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Abstract—Service level agreements (SLAs), otontracts, have a) Contract based QoS managementlhen dealing
an important role in web services. These contracts define the with the management of Qo8pntracts—in the form of Ser-
obligations and rights between the provider of a web service and vice Level AgreementSLA [8]—specify the commitments of

gzr\filéeenzb\glst;]_ respect to the function and the Quality of the each subcontractor with regard to the orchestration. taisd

For composite services like orchestrations, such contracts are like web service Level Agreement (WSLA)1§] proposed by
deduced by a process calle®QoS contract composition, based on IBM allow for specifying (and monitoring) QoS parameters
contracts established between the orchestration and the called of web services through contracts. Though there is no such

web services. These contracts are typically stated in the form of standardization for QoS parameters of web services, most
hard guarantees (e.g., response time always less than 5 n-1S'ec)SLAs commonly tend to have QoS parameters which are
Using hard bounds is not realistic, however, and more statistical y p

approaches are needed. mild variations of the following: response time (latency);
In this paper we propose usingsoft probabilistic contracts availability; maximum allowed query rate (throughput);dan

instead, which consist of a probability distribution for the security. In this paper, we focus on response time.

considered QoS parameter—in this paper, we focus on timing. - £rom QoS contracts with sub-contractors, the overall QoS

We show how to compose such contracts, to yield a global tract bet hestrati dit ¢ Bl-est
probabilistic contract for the orchestration. Our approach is CONLact DELWEEN OrCNESUAton and iS CUSIOMETS Can &8-eS

implemented by the TOrQUE tool. Experiments onTOrQuE show  lished. This process is callezbntract compositionit will be
that overly pessimistic contracts can be avoided and significant our first topic in this paper. Then, since contracts cannét on

room for safe overbooking exists. , rely on trusting the sub-contractormonitoring techniques
An essential component of SLA management is then the 1 he developed for the orchestrator to be able to detect

continuous monitoring of the performance of called web services, ible violati f tract. b b tractor. Thils
to check for violations of the agreed SLA. We propose a statistical possible violatlon or a contract, by a sub-contracior.

technique for run-time monitoring of soft contracts. be our second topic.
b) Hard versus Soft ContractsTo the best of our

knowledge, with the noticeable exception @fl], [16], [17],

Web services and their orchestrations are now considetglti composition studies consider performance related QoS
an infrastructure of choice for managing business prosesgmrameters of contracts in the form bfrd bounds.For
and workflow activities over the Web infrastructur83]. instance, response times and query throughput are required
BPEL [3] has become the industrial standard for specifying be less than a certain fixed value and validity of answers
orchestrations. Numerous studies have been devoted tmgelato queries must be guaranteed at all times. When composing
BPEL to mathematical formalisms for workflows, such asontracts, hard composition rules are used such as addition
WorkFlow nets (WFnets) J1] a special subclass of Petrimaximum (for response times), or conjunction (for valictify
nets, or the pi-calculus2f]. This has allowed developing answers to queries).
analysis techniques and tools for BPERS], [4] including Whereas this results in elegant and simple composition
functional aspects of contract34], as well as techniques for rules, we argue that this general approach by using hard
workflow mining from logs B2]. Besides BPEL, the ®C bounds does not fit the reality well. Figurk displays a
formalism has been proposed to specify orchestrations, ligtogram of measured response times for a “StockQuote”
W. Cook and J. Misra at Austin2B]. ORc is a simple and web service which returns stock prices of a queried en-
clean academic language for orchestrations with a rigorotity [35]. These measurements show evidence that the tail of
mathematical semantics. For this reason, our study in thige above distribution cannot be neglected. For example, in
paper relies on @c. Its conclusions and approaches, howevethis histogram, percentiles of 90%, 95%, and 98%, correspon
are also applicable to BPEL. to response times of 6,494 ms, 13,794 ms, and 23,506 ms

: i ) respectively. Setting hard bounds in terms of response time
This work was partially funded by the ANR national researchgpam

DOTS (ANR-06-SETI-003), DocFlow (ANR-06-MDCA-005) andetproject WOUId amount to selecting, e.g., the 98% percentile of 3,50
CREATE ActivDoc. ms, leading to an over pessimistic promise, for this service

I. INTRODUCTION
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Alternatively, if the service is called by an orchestratie
orchestrator might consider reconfiguring the orchesinatd
call an alternative service. The monitoring of probakist
contracts requires using methods from statistics. We m®po
using statistical testing to check if the observed perforcea
deviates from the performance promised in the contract.

e) Organization of the paper:In section II-A we
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150¢ present an example of an orchestration, which is then used
100 to illustrate the primary challenges involved in QoS stadé
web services and their compositions. The example is als®h use
50¢ in our experiments. In sectioll, we present our general ap-
0 ‘ . . . proach for contract composition and describe T@FQuEtool
0 1 15 2 2.5 3 supporting it. The simulations on contract compositionjalvh

Delays 4 . . . . .
Y x 10 show a potential for overbooking are given in sectidh

In sectionV we introduce our technique for monitoring soft
Figure 1. Measurement records for response times, for Webicserveontracts. The experiments done on monitoring are reported
StockQuote. in VI. SectionVIl gives a survey of the existing literature on

QoS-enabled WS composition. Finally, sectigil presents

o u Y conclusions and outlooks.
In fact, users would find it very natural to “soften” con-

tracts: a contract should promise, e.g., a response times |
than T' milliseconds for 95% of the cases, validity in 99%
of the cases, accept a throughput not larger thamueries
per second for 98% of a time period 8f hours, etc. This In this section we will explain the main challenges faced in
sounds reasonable but is not used in practice, partly beca@9S studies of web services and their compositions. Frosn thi
soft contracts based on a single percentile (e.g., 95% or 999 will draw conclusions regarding how QoS studies should be
of the cases) as abovack composition rulesTo cope with performed, for web services orchestrations. This is dorte wi
this difficulty, we propose soft contracts based on proligbil the help of a sample orchestrati@arOnLinewhich we will
distributions. As we shall see, such contracts compose welpresent first. TheCarOnLine example, which was developed
c) Soft Probabilistic Contract CompositionHaving N the SWANproject 6], is also used in our experimentations
agreed on SLA or contracts with the different sub-contragto With the TOrQUE tool.
the orchestrator can then attach a probability distrilbutio .
the considered QoS parameters. If a combined executafteExample of an orchestration

Il. QOSISSUES IN WEB SERVICES AND THEIR
COMPOSITIONS

functional-and-QoS model of the orchestration is avadail CarOnLine is a composite service for buying cars online,
is then possible to compute the probability distributiortid  together with credit and insurance. A simplified graphideiw
same QoS parameter, for the orchestration. of it is shown in Figure2.

Such a combined functional-and-QoS model of the orches- On receiving a car model as an input query, taeonLine
tration requires enhancing orchestration specificatiorith wservice first sends parallel requests to two car deateiadeA,
QoS attributes seen as random variables. This, howevergigageB), getting quotations for the car. The calls to each
by itself not enough in general. More precise informatiogarage are guarded by a timer, which stops waiting for a
regarding causal links relating events is needed. For elmpesponse once the timeout occurs. If a timeout occurs, the
latencies are added among events that are causally refated response of the call is eault value. The best offer is chosen
among concurrent events. Thus, we need to explicit caysalidy the (local) functionMux which returns the minimum non-
concurrency, and sequencing in the orchestration in ag®ediaulty value. If both timeouts occursiux returns arault. Credit
way, which amounts to representing orchestrationpa$ial and insurances are found in parallel for the best offer. Two
ordersof events. Some mathematical models of orchestratiobanks Alicredit, AlicreditPlus) are queried for credit rates and the
provide this, e.g., the partial order semantics of WorkFlowne offering a lower rate is chosen. For insurance, if the car
nets B1]. Our group has developed a to®OrQuE (Tool belongs to the deluxe category, any insurance offer by servi
for OrchestrationQuality of Serviceevaluation) that directly Goldinsure is accepted. If not, two servicemdurePlus, InsureAll)
produces executions as partial orders, from ®&c@rogram. are called in parallel and the one offering the lower insoean
The results reported here were obtained by this tool. rate is chosen. In the end, the (car-prig (redit-rate ¢),

d) Soft Probabilistic Contract Monitoring/An essen- insurance-ratei)) tuple is returned to the customer.
tial component of SLA management is the run-time moni- The ORC program forcarOnLine is given in Tablel. We
toring of contracts. SLA monitoring must be continuous tohose to use c because it is an elegant language equipped
timely detect possible SLA violations. In case of a violatio with formal semantics 9], [28]. ORcC defines three basic
the called service may have to incur some agreed penatiperators.



CarOnLine request (car) CarPrice calls GarageA and GarageB in parallel for quota-
tions. Calls to these garages are guarded by a timerisite

v v which returns a fault valug’ time units after the calls are
made. Thdet site simply returns the values of its arguments—
: : sites can only execute when all their parameters are defined
and thus can be used to synchronize parallel threads. The
value returned bycarprice (here the variablep) is passed
as argument tasetCredit and Getinsur which parallelly find
J credit and insurance rates for the price. The serwesA
v iN NetGA > GarageA(car) iS @ dummy service that captures the
(AIICreditXAIICreditPlus)(Goldlnsure) (InsureAII )(InsurePlus) contribution of the network to the response timeaafageA
as perceived by the orchestration. No such call occurs in
Getlnsur. This is because the orchestration does not enter into
contracts with the insurance sites, which are assumed to be
freely available. The absence of a contract requires estima
the insurance sites’ and the associated network’s perfacea
This is discussed in the next section.

CarOnLine . .
response B. QoS Issues for web service Orchestrations

With the help ofcaronLine, we now discuss how the QoS
Figure 2. A simplified view of the CarOnLine orchestration.eTtalls to  1SSUes for service orchestrations differ from traditio@dS
GarageA and GarageB are guarded by a timer that returraut™ message studies.
yvhene\_/erthe timeout OC(ZUI’S—thIS‘IS. n?t shown on theflgu®GM|scu35|on 1) Flow may be data dependenin the Getinsure compo-
in sectionll-B regarding “monotonicity”, the testar = deluxe is changed to - . .
p > limit. nent of caronLine, there are two exclusive ways for getting
insurance quotes for a car: either by calli@gdinsure or by

calling InsureAll andinsurePlus in parallel. The choice of which

Car?ﬁﬂff@ %@tgizzaic§(car) >p> let(p, c, ) branch is taken depends on the value of the parameset.
i Getlnsw(icm In most orchestrations, the execution flow usually depemds o

the values of its different data parameters, which are wvkno

CarPrice(car) A {Mux(pl,p2) a priori. Thus by changing its execution flow, data values in

where . N .
pl :€ (NetGA > GarageA(car)) | Timer(T) an orchestration can directly affect its QoS.
p2:€ (NetGB > GarageB(car)) | Timer(T) 2) Flow may be time dependenin carPrice component
b >p> { if(p # Fault)) > let(p) } of caronLine, the calls toGarageA and GarageB are guarded
GetCredit(p) A Min(cl, c2) by a timer. Depending on whether or not the garages respond
where before the timeout occurs, the orchestration may decidaki® t

cl :€ NetC > AllCredit(p)

2 1€ NetCP > AllCredit Plus(p) different execution paths, directly affecting its perfamce.

Thus the presence of timers in orchestrations can alsoitdter
GetInsur(p,car) A { if(car = deluze) > GoldInsure(p)} | control flow.
{ ifnot(car = deluxe) > {min(ip, ia) 3) Orchestrations may not be “monotonic’An implicit
where ip :€ InsurePlus(p) . . .
ia :€ InsureAll(p) assumption in contract based QoS management is: “the better
I3 the component services perform, the better the orchestigti
performance will be.” Surprisingly, this property that we
called “monotonicity” P] can easily be violated, meaning
that the performance of the orchestration may improve when
the performance of a component service degrades. This is
For ORC expressionsf, g, “f | ¢" executesf and g in highly undesirable since it can make the process of contract
parallel. “f >x> ¢" evaluatesf first and for every value composition inconsistent. A contract based approach needs
returned byf, a newinstance ofg is launched with variable monotonicity.
x assigned to this return value; in particulaf, > ¢” (which Consider thecaronLine orchestration of Figure2, but
is a special case of the former where returned values are slightly modified. The condition car = deluxe” for deciding
assigned to any variable) causmgeryvalue returned by to calls to insurance services is changed as follows: if the bes
create anewinstance ofy. “ f where z :€ ¢” executesf and price returned by the garagespsthenGoldinsure is called if
g in parallel. Wheng returns itsfirst value, z is assigned to p > limit wherelimit is a certain constant value. pf < limit,
this value and the computation gifis terminated. All site calls InsurePlus and InsureAll are called in parallel. Assume that
in f havingx as a parameter are blocked untilis defined the credit servicesliCredit and AliCreditPlus respond extremely
(i.e., until ¢ returns its first value). fast (almost O time units) and so the response time of the

Table |
CARONLINE IN ORC.



orchestration only depends on the response time of the garage The resources and extra traffic for each called web service
and insurance services. Let response times of the garage arenot known to the orchestration—other users of these

and insurance serviceSarageA, GarageB, Goldinsure, InsureAll

and InsurePlus be d4,0p,0¢c,d;, and d;, respectively. Also
assume that the price quote®f GarageA are always greater
than limit and that the price quote afarageB is always less

than limit. Now, the overall orchestration response time is

do = max(da,dp) + max(dr,,dr,), assuming that both 4

sites belong to the “open world” and the orchestration
just ignores their existence.

o The resources and extra traffic for the transport network

infrastructure arenot known to the orchestration—other
traffic belongs to the “open world” and the orchestration
just ignores it.

andip are less than the timeout valae Due to the issues discussed above, traditional QoS teckmiqu

Suppose that the performancegzirageB now deteriorates, are not very appropriate when applied to the study of QoS
and it does not respond before timeout tifie GarageA’s in web services orchestrations. Contracts have emerged as
price quote is now the best quote. Since we assumed ttigé adequate paradigm for QoS of orchestrations and, more
the quotes ofGarageA are always greater thaimit, Goldinsure  generally, of composite web services in open world contexts
is called and the orchestration’s latencydis = T + d¢.
In the case whens < max(dr,,dr,), it is possible that _ _ )
5o < 8o. In other words, the deterioration of the performance From the above analysis, the following conclusions emerge
of GarageB, could lead to an improvement in the performancigarding how QoS studies should be performed for web
of the orchestration. services orchestrations:

Such a pathological situation does not occur in our original + To ensure consistency of QoS studies, we must only
example since the response timeaafinsur depends only on considermonotonicorchestrations, that is, orchestrations
the external parameter:. Oncecar is fixed, response times ~ such that, if QoS of some called service improves,
behave in a monotonic way. Thus, our examplenisnotonic then so does the orchestration itself. Conditions ensuring

Of course, it may not be considered fair to compare the dif- monotonicity are found ing]. Our CarOnLine example is
ferent situations on the only basis of time performancesesin monotonic.
they do not return the same data. A call always immediatelys Since, for general orchestrations, control flow may
returning ‘nothing found will have best timing performance, be data- and time-dependent, analytical techniques for
but is clearly not satisfactory from the user’s viewpoint. performance studies—such as typically used for net-

Further results regarding monotonicity can be foundin [ works [15]—do not apply. One may consider restricting
To conclude on this aspect, we believe that monotonicity ourselves to finite data types and discrete domains for
should be considered from a broader perspective, takimg int ~ real-time, but then the computational cost of evaluating
account both timing and other QoS parameters, as well as data the QoS of the orchestration in all configurations may

4) Orchestrations face the Open World paradigrfihe become prohibitive. This is why we chose to rely on

actors affecting the QoS of a web service orchestration are; ~ Simulation techniques. Of course, such simulations must
. take into account both data and QoS aspects.
« the orchestration server;

. . « Because of the “open world” paradigm, QoS evaluation
« the web services caIIe_d by the orchestration; cannot rely on a joint model of resources and traffic
« the transport network infrastructure.

for the web services called by the orchestrator. The
All these actors contribute to the overall QoS characiesst contribution of each of the web service called, to the
of the orchestration. Therefore, to be able to offer QoS QoS of the orchestration must then be abstracted in some
guarantees, the orchestration needs QoS data from the other way. In our open world, this relies on a notion wéist
two types of actors. between the partners (the orchestration on one hand,
In the context of networks, QoS studies assume knowledge and the called services on the other), formalized as an
of end-to-end resources and traffic, and use these to predict S| A. An SLA here is a contract about QoS, relating the
or estimate end-to-end Qo34. This can, for example, be orchestration to the services it calls. In this approac, th
used for evaluating the end-to-end performance of stre@min  orchestration has no means to be sure that such an SLA is
services, supported by a dedicated cross-domain VPN. The fajthful. Therefore, run-timenonitoringof such contracts
reason for being able to do this is that, once defined and for possible violation is needed.
deployed, the considered VPN has knowledge of its own As advocated in the introduction, we decided to work
resources and traffic, which is enough to evaluate the QoS wijth soft probabilistic contracts. Then, for the above
offered to the considered streaming service. mentioned reasons, we chose to resoriMonte-Carlo
For our case of web services orchestrations, however, the simulationgo compose contracts and tune our monitoring
situation is different: algorithms. As this is a first study of this subject, we
« The orchestration has knowledge about the resources of left aside the issue of implementirgdficientMonte-Carlo
its own server architecture. It knows the traffic it can  simulations, e.g., by using importance sampli@g][
support, and it can monitor and measure its own ongoitig the following sections, we shall stuadpntract composition,
traffic at a given time. i.e., how the orchestration’s contract relates to the eotsr

C. Conclusions drawn from this discussion



established with the different called services, seen as sub involving independent successive trials for the random

contractors. Then, we shall studyontract monitoring,i.e., latencies, thus deriving empirical estimates for the globa
the monitoring of sub-contractors for possible QoS contrac QoS parameters of the orchestration.
violation. « Having these empirical estimates, we can properly select

uantiles defining soft contracts for the end user.
I1l. CONTRACT COMPOSITION AND THETOrQuETOOL q g

A. How to establish Probabilistic Contracts and how to con: The TOrQUE tool
pose them The TOrQuE (Tool for Orchestration simulation and

In general, the orchestration will establish contracts &u2lity of service Evaluation) tool implements the above

SLAs with the web services it is calling. Fot a called web Methodology. Its overall architecture is shown in Figdre
service, we calls' a sub-contractorin the sequel, the contract 1 N€ steps involved in the QoS evaluation and T@rQUE

for the considered QoS parameter has the formafraulative

distribution function Trace StTlme
Reconstructor amper

Fs(x) = P(0s < a), 1) ;
where 05 is the random QoS parameter (here the response batczﬁmz? nnﬁqgﬁgrej [ grgrr]]gparpo
time), andz ranges over the domain of this QoS parameter processing
(hereR ). Y

Regarding transport, different approaches might be censid SLA Design
ered. In a first “agnostic” approach, the orchestration nat

contract regarding transport. The reason is that the ofches
tration does not want to know the network domains it may
traverse. If QoS information regarding the transport laiger
still wanted, this can be coarsely estimated by sendingg®in modules that perform them are commented next.
to the considered site. In another approach, the orchestrat a) The orchestration modelTo ease the development
may want to contract with the network service provider (e.gof this tool, we decided to replace the (complex) BPEL
as part of Virtual Private Network guarantees of service}yv standard for specifying web services orchestrations by a
much in the way contracts are established with called wéight weight formalism called @c [23]. The authors of this
services. formalism have developed a tool3] which can animate
Finally, some web services, such as e.g., Google, magchestrations specified inrR@.
address huge sets of users and would therefore not enter in b)) Getting QoS enhanced partial order models of ex-
a negotiation process with any orchestration. The disiobu ecutions: This is performed by the “Trace Reconstructor”
of such sites can be estimated on the basis of measurememisdule. Jointly with the authors of Kz, we have developed
To summarize, in designing contracts with its own cusn alternative mathematical semantics for®in terms of
tomers, the orchestration: 1) uses the contracts it hassdgrevent structuref28]. Event structuresd] provide the adequate
upon with its subcontracting web services, 2) may estimgbaradigm for deriving partial order models 0RO executions,
QoS parameters for other web services it is using, and, i#)which causality and concurrency relationships betwden t
may estimate QoS parameters for transport. different events of the orchestration is made explicittiBby
Based on this approach, we have developed the followingdered executions can be tagged with QoS parameters which
Monte-Carlo procedure for QoS contract composition. Thisan then be composed. For example, Figdrehows how
procedure is applied at design time: the response time of a fork-join pattern is computed from
« Contracts with the called sites have the form of probabithat of its individual events. These max-plus rules are used
ity distributions for the considered QoS parameters. Froid combine delays in the partial order. The QoS parameter
these, we draw successive outcomes for the tuples:
t1 = dfork

Figure 3. Overall architecture of tHEOrQuE tool.

{response to queries, associated QoS paranjeters

If no contract is available for a given site, we replace the ,, _, 5., ts = 11 + Ogo

missing probability distribution by empirical estimateds o
it, based on QoS measurements.

« Using a partial order execution model for the orchestra- te = maz(tz,t3) + 8join
tion, we run Monte-Carlo simulations of the orchestration

Figure 4. Deriving response time for a fork-join pattern. Therk” and

“Join” are the branching and synchronization evests,and S2 are two web
services called in paralleb, denotes the time taken for evemtto execute.

lin practice, F's will be abstracted by either a finite set glantiles
(Fs(z1),...,Fs(xk), for afixed familyz1, ...,z x of values for the QoS
parameters) or a finite set glercentiles(e.g., the set of values, ..., yg
such thatFs(y1) = 10%, ..., Fs(y9) = 90%). Such contracts are easily
expressible in terms of the WSLA standadd]| tagging of the partial ordered executions and their contiposi



is implemented inTOrQuEs trace reconstructomodule (see appropriate QoS parameter composition, for each occurring
Figure 3). Arbitrary patterns encountered inRQ specifica- pattern. Each site call to a servidé is translated into three
tions can be handled by this module. events, thecall (M), the call return (?M) and thepublish
action (!), which adds to the length of the structure. For
more information regarding these event structures, thderea

is referred to 28§].

c) Drawing at random, samples of QoS parameters for
the called sites:This is performed by the “Time Stamper”
module. To perform Monte-Carlo simulations using the Trace
Reconstructor, we need to feed it with actual values for the
QoS parameters. For the called sites, these values should be
representative of the contracts established between timeim a
the orchestration. This is achieved by drawing such parammet
at random from the probability distribution specified in leac
contract.

If no contract is available with a given site, the needed
probability distribution may alternatively be estimatedn
measurements. For example, calling the considered site a
certain number of times and recording the response times
provides an empirical distribution that can be re-sampled
by simple bootstrapping technique¥4]. The Time Stamper
module supports both techniques: sampling from contract’s
probability distribution or bootstrapping measured value

d) Exploiting results from Monte-Carlo simulations to
set contracts for the orchestrationthis is performed by the
“SLA Design Unit”, which is mainly a GUI module that
displays simulation logs and histograms or empirical digtr
tions of the QoS parameters and allows selecting apprepriat
guantiles.

C. Discussion on criticality

At a first sight, not all sites in an orchestration have an
equal impact on the QoS of the orchestration. Some sites may
be critical, in that a slight degradation/improvement in their
performance will directly result in a degradation/improent
in the performance of the overall orchestration. Otherssite
may not be critical, a degradation in their performance woul
not affect the performance of the orchestration very much.

To address this in the context of classical timing perfor-
mance studies, e.g., for scheduling purposes, the notion of
critical path was proposed. However, this notion must be
revisited under our probabilistic approach.

For instance, consider the example of Figdrewe have
t¢ = t1 + max(dg,,ds,) + djoin, SO it sSeems that only the

Figure 5. A labelled event structure collecting all possible execution$lowest” among the two sites; and S, matters. This is
of CarOnLine, as generated by our tool. The three dangling arcs fromn wrong intuition, however. Assume that the two sitgs

the shaded places are followed by copies of the boxed net. The aj ; it ;
of the figure is to show the partial order structuf@oming-in the U 5, behave independently from the probabilistic point of

electronic version reveals the detailed labels of the transitions, W§W. Settingd = max(ds,,ds,), Fi(r) = P(ds, < x), and
generated from the detailedr@ specification. F(z) = P(6 < z), we haveF(z) = Fi(x) x Fy(x). Next,

suppose that the two siteS; and Sy possess unbounded
Figure 5 shows a diagram of the event structure correesponse times. Thus, for any> 0 we have0 < F;(z) < 1
sponding to thearonLine program written in &c. The event for ¢« = 1,2. In this case, since(z) = Fi(x) x Fy(x),
structure is generated by our tool and it collects all thesjids any change inF; or F» will result in a change inF.
executions ofcarOnLine, taking into account timers and otherThus, both sitesS; and S, are equally critical, even if, say,
interactions between data and control. Each execution Wagz) > F»(z) for every z, meaning that there are good
the form of a partial order and can be analyzed to derivdances thatS; will respond faster. Of course, if; and




I, possess disjoint supports, meaning that there exists some X 10°
separating value:, such thatFs(xz,) = 0 but Fi(z,) = 1, ‘

then we know thats, < ds, will hold with probability 1, so 257
that S; is never on the critical path.

This discussion justifies that all sub-contractors are-indi
vidually monitored for possible contract violation, asythal g 1

have impact on the overall orchestration QoS in general—see « | 1
sectionV regarding monitoring.

IV. EXPERIMENTAL RESULTS FORCONTRACT
COMPOSITION. OPPORTUNITIES FOR OVERBOOKING

0.5F

.

| .
In this section we report the results obtained on the compo- 1000 2000 3000 4000
sition of contracts, from the simulations of tA®©rQuE tool. Deley {me)
The results show possibilities for overbooking and vakdatir

approach of using probabilistic contracts. EngSOGme':ZiItSt:Jr:’% dO];I g%;gf?ﬁ'g”;:ﬁg&ggﬁ:ﬂon on the plot of
In orchestrations, exceptions and their handling are fre-’

quently part of the orchestration specification itself. tdia

tion, collecting measurement data from existing web ses/ic  Fitting distributions on measured dataTo validate the
regarding this type of parameter is difficult (actually, ioro yse of certain families of distributions, we performed thei

experiments, no exceptions were observed). For these tWas fit on the measured data. When applied to the mea-
reasons, we did not include exceptions in our simulatiodystu greq response times of the six different web services, we
observed that T location-scale distributions served asdgoo
A. Approach approximations in most cases. Moreover, Gamma and the Log-
o ) ) ) Logistic distributions 20] were also reasonably good fits for
Probabilistic contracts for the sitesThe sites in the hq response times. Figu shows the results of the fit of

CarOnLine example were not implemented as real Servicgsy | ocation-Scale distribution on the response times of the
over the Internet. In order to assign realistic delay bedtad  ¢opiceUSWeat her .

these sites during the simulations, we associated theaviah While the quality of fit is reasonably good, this point is

to that of actual web services over the Internet. For this, Wyway not central in our study. We only see the use of
measured response times of calls to these actual web SeIViggain families of distributions as an alternative to Istraip

The response time recorded were used in a bootstrap Megéhniques, when measurements are not available. In denera
and also to fit distributions which would be sampled duringyever we prefer using bootstrapping techniques.

simulations. Orchestration Engine Overheadfhe events of an orches-
We considered six different web services for this pulration could be seen as one of these two types : 1) the service

pose BY: St ockQuot e which returns stock prices for aca|| events which are calls to a external sites. 2) the events

queried enterpriseUSWeat her which gives the weather jnternal to the orchestration, implementing the processind

forecast of a queried city for a week from the day of the calpoordination actions of the orchestration. Depending @ th
Congr essMenber which returns the list of the members ofrg|ative cost (in terms of execution time) of these evenés th

the US CongressBushi smwhich returns a random quotefo|iowing scenarios can be considered:
of George W. BushCar i bbean which returns information
related to tourism in the Caribbean, aXd/et hods which

gueries a database of existing web services over the web.
We made 20,000 calls to each of these six web services
and measured their response times. The calls were made in \,, ;or, delay: The delays of the internal events in this
sequence, a new call being made as soon as the previous call

. . . case are non zero, comparable to the delays of site calls.
responded. We could roughly categorize these services |réto h ; ¢ b ded
three categories based on their response times: Ince the per ormance ot our prototype can n_ot € regarde

) ) ] ) ) as representative of that of a real orchestration engine, we
» Fast: The servic€aribbeanwith response times in the considered only the first scenario.

range 60-100 ms or th€ongressMembeservice with

o Zero delay: The delay due to the internal events is zero (or
negligible) when compared to that of the site calls. The
overall delay of the orchestration would depend solely on
the response times of the services it calls in this case.

response times between 300-500 ms. B. Simulation results
« Slow : ServiceStockQuotewhich responded typically Al the measurements and simulations were performed on
between 2 and 8 seconds. a 2 GHz Pentium dual core processor with 2 Gb RAM. We

. Modgrate: _The services.IikelS_WeatherXMethOdsand consider two cases of simulations, depending on the timeout
Bushismwith response times in the 800-2000 ms rang@alue 7" for the calls to the garages (see sitémer(T') in



Gara‘geA —

Tablel ) : 1) No timeout (equally,l’ is infinite) 2) 7" is a ol Y

.. . R . . 9! T GarageB —--x--- i
finite value, which is lesser than the maximum response time | ,, .../~ . Gz
of a garage. osti /| S hsuroA

i / /“ InsurePlus - - -
Case 1: No timeouts o7 f e .

Based on the way delays of site calls are generated, we os
performed two types of simulations: those in which delayg i
generation is done by 1) bootstrapping measured vaIues,‘?) o i
sampling a T location-scale distribution, previously fit to o4}
measured data.

a) Bootstrap based Simulation$n these simulations, .
we associated each service in the CarOnLine example with o2 |« |
delay behaviors of one of the six web services mentioned i
previously. The associations are shown in Tableand the
cumulative distribution functions of the observed resgons
times for each of the called services are shown in Figure rigure 7. Cumulative distribution function for the measureagls of the
During any run of CarOnLine, the response time of a call &x web services.
picked uniformly from the set of 20,000 delay values of its
associated site. Since the response times of these semaces

measured from the client's side, they include the networkighere § is the response time of the orchestration diidis
delay too. So we do not consider the explicit delays modelgge max-plus combination th&'s, according to the orches-
by the Si'[eSNetGA,NetGB,NetC and NetC’P, and giVe tration’s partia' Ordering of call events.

them zero delay each (if the contracts modeled only the gy setting the delay contracts (maximum delay values) of
performance from the server's perspective, without acogn each of the sites involved in CarOnLine to their 99.2% quenti
for the network, we could give delays to each of these sitggjyes, we get the end-to-end orchestration delay boune to b
according pings done to the web services). K = 44,243 ms, which can be guaranteed for 94.53% of the
cases.

0.3

0.1 Lo

4000 6000 8000 10000 12000 14000
delay (msec)

| Site | Service | Results using probabilistic soft contract¥Ve now com-
GarageA USWeather pare the above results with our approach using probabilisti
GarageB Bushism contracts. To this end, we performed 100,000 runs of the
AllCredit XMethods orchestration in the bootstrap mode. The empirical distidin

AllCreditPlus StockQuote of end-to-end delays of the orchestration is shown in Figure

GoldInsure Caribbean The minimum delay observed in this case is 1,511 ms and
InsureAll | CongressMembers the maximum is 369,559 ms. The 94.53% delay quantile of
InsurePlus | CongressMembers this distribution is 23,189 ms, to be compared with the more

pessimistic value 44,243 of ms that we obtained using the
usual approach.

b) T Location-Scale Sampling based Simulatiofs:
Results using hard contract€onsider the following “hard this mode of simulation, T location-scale distributionse ar

contract” policy—which is close to current state of practicampled to generate delay values for site calls. The delay

response time shall not exceedns iny% of the cases.” scale distribution, giving the estimated o andr parameters
More precisely, let contracts of the orchestration with @ the distribution. The pdf for this distribution is:
site be of the form (
vt <>] 2

v

Table 11
RESPONSE TIME ASSOCIATIONS FOR SITES ICARONLINE

> p @ rt5)

P = S (g
wherei = 1, ..., m ranges over the sites involved in the orches-
tration, §; is the response time of site K; is the promised The association of sites of CarOnLine and the Web services
bound of sitei, and p; is the corresponding probability (soremains unchanged, as given in TallleThe parameter for
thatd; < K; holds iny% of the cases, wherg = 100 x p;). the fitted T Location-Scale distribution for each of the site
Assuming the called sites to be probabilistically indepid given in Tablelll .
what the orchestration can guarantee to its clients is Results using hard contractsOn setting the delay con-
tracts of each of the sites to their 99.2% quantile valuegjete
the end-to-end orchestration delay bound tdbe- 1469, 539
ms, which can be guaranteed for 94.53% of the cases.

P(6; < K;)

PO<K) > ﬁpi, (3



~TGarageA even if the sites respect their contracts, this may at tinees b

GarageB ---x--- T

. g e Credit —x— seen by the orchestration as a timeout. Clearly, using $mer
coarws © 1 in combination with hard contracts makes little sense.
InsurePlus - -e-- - ape s . .
Carontine ~ = - | In contrast, probabilistic soft contracts allow using tisie

with no contradiction. The reason is that Monte-Carlo sim-
ulations have no problem simulating timers and their effect
on the distribution of the orchestration response time. As a
consequence, we only present the results from our simaoktio
without a comparison to the hard contract based composition

We again perform simulations in two modes: Bootstrap and
T Location-scale based simulations.

a) Bootstrap based Simulation#\s before, we asso-
ciated each service in the CarOnLine example with delay
5000 10000 15000 20000 000 behaviors of one of the six web services measured. The

defay (msec) associations are the same as before, given in THbl&Ve
Figure 8.  Empirical distribution of end-to-end orchestatidelays for NOW have timeouts for the calls to sites GarageA and GarageB.

CDF

100000 simulations in the bootstrapping case. The 99.2% delay quantiles for these two sites are 3,304 msec
and 4,183 msec respectively. We perform simulations with
’ Site [ Paramv | Site [ Paramv | different timeout values: 3,000, 4,000 and 5,000 msec. The
GarageA | 2.678 | Goldinsure| 1.338 results are given in Table' _ o
GarageB 0.835 InsureAll 0.835 b) T-Location Scale Sampling based Simulatiok¢e
AllCredit 0297 | InsurePlus| 0.835 maintain the associations of Talleand perform simulations
AllCreditPlus | 2.258 by sampling the fitted T Location-scale distributions. The
results of these simulations summarized in Table The
Table Il = ot
P T oft contrac :
ARAMETER v OF THE FITTED | LOCATION DISTRIBUTIONS Mode 94.53% quantile Timeout ValueT
BootStrap 23,040 3,000
. _— ! BootStrap 22,681 4,000
Results using probabilistic soft contracté&s before, we BootStrap 22834 5.000
assume zero delay for all the internal orchestration astém T Location Dist 13,258 3,000
; ; ; s T Location Dist 13,364 4,000
perform 100,000 runs o_f the orchestration in th_|s conflgumt T Location Dist 13582 5,000
End to end orchestration delays from the simulations were
recorded. In this case, the 94.53% quantile is found to be Table V
14,658 ms. FINITE TIMEOUT CASE: DELAY QUANTILES
The results are summarized in Taft\e. average time for 100,000 simulations in the bootstrap mode
Soft contract Hard contract was 34.29 sec and in the T Location-sampling mode was 43.75
Mode 94.53% quantile 94.53% quantile SecC.
Boot_Strap _ 23,189 44,243
T Location Dist 14,658 1,469,539 V. MONITORING
Table IV In this section we describe our technique for monitoring

NO TIMEOUT CASE: COMPARISON OFDELAY QUANTILES soft contracts. We show how monitoring is done for any

The time taken for the 100,000 simulations in the bootstra@ntracted service when it is called by the orchestration.
mode was 37.74 sec and in the T Location-sampling mode was\ye want to compare the observed performance of a service
42.13 sec. S to that promised in its soft contradfs. Recall that the
Case 2 Finite Timeouts soft contractFs is a distribution on the response times %if
(z) = P(ds < z). We denote by s the actual distribution

Using hard contracts in orchestrations having timeou Sinction of 5. We say thatontract F is metif

raises difficulties. As an illustration, consider again Ufg4.
Let Ky and K> be the two hard bounds (in m_s) for response Va,Gs(z) > Fs(z) %)
times in the contracts of siteésl and.S2, respectively. Assume

that timers are used to guard the two site calls, with timeoholds. Condition 4) expresses that the response timeSois
occurring atA ms. Then, clearly, the contract that results fostochastically smallethan the promisé’s [2]. Now, we want
this orchestration entirely depends on the relative pmsitf to performon-line monitoring, meaning that we want to detect
A, K1, and Ks. If A > K; for ¢ = 1,2, then a timeout is as soon as possible § starts breaching its contract. To this
supposed to never occur (unless one of the site contract®isl, denote byGs; the actual distribution function of site
violated). On the other hand, X < K, for i« = 1,2 then, S at timet¢. We want to detect as quickly as possible when



condition @) gets violated bysS, that is, to set a red light at , the tolerance parameter is tuned to the smallest

the first timet when the following condition occurs: value such that
sup(Fs(x) — Gg(x)) > 0, (5) sug(Fs(x) - ésA* () < A
T xe
which is the negation of conditior#). holds for100 — L percent (e.g., 95%) of thA* € Q.

Unfortunately, the orchestrator does not knG;; itonly | fact, it is a result due to Kolmogoro(), sect. 14.2, that,
can estimate it by observing. To this end, letA; be a finite  ¢5; ' |arge enough, the so obtained value for the tolerance
set of sample response times 8f collected up to timel,  ;one \ does not depend on the distributidfy. Yet, to avoid

we call it apopulation For a while, we remove subscript gealing with size issues d¥, we prefer calibrating tolerance
for notational convenience. Fok a set, let| X| denote its parameters for each site individually. But, clearly, thése

cardinality. Then room for saving computations at this step.
~ {d|deAandd <z} 2) Monitoring Phase:Once the tolerance parametkris
Gs,a(x) Zdet N ®)  set, monitoring can be done in the following way: suppose

the first V responses of servicg have latenciegos, ... oy}
Taking A = {d;...0n}, we computeGgs a(xz) and then
check if condition §) is violated. When thé N + 1)st delay,
dOn+1 Is recorded, weshift A py one observation, making
sup (Fs(z) — Gg.a(z)) (7) it {62,...0n11}. We computeGs a(xz) for this newA and
zER check violation of 8) again. This process is repeated for
further observed response times, each time shiffingy one
observatiorf. So A is a sliding window of fixed sizeV. The
window sizeN is the same as the siz&*| in the calibration

is theempirical distribution functiondefined as the proportion
of sample response times less tharamong populationA.
Then, as a first sight, the contract is violated when

occurs. The problem with equatio)(is that @S,A(x) can
randomly fluctuate arounds(x), especially when|A| is
small. A solution to this problem is to havetalerance zone
for such deviations. phasr_e. . .

Our on-line monitoring procedure is then as follows. De- Window length NV appears as an additional design pa-

cide that siteS violated its contract at the first time(if any) ram.eter for the monitoring proceduréy’ can be entirely
decided by the orchestrator and need not be a part of the

when . : .
N contract. The rationale for tuning/ is as follows: Observe
sup (Fs(z) — Gs.a,(z)) > A (8) that N is strongly correlated with the detection delay in case
z€R, of a contract violation. On the one hand, the proportion of

occurs, where\ is a small positive parameter which defines thereaching data must be large enough in the windowm order
tolerance zone. Reducingimproves the chances of detectingor condition @) to get violated. Thus, reduciny contributes
contract violation earlier (it reduces thietection delay but to the reduction of detection delay. On the other hand, rieduc
it also increases the risk of a false alarm (it increases tiéincreases random fluctuations@g a- () whenA* ranges
false alarm ratg, see p]. Thus, tolerance parameter has over €2, thus resulting in the need for increasing tolerance
to be tuned in a meaningful way. This is done in an off-linparameter\ to maintain the agreed false alarm rate, which in
“calibration phase”, performed prior to the monitoring. turn increases the delay for detecting violation. This itssn

1) Calibration Phase:As explained in Sectiotil, during a tradeoff leading to an optimal choice fof. Anyway, this
contract composition, sample response times are drawn froeed not be part of the agreed contract.
the contract distributiorf's () for each services involved in V1. EXPERIMENTAL RESULTS MONITORING
the orchestration. Suppose the total number of samplesndraw '
for a given serviceS is M, i.e. the set of sampled delay We now describe the implementation of our monitoring
values forS during the simulation isA = {dy,...4dx}. In technique and the results obtained. We first discuss the kind
the calibration phase, we apply the followitmpotstrapping Of soft contracts we use in the simulations. After this, we
method [L4]: present results on the monitoring on contracts, as expldime

a) Generate\* by re-samplingA at random. This means S€ction V.

that A* is a randomly selected subset &f, of fixed A contract of the orchestration
size |A*| = N. According to bootstrapping discipline,

N should be smaller thatvg(M). Using A*, we can We take the contract of a servicg Fs to be a probability

distribution of the response time. Expecting a service ideav

produce a bootstrap estimatés o« (x) of Fs(z) using . ; " )
) ' to able to give a precise probability fewvery possiblealue of
equation ). Denote byS} be the set of such randomlyIatenc:y is however impractical. So, we take the contrach wit

*C A. i ) . ) .
ﬁ:l:%tiiﬁity‘—Q‘AtJnbgu;be;fﬂe(;"ggg ts, we have Choserp‘)rowderS to be a set of quantiles of latenci€s; . ..z} with

b) A false alarmlevel L (e.g., 5%) during monitoring the corresponding probabilitie¢Fs(x1) ... Fs(wy)}. Hard

IS ngegd between the orchlestrator and the sersice 2Actually, we do not need to shift the window ky any fixed amount can
Taking Gg A~ (x) as a population, wherA* ranges over be used instead provided that successive windows overlap.



contracts are just a special case of our soft contracts, iobhwhbecause less variations were observed in the detection, dela
only one such quantile exists. We thus requires the protaerand is clearly preferred oveY = 50 where the detection delay
pass from promising a performance probability of one qlentiwas too large.
to multiple quantiles. With N = 30, the calibration phasé/1) on this distribu-
During simulation, two possibilities may be consideretion of GarageAgave the tolerance paramefeequal to 0.167.
when usingfs = {Fs(z1) ... Fs(zk)} for sampling response After the calibration phase, the CarOnline orchestratias w
times: run 1000 times as follows: From run 1 to 70GarageAs
« Use Fg as it is, by sampling each time one of thectual performance was exactly that as the promised dis-
quantiles{z; ...z}, in proportion withF. This would tribution. From run 700 to 1000, we slightly deteriorated
lead to over-pessimistic distributions, however. GarageAs performance to follow a “slower” distribution. The
« Hypothesize a constant probability density within eac#ielay quantiles and their corresponding probabilities his t
quantile, except for the last one where exponential distglower distribution is given in the third and second colunfin o
bution is hypothesized. From our experiments regardiri@ble VI, respectively.
web services response times, we preferred this second The result of the monitoring is shown in Figuge The
approach. value ofsup,c x (Fs(z) — Gg.a-(z)) is plotted for each call

While monitoring, we check for violation of conditio8)only ~Made toGarageA The horizontal line shows the value af

for the set of quantiles that have been promised by the en/fb167. The detection occurs around the 747th run, i.e. @roun
Sin its contractFs. The set of positive realR . in equation 47 calls later.

(8) is thus replaced by the set = {z;...x;} of latency
guantiles promised in the contract. 03 f

B. Results 025 -

We ran CarOnline orchestration and monitored the sing
service GarageAin isolation, according to sectioW. We
only show the monitoring of one service, since the proce
of monitoring is identical for any other service of the orshe
tration. There was no particular reason for choosing to tooni
GarageA we could have done the same with any other servicé °
of CarOnline. The delay behaviors associated with each of of
CarOnLine remains the same as in sectlo¥B, given by
Tablell. The contract ofGarageA the finite set of quantiles
and their corresponding probabilities, is given in the fast o1} | | | | | | | | |
second column of Tabl®!1, respectively. These values were © 100 200 300 400 500 600 700 800 90 1000
derived from the measured response times of the USWeather Simulation Number

. The fal | t d with th hestrat Figure 9. Monitoring of GarageA The plot shows the deviation
service. e Talse alarm rate agreed wi € orchestratofy by s contract _for each run of the simulation. This dewatiis

@®

from ontra

on

95%. sup,ex (Fs(z) — Gg ax(x)).
Contract Delay | CDF | Experimental Dela L - . .
Quantile (msez) (guantile (msec) y _The test st_atlst|cs used in Flgugef_or behaves in a quite
1149 01 1199 noisy way. This suggests that the ratio false alarm rateugers
1229 0.2 1279 detection delay may not be optimal. Monitoring proced@e (
1310 0.3 1360 could be improved in many respects, however, using the huge
1462 05 1520 background of sequential and non-parametric statis@}s [
1645 0.7 1745 First, empirical estimate6] for the distribution functionGs
1905 0.85 2005 fg id be i d b . iblv adapti |
2312 0.95 2412 of S could be improved by using _(p055| y adap iNerne
estimators. Second, instead of relying on an estimate based
Table VI a sliding window, truly sequential estimates could be u¥éel.
Contract and experimental distributions GarageA have, however, decided to keep basic in the techniques vie use

from statistics, for two reasons: they are easily undedstble

As mentioned in the end of sectioh, we need to find & py non specialists, and they are robust and easy to tune.
good value for the window lengttv for the calibration and

the monitoring phase (it directly affects the detectionagipl VII. RELATED WORK

For this, we ran the calibration and monitoring @arageAfor Proposals for such QoS-based compositions are few and no
three different window lengths: 10, 30 and 50. The violadionwell-accepted standard exists to date. MeBd&€] discusses
were detected after 10 to 25 calls (with lots of variation€)oS issues in Web services, introducing the response times,
when N = 10, 20 to 30 calls whenV = 30 and between 40 availability, security and throughput as QoS parametesrs. H
to 80 calls whenN = 50. N = 30 was preferred taV = 10 also talks about the need of having SLAs and monitoring them



for violations. He does not however, advocate a specific inodéces and their compositions. The authors use UML diagrams
to capture the QoS behaviour of a service, or a composititm model a service composition which is then translated into
approach to compose SLAs. a simulation model in Java (SimJava). sSPAC also generates
Agarwal et. al ] view QoS based composition as a coneode to call the services in the composition under a light loa
straint satisfaction/optimization problem in the METE@R-to record the performance of the services. The performance
project. Services have selection criteria which are cairgs, statistics collected are then used in the simulation mode to
for which an optimal solution is found using integer lineamodel the performance of the services. However, asLi, [
programming. Cardoso et al. inl]] aim to derive QoS sPAC also assumes that the services whose performance it
parameters for a workflow, given the QoS parameters of #valuates can be instrumented to collect the performance
component tasks. Using a graph reduction technique, theatistics for use in simulations.
repeatedly re-write the workflow, merging different compnn The notion of probabilistic QoS has been introduced and
tasks and also their QoS attributes according to diffenglest developed in 16], [17] with the ambition to compute an exact
Zeng et al. B6] use Statecharts to model compositéormula for the composed QoS, which is only possible for
services. An orchestration is taken to be a finite executieestricted forms of orchestrations without any data depen-
path. For each task of the orchestration, a service is selectiency. We propose using simulation techniques to analyze
from a pool of candidate services, using linear programminge QoS of a composite service, this allows us to use non-
techniques such that it optimizes a specific global QoSrite trivial distributions as models for performance and alsovpts
In [24], the authors propose using fuzzy distributed constraiahalysis of orchestrations whose control flow have data and
satisfaction programming (CSP) techniques for finding th#me related dependencies.
optimal composite service. Most of the work in QoS monitoring is dedicated to
Canfora et. al 10] use Genetic Algorithms for deriving the design of service monitoring architectur@][ Service
optimal QoS compositions. They use techniques similat 1 [ monitoring needs to be integrated in the infrastructureuad
for modeling QoS of services. Compared to the linear prin order to enable detection and routing of the service opera
gramming method of Cardoso et. al], the genetic algorithm tional events. We have proposed a framework for probaiilist
is typically slower on small to moderate size applicationgontracts and shown how they can be composed. For run-
but is more scalable, outperforming linear programminditectime monitoring, this leads directly to the use of statitic
niques when the number of candidate services increase. testing techniques to detect violation of QoS contractshSu
A distinguishing feature of our proposal from the aboveechniques have already been used 7 fo adapt SLA
composition techniques is that we do not consider the Qefeckers to the variation of the environment, but in a cdantex
parameters of a service to be fixed, hard bound values. \dfedeterministic contracts.
believe that in reality, these parameters exhibit significari-
ations in their values and are better modeled by a probgbilit VIIl. CONCLUSION
distribution. This alternative approach has two advargage
First, it reduces pessimism in contract composition, ashedis ~ We have studied softrobabilistic contracts, their compo-
see. And, second, it allows for “soft” monitoring of contracsition, and their monitoring, for web services orchestrasi
breaching (have a delayed response once upon a time shdti@babilistic soft contracts have a number of advantages:
not be seen as a breaching). they compose easily, as shown by our Monte-Carlo based
In [12] the authors use WSFL (Web Service Flow Landimensioning toolTOrQUE they provide opportunity for well
guage) - a language proposed by IBM to model web servigeund overbooking, thus avoiding pessimistic contrattsy t
compositions - and enhance it with the capability to specijllow handling timers as part of the orchestration, a freque
QoS attributes. These are then translated into a simulati@nd desirable practice. We stress that 3@rQUE tool can
model in Java (JSim) which can then be simulated féhdeed be used for the dimensioning of realistic orchestiat
performance analysis. The fundamental difference from o@# the cost of running Monte-Carlo simulation for desigrcepa
approach is that the approach assumes a "non-open worgploration is acceptable. We have also proposed a statisti
scenario, assuming that the services of the orchestration @pproach to design monitors for services promising soft con
be instrumented with measurement code to get informatigigcts for monotonic orchestrations. Our method requires p
about its performance. This information then seems to be ugilibration of the detection threshold, in order to achiave
in queuing based models, to generate queuing and sendgseed false alarm rate.
execution time during simulations. The authors however, do We plan to extend our work in two directions. The first
not give any detailed information about the models and tisirection is the real deployment of the method on the Web,
associated parameters used in the simulations. This agprobased on the @c run-time environment. More precisely,
also requires the orchestrator to be able to control all thee are currently working on QoS-enabled extensions of this
load on the external service too, which is often an unrealistanguage.
approach. The second direction is to generalize what we have done
Web service Performance Analysis Center (sPABL),[is on response times to other QoS parameters, addressing the
another similar approach for performance evaluation of séact that different QoS parameters are often correlatetkdd,



we believe that a large part of the techniques we have des]
veloped generalize to other QoS parameters (e.g., avé@yabi
reliability, security, and possibly quality of data). Inrpeular,

our abstract representation of runs of orchestrations diba [24]
orders of events allows us to combine performance quanta in
a flexible way. 25]
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