-

bility of Tree Pattern Queries. In VLDB, pages 120–131, 2004.
20. A. Neumann and H. Seidl. Locating matches of tree patterns in forests. In

FSTTCS, volume 1530 of LNCS, pages 134–145. Springer, 1998.
21. C. H. Papadimitriou and M. Yannakakis. The Complexity of Facets (and Some

Facets of Complexity). J. Comput. Syst. Sci., 28(2):244–259, 1984.
22. Y. Wu, J. M. Patel, and H. V. Jagadish. Structural Join Order Selection for XML

Query Optimization. In ICDE, pages 443–454. IEEE, 2003.

12

