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Abstract—Service level agreements (SLAs), orcontracts, have
an important role in web services. These contracts define the
obligations and rights between the provider of a web service and
its client, with respect to the function and the Quality of the
service (QoS).

For composite services like orchestrations, such contracts are
deduced by a process calledQoS contract composition, based on
contracts established between the orchestration and the called
web services. These contracts are typically stated in the form of
hard guarantees (e.g., response time always less than 5 msec).
Using hard bounds is not realistic, however, and more statistical
approaches are needed.

In this paper we propose using soft probabilistic contracts
instead, which consist of a probability distribution for the
considered QoS parameter—in this paper, we focus on timing.
We show how to compose such contracts, to yield a global
probabilistic contract for the orchestration. Our approach is
implemented by theTOrQuE tool. Experiments onTOrQuE show
that overly pessimistic contracts can be avoided and significant
room for safe overbooking exists.

An essential component of SLA management is then the
continuous monitoring of the performance of called web services,
to check for violations of the agreed SLA. We propose a statistical
technique for run-time monitoring of soft contracts.

I. I NTRODUCTION

Web services and their orchestrations are now considered
an infrastructure of choice for managing business processes
and workflow activities over the Web infrastructure [33].
BPEL [3] has become the industrial standard for specifying
orchestrations. Numerous studies have been devoted to relating
BPEL to mathematical formalisms for workflows, such as
WorkFlow nets (WFnets) [31] a special subclass of Petri
nets, or the pi-calculus [27]. This has allowed developing
analysis techniques and tools for BPEL [25], [4] including
functional aspects of contracts [34], as well as techniques for
workflow mining from logs [32]. Besides BPEL, the ORC

formalism has been proposed to specify orchestrations, by
W. Cook and J. Misra at Austin [23]. ORC is a simple and
clean academic language for orchestrations with a rigorous
mathematical semantics. For this reason, our study in this
paper relies on ORC. Its conclusions and approaches, however,
are also applicable to BPEL.

This work was partially funded by the ANR national research program
DOTS (ANR-06-SETI-003), DocFlow (ANR-06-MDCA-005) and the project
CREATE ActivDoc.

a) Contract based QoS management:When dealing
with the management of QoS,contracts—in the form ofSer-
vice Level Agreements, SLA [8]—specify the commitments of
each subcontractor with regard to the orchestration. Standards
like web service Level Agreement (WSLA) [18] proposed by
IBM allow for specifying (and monitoring) QoS parameters
of web services through contracts. Though there is no such
standardization for QoS parameters of web services, most
SLAs commonly tend to have QoS parameters which are
mild variations of the following: response time (latency);
availability; maximum allowed query rate (throughput); and
security. In this paper, we focus on response time.

From QoS contracts with sub-contractors, the overall QoS
contract between orchestration and its customers can be estab-
lished. This process is calledcontract composition; it will be
our first topic in this paper. Then, since contracts cannot only
rely on trusting the sub-contractors,monitoring techniques
must be developed for the orchestrator to be able to detect
possible violation of a contract, by a sub-contractor. Thiswill
be our second topic.

b) Hard versus Soft Contracts:To the best of our
knowledge, with the noticeable exception of [21], [16], [17],
all composition studies consider performance related QoS
parameters of contracts in the form ofhard bounds.For
instance, response times and query throughput are required
to be less than a certain fixed value and validity of answers
to queries must be guaranteed at all times. When composing
contracts, hard composition rules are used such as additionor
maximum (for response times), or conjunction (for validityof
answers to queries).

Whereas this results in elegant and simple composition
rules, we argue that this general approach by using hard
bounds does not fit the reality well. Figure1 displays a
histogram of measured response times for a “StockQuote”
web service which returns stock prices of a queried en-
tity [35]. These measurements show evidence that the tail of
the above distribution cannot be neglected. For example, in
this histogram, percentiles of 90%, 95%, and 98%, correspond
to response times of 6,494 ms, 13,794 ms, and 23,506 ms
respectively. Setting hard bounds in terms of response time
would amount to selecting, e.g., the 98% percentile of 23,506
ms, leading to an over pessimistic promise, for this service.
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Figure 1. Measurement records for response times, for Web service
StockQuote.

In fact, users would find it very natural to “soften” con-
tracts: a contract should promise, e.g., a response time in less
than T milliseconds for 95% of the cases, validity in 99%
of the cases, accept a throughput not larger thanN queries
per second for 98% of a time period ofM hours, etc. This
sounds reasonable but is not used in practice, partly because
soft contracts based on a single percentile (e.g., 95% or 99%
of the cases) as abovelack composition rules. To cope with
this difficulty, we propose soft contracts based on probability
distributions. As we shall see, such contracts compose well.

c) Soft Probabilistic Contract Composition:Having
agreed on SLA or contracts with the different sub-contractors,
the orchestrator can then attach a probability distribution to
the considered QoS parameters. If a combined executable
functional-and-QoS model of the orchestration is available, it
is then possible to compute the probability distribution ofthe
same QoS parameter, for the orchestration.

Such a combined functional-and-QoS model of the orches-
tration requires enhancing orchestration specifications with
QoS attributes seen as random variables. This, however, is
by itself not enough in general. More precise information
regarding causal links relating events is needed. For example,
latencies are added among events that are causally related,not
among concurrent events. Thus, we need to explicit causality,
concurrency, and sequencing in the orchestration in a precise
way, which amounts to representing orchestrations aspartial
ordersof events. Some mathematical models of orchestrations
provide this, e.g., the partial order semantics of WorkFlow
nets [31]. Our group has developed a toolTOrQuE (Tool
for OrchestrationQuality of Serviceevaluation) that directly
produces executions as partial orders, from an ORC program.
The results reported here were obtained by this tool.

d) Soft Probabilistic Contract Monitoring:An essen-
tial component of SLA management is the run-time moni-
toring of contracts. SLA monitoring must be continuous to
timely detect possible SLA violations. In case of a violation,
the called service may have to incur some agreed penalty.

Alternatively, if the service is called by an orchestrator,the
orchestrator might consider reconfiguring the orchestration to
call an alternative service. The monitoring of probabilistic
contracts requires using methods from statistics. We propose
using statistical testing to check if the observed performance
deviates from the performance promised in the contract.

e) Organization of the paper:In section II-A we
present an example of an orchestration, which is then used
to illustrate the primary challenges involved in QoS studies of
web services and their compositions. The example is also used
in our experiments. In sectionIII , we present our general ap-
proach for contract composition and describe theTOrQuEtool
supporting it. The simulations on contract composition, which
show a potential for overbooking are given in sectionIV.
In sectionV we introduce our technique for monitoring soft
contracts. The experiments done on monitoring are reported
in VI . SectionVII gives a survey of the existing literature on
QoS-enabled WS composition. Finally, sectionVIII presents
conclusions and outlooks.

II. QOS ISSUES IN WEB SERVICES AND THEIR

COMPOSITIONS

In this section we will explain the main challenges faced in
QoS studies of web services and their compositions. From this
we will draw conclusions regarding how QoS studies should be
performed, for web services orchestrations. This is done with
the help of a sample orchestrationCarOnLinewhich we will
present first. TheCarOnLineexample, which was developed
in theSWANproject [26], is also used in our experimentations
with the TOrQuE tool.

A. Example of an orchestration

CarOnLine is a composite service for buying cars online,
together with credit and insurance. A simplified graphical view
of it is shown in Figure2.

On receiving a car model as an input query, theCarOnLine

service first sends parallel requests to two car dealers (GarageA,

GarageB), getting quotations for the car. The calls to each
garage are guarded by a timer, which stops waiting for a
response once the timeout occurs. If a timeout occurs, the
response of the call is aFault value. The best offer is chosen
by the (local) functionMux which returns the minimum non-
faulty value. If both timeouts occurs,Mux returns aFault. Credit
and insurances are found in parallel for the best offer. Two
banks (AllCredit, AllCreditPlus) are queried for credit rates and the
one offering a lower rate is chosen. For insurance, if the car
belongs to the deluxe category, any insurance offer by service
GoldInsure is accepted. If not, two services (InsurePlus, InsureAll)
are called in parallel and the one offering the lower insurance
rate is chosen. In the end, the (car-price (p), credit-rate (c),
insurance-rate (i)) tuple is returned to the customer.

The ORC program forCarOnLine is given in TableI. We
chose to use ORC because it is an elegant language equipped
with formal semantics [19], [28]. ORC defines three basic
operators.
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Figure 2. A simplified view of the CarOnLine orchestration. The calls to
GarageA and GarageB are guarded by a timer that returns a “Fault” message
whenever the timeout occurs—this is not shown on the figure. Inthe discussion
in sectionII-B regarding “monotonicity”, the testcar = deluxe is changed to
p ≥ limit.

CarOnLine(car) ∆ CarPrice(car) >p> let(p, c, i)
where c :∈ GetCredit(p)

i :∈ GetInsur(p, car)

CarPrice(car) ∆ {Mux(p1, p2)
where

p1 :∈ (NetGA ≫ GarageA(car)) | T imer(T )
p2 :∈ (NetGB ≫ GarageB(car)) | T imer(T )

} >p> { if(p 6= Fault)) ≫ let(p) }

GetCredit(p) ∆ Min(c1, c2)
where

c1 :∈ NetC ≫ AllCredit(p)
c2 :∈ NetCP ≫ AllCreditP lus(p)

GetInsur(p, car) ∆ { if(car = deluxe) ≫ GoldInsure(p)} |
{ ifnot(car = deluxe) ≫ {min(ip, ia)

where ip :∈ InsureP lus(p)
ia :∈ InsureAll(p)

}}

Table I
CARONL INE IN ORC.

For ORC expressionsf, g, “f | g” executesf and g in
parallel. “f >x> g” evaluatesf first and for every value
returned byf , a new instance ofg is launched with variable
x assigned to this return value; in particular, “f ≫ g” (which
is a special case of the former where returned values are not
assigned to any variable) causeseveryvalue returned byf to
create anew instance ofg. “f where x :∈ g” executesf and
g in parallel. Wheng returns itsfirst value,x is assigned to
this value and the computation ofg is terminated. All site calls
in f having x as a parameter are blocked untilx is defined
(i.e., until g returns its first value).

CarPrice calls GarageA and GarageB in parallel for quota-
tions. Calls to these garages are guarded by a timer siteTimer

which returns a fault valueT time units after the calls are
made. Thelet site simply returns the values of its arguments—
sites can only execute when all their parameters are defined
and thus can be used to synchronize parallel threads. The
value returned byCarPrice (here the variablep) is passed
as argument toGetCredit and GetInsur which parallelly find
credit and insurance rates for the price. The serviceNetGA

in NetGA ≫ GarageA(car) is a dummy service that captures the
contribution of the network to the response time ofGarageA

as perceived by the orchestration. No such call occurs in
GetInsur. This is because the orchestration does not enter into
contracts with the insurance sites, which are assumed to be
freely available. The absence of a contract requires estimating
the insurance sites’ and the associated network’s performance.
This is discussed in the next section.

B. QoS Issues for web service Orchestrations

With the help ofCarOnLine, we now discuss how the QoS
issues for service orchestrations differ from traditionalQoS
studies.

1) Flow may be data dependent:In the GetInsure compo-
nent of CarOnLine, there are two exclusive ways for getting
insurance quotes for a car: either by callingGoldInsure or by
calling InsureAll and InsurePlus in parallel. The choice of which
branch is taken depends on the value of the parameter “car”.
In most orchestrations, the execution flow usually depends on
the values of its different data parameters, which are unknown
a priori. Thus by changing its execution flow, data values in
an orchestration can directly affect its QoS.

2) Flow may be time dependent:In CarPrice component
of CarOnLine, the calls toGarageA and GarageB are guarded
by a timer. Depending on whether or not the garages respond
before the timeout occurs, the orchestration may decide to take
different execution paths, directly affecting its performance.
Thus the presence of timers in orchestrations can also alterits
control flow.

3) Orchestrations may not be “monotonic”:An implicit
assumption in contract based QoS management is: “the better
the component services perform, the better the orchestration’s
performance will be.” Surprisingly, this property that we
called “monotonicity” [9] can easily be violated, meaning
that the performance of the orchestration may improve when
the performance of a component service degrades. This is
highly undesirable since it can make the process of contract
composition inconsistent. A contract based approach needs
monotonicity.

Consider theCarOnLine orchestration of Figure2, but
slightly modified. The condition “car = deluxe” for deciding
calls to insurance services is changed as follows: if the best
price returned by the garages isp, thenGoldInsure is called if
p ≥ limit where limit is a certain constant value. Ifp < limit,
InsurePlus and InsureAll are called in parallel. Assume that
the credit servicesAllCredit andAllCreditPlus respond extremely
fast (almost 0 time units) and so the response time of the



orchestration only depends on the response time of the garage
and insurance services. Let response times of the garage
and insurance servicesGarageA, GarageB, GoldInsure, InsureAll

and InsurePlus be δA, δB , δG, δI1
and δI2

respectively. Also
assume that the price quotesp of GarageA are always greater
than limit and that the price quote ofGarageB is always less
than limit. Now, the overall orchestration response time is
δO = max(δA, δB) + max(δI1

, δI2
), assuming that bothδA

andδB are less than the timeout valueT.
Suppose that the performance ofGarageB now deteriorates,

and it does not respond before timeout timeT . GarageA’s
price quote is now the best quote. Since we assumed that
the quotes ofGarageA are always greater thanlimit, GoldInsure

is called and the orchestration’s latency isδO′ = T + δG.
In the case whenδG ≪ max(δI1

, δI2
), it is possible that

δO′ < δO. In other words, the deterioration of the performance
of GarageB, could lead to an improvement in the performance
of the orchestration.

Such a pathological situation does not occur in our original
example since the response time ofGetInsur depends only on
the external parametercar. Oncecar is fixed, response times
behave in a monotonic way. Thus, our example ismonotonic.

Of course, it may not be considered fair to compare the dif-
ferent situations on the only basis of time performance, since
they do not return the same data. A call always immediately
returning “nothing found” will have best timing performance,
but is clearly not satisfactory from the user’s viewpoint.

Further results regarding monotonicity can be found in [9].
To conclude on this aspect, we believe that monotonicity
should be considered from a broader perspective, taking into
account both timing and other QoS parameters, as well as data.

4) Orchestrations face the Open World paradigm:The
actors affecting the QoS of a web service orchestration are:

• the orchestration server;
• the web services called by the orchestration;
• the transport network infrastructure.

All these actors contribute to the overall QoS characteristics
of the orchestration. Therefore, to be able to offer QoS
guarantees, the orchestration needs QoS data from the other
two types of actors.

In the context of networks, QoS studies assume knowledge
of end-to-end resources and traffic, and use these to predict
or estimate end-to-end QoS [15]. This can, for example, be
used for evaluating the end-to-end performance of streaming
services, supported by a dedicated cross-domain VPN. The
reason for being able to do this is that, once defined and
deployed, the considered VPN has knowledge of its own
resources and traffic, which is enough to evaluate the QoS
offered to the considered streaming service.

For our case of web services orchestrations, however, the
situation is different:

• The orchestration has knowledge about the resources of
its own server architecture. It knows the traffic it can
support, and it can monitor and measure its own ongoing
traffic at a given time.

• The resources and extra traffic for each called web service
arenot known to the orchestration—other users of these
sites belong to the “open world” and the orchestration
just ignores their existence.

• The resources and extra traffic for the transport network
infrastructure arenot known to the orchestration—other
traffic belongs to the “open world” and the orchestration
just ignores it.

Due to the issues discussed above, traditional QoS techniques
are not very appropriate when applied to the study of QoS
in web services orchestrations. Contracts have emerged as
the adequate paradigm for QoS of orchestrations and, more
generally, of composite web services in open world contexts.

C. Conclusions drawn from this discussion

From the above analysis, the following conclusions emerge
regarding how QoS studies should be performed for web
services orchestrations:

• To ensure consistency of QoS studies, we must only
considermonotonicorchestrations, that is, orchestrations
such that, if QoS of some called service improves,
then so does the orchestration itself. Conditions ensuring
monotonicity are found in [9]. Our CarOnLine example is
monotonic.

• Since, for general orchestrations, control flow may
be data- and time-dependent, analytical techniques for
performance studies—such as typically used for net-
works [15]—do not apply. One may consider restricting
ourselves to finite data types and discrete domains for
real-time, but then the computational cost of evaluating
the QoS of the orchestration in all configurations may
become prohibitive. This is why we chose to rely on
simulation techniques. Of course, such simulations must
take into account both data and QoS aspects.

• Because of the “open world” paradigm, QoS evaluation
cannot rely on a joint model of resources and traffic
for the web services called by the orchestrator. The
contribution of each of the web service called, to the
QoS of the orchestration must then be abstracted in some
way. In our open world, this relies on a notion oftrust
between the partners (the orchestration on one hand,
and the called services on the other), formalized as an
SLA. An SLA here is a contract about QoS, relating the
orchestration to the services it calls. In this approach, the
orchestration has no means to be sure that such an SLA is
faithful. Therefore, run-timemonitoringof such contracts
for possible violation is needed.
As advocated in the introduction, we decided to work
with soft probabilistic contracts. Then, for the above
mentioned reasons, we chose to resort toMonte-Carlo
simulationsto compose contracts and tune our monitoring
algorithms. As this is a first study of this subject, we
left aside the issue of implementingefficientMonte-Carlo
simulations, e.g., by using importance sampling [29].

In the following sections, we shall studycontract composition,
i.e., how the orchestration’s contract relates to the contracts



established with the different called services, seen as sub-
contractors. Then, we shall studycontract monitoring,i.e.,
the monitoring of sub-contractors for possible QoS contract
violation.

III. C ONTRACT COMPOSITION AND THETOrQuETOOL

A. How to establish Probabilistic Contracts and how to com-
pose them

In general, the orchestration will establish contracts or
SLAs with the web services it is calling. ForS a called web
service, we callS a sub-contractorin the sequel, the contract
for the considered QoS parameter has the form of acumulative
distribution function

FS(x) = P(δS ≤ x), (1)

where δS is the random QoS parameter (here the response
time), andx ranges over the domain of this QoS parameter
(hereR+).1

Regarding transport, different approaches might be consid-
ered. In a first “agnostic” approach, the orchestration willnot
contract regarding transport. The reason is that the orches-
tration does not want to know the network domains it may
traverse. If QoS information regarding the transport layeris
still wanted, this can be coarsely estimated by sending “pings”
to the considered site. In another approach, the orchestrator
may want to contract with the network service provider (e.g.,
as part of Virtual Private Network guarantees of service), very
much in the way contracts are established with called web
services.

Finally, some web services, such as e.g., Google, may
address huge sets of users and would therefore not enter in
a negotiation process with any orchestration. The distribution
of such sites can be estimated on the basis of measurements.

To summarize, in designing contracts with its own cus-
tomers, the orchestration: 1) uses the contracts it has agreed
upon with its subcontracting web services, 2) may estimate
QoS parameters for other web services it is using, and, 3)
may estimate QoS parameters for transport.

Based on this approach, we have developed the following
Monte-Carlo procedure for QoS contract composition. This
procedure is applied at design time:

• Contracts with the called sites have the form of probabil-
ity distributions for the considered QoS parameters. From
these, we draw successive outcomes for the tuples:

{response to queries, associated QoS parameters}
If no contract is available for a given site, we replace the
missing probability distribution by empirical estimates of
it, based on QoS measurements.

• Using a partial order execution model for the orchestra-
tion, we run Monte-Carlo simulations of the orchestration

1In practice, FS will be abstracted by either a finite set ofquantiles
(FS(x1), . . . , FS(xK), for a fixed familyx1, . . . , xK of values for the QoS
parameters) or a finite set ofpercentiles(e.g., the set of valuesy1, . . . , y9

such thatFS(y1) = 10%, . . . , FS(y9) = 90%). Such contracts are easily
expressible in terms of the WSLA standard [18].

involving independent successive trials for the random
latencies, thus deriving empirical estimates for the global
QoS parameters of the orchestration.

• Having these empirical estimates, we can properly select
quantiles defining soft contracts for the end user.

B. The TOrQuE tool

The TOrQuE (Tool for Orchestration simulation and
Quality of service Evaluation) tool implements the above
methodology. Its overall architecture is shown in Figure3.
The steps involved in the QoS evaluation and theTOrQuE

Stamper
Time

measure−
ments generator

random
batch−wise

offline
processing

SLA Design

Trace
Reconstructor

Figure 3. Overall architecture of theTOrQuE tool.

modules that perform them are commented next.
a) The orchestration model:To ease the development

of this tool, we decided to replace the (complex) BPEL
standard for specifying web services orchestrations by a
light weight formalism called ORC [23]. The authors of this
formalism have developed a tool [13] which can animate
orchestrations specified in ORC.

b) Getting QoS enhanced partial order models of ex-
ecutions: This is performed by the “Trace Reconstructor”
module. Jointly with the authors of ORC, we have developed
an alternative mathematical semantics for ORC in terms of
event structures[28]. Event structures [5] provide the adequate
paradigm for deriving partial order models of ORC executions,
in which causality and concurrency relationships between the
different events of the orchestration is made explicit. Partially
ordered executions can be tagged with QoS parameters which
can then be composed. For example, Figure4 shows how
the response time of a fork-join pattern is computed from
that of its individual events. These max-plus rules are used
to combine delays in the partial order. The QoS parameter

Fork

Join

Call S1 Call S2

t1 = δfork

t6 = max(t2, t3) + δjoin

t3 = t1 + δS2t2 = t1 + δS1

Figure 4. Deriving response time for a fork-join pattern. The“Fork” and
“Join” are the branching and synchronization events,S1 andS2 are two web
services called in parallel.δa denotes the time taken for eventa to execute.

tagging of the partial ordered executions and their composition



is implemented inTOrQuE’s trace reconstructormodule (see
Figure 3). Arbitrary patterns encountered in ORC specifica-
tions can be handled by this module.

GarageB

?GarageB

MyTimer

?MyTimer

Mux

MuxMux

GarageA

?GarageA

MyTimer

?MyTimer

?Mux

ifnotfault

?ifnotfault

Mux

?Mux

ifnotfault

?ifnotfault

?Mux

ifnotfault

?ifnotfault

?Mux

ifnotfault

?ifnotfault

ifgt

?ifgt

GoldInsur

?GoldInsur

ifle

?ifle

InsurPlus

?InsurPlus

Min

?Min

InsurAll

?InsurAll

!

AllCreditPlus

?AllCreditPlus

Min

?Min

AllCredit

?AllCredit

!

Figure 5. A labelled event structure collecting all possible executions
of CarOnLine, as generated by our tool. The three dangling arcs from
the shaded places are followed by copies of the boxed net. The aim
of the figure is to show the partial order structure.Zooming-in the
electronic version reveals the detailed labels of the transitions, as
generated from the detailed ORC specification.

Figure 5 shows a diagram of the event structure corre-
sponding to theCarOnLine program written in ORC. The event
structure is generated by our tool and it collects all the possible
executions ofCarOnLine, taking into account timers and other
interactions between data and control. Each execution has
the form of a partial order and can be analyzed to derive

appropriate QoS parameter composition, for each occurring
pattern. Each site call to a serviceM is translated into three
events, thecall (M ), the call return (?M ) and thepublish
action (!), which adds to the length of the structure. For
more information regarding these event structures, the reader
is referred to [28].

c) Drawing at random, samples of QoS parameters for
the called sites:This is performed by the “Time Stamper”
module. To perform Monte-Carlo simulations using the Trace
Reconstructor, we need to feed it with actual values for the
QoS parameters. For the called sites, these values should be
representative of the contracts established between them and
the orchestration. This is achieved by drawing such parameters
at random from the probability distribution specified in each
contract.

If no contract is available with a given site, the needed
probability distribution may alternatively be estimated from
measurements. For example, calling the considered site a
certain number of times and recording the response times
provides an empirical distribution that can be re-sampled
by simple bootstrapping techniques [14]. The Time Stamper
module supports both techniques: sampling from contract’s
probability distribution or bootstrapping measured values.

d) Exploiting results from Monte-Carlo simulations to
set contracts for the orchestration:This is performed by the
“SLA Design Unit”, which is mainly a GUI module that
displays simulation logs and histograms or empirical distribu-
tions of the QoS parameters and allows selecting appropriate
quantiles.

C. Discussion on criticality

At a first sight, not all sites in an orchestration have an
equal impact on the QoS of the orchestration. Some sites may
be critical, in that a slight degradation/improvement in their
performance will directly result in a degradation/improvement
in the performance of the overall orchestration. Other sites
may not be critical, a degradation in their performance would
not affect the performance of the orchestration very much.

To address this in the context of classical timing perfor-
mance studies, e.g., for scheduling purposes, the notion of
critical path was proposed. However, this notion must be
revisited under our probabilistic approach.

For instance, consider the example of Figure4, we have
t6 = t1 + max(δS1

, δS2
) + δjoin, so it seems that only the

“slowest” among the two sitesS1 and S2 matters. This is
a wrong intuition, however. Assume that the two sitesS1

and S2 behave independently from the probabilistic point of
view. Settingδ = max(δS1

, δS2
), Fi(x) = P(δSi

≤ x), and
F (x) = P(δ ≤ x), we haveF (x) = F1(x) × F2(x). Next,
suppose that the two sitesS1 and S2 possess unbounded
response times. Thus, for anyx > 0 we have0 < Fi(x) < 1
for i = 1, 2. In this case, sinceF (x) = F1(x) × F2(x),
any change inF1 or F2 will result in a change inF .
Thus, both sitesS1 and S2 are equally critical, even if, say,
F1(x) > F2(x) for every x, meaning that there are good
chances thatS1 will respond faster. Of course, ifF1 and



F2 possess disjoint supports, meaning that there exists some
separating valuexo such thatF2(xo) = 0 but F1(xo) = 1,
then we know thatδS1

< δS2
will hold with probability 1, so

that S1 is never on the critical path.
This discussion justifies that all sub-contractors are indi-

vidually monitored for possible contract violation, as they all
have impact on the overall orchestration QoS in general—see
sectionV regarding monitoring.

IV. EXPERIMENTAL RESULTS FORCONTRACT

COMPOSITION: OPPORTUNITIES FOR OVERBOOKING

In this section we report the results obtained on the compo-
sition of contracts, from the simulations of theTOrQuE tool.
The results show possibilities for overbooking and validate our
approach of using probabilistic contracts.

In orchestrations, exceptions and their handling are fre-
quently part of the orchestration specification itself. In addi-
tion, collecting measurement data from existing web services
regarding this type of parameter is difficult (actually, in our
experiments, no exceptions were observed). For these two
reasons, we did not include exceptions in our simulation study.

A. Approach

Probabilistic contracts for the sites:The sites in the
CarOnLine example were not implemented as real services
over the Internet. In order to assign realistic delay behavior to
these sites during the simulations, we associated their behavior
to that of actual web services over the Internet. For this, we
measured response times of calls to these actual web services.
The response time recorded were used in a bootstrap mode
and also to fit distributions which would be sampled during
simulations.

We considered six different web services for this pur-
pose [35]: StockQuote which returns stock prices for a
queried enterprise,USWeather which gives the weather
forecast of a queried city for a week from the day of the call,
CongressMember which returns the list of the members of
the US Congress,Bushism which returns a random quote
of George W. Bush,Caribbean which returns information
related to tourism in the Caribbean, andXMethods which
queries a database of existing web services over the web.
We made 20,000 calls to each of these six web services
and measured their response times. The calls were made in
sequence, a new call being made as soon as the previous call
responded. We could roughly categorize these services into
three categories based on their response times:

• Fast: The serviceCaribbeanwith response times in the
range 60-100 ms or theCongressMemberservice with
response times between 300-500 ms.

• Slow : ServiceStockQuotewhich responded typically
between 2 and 8 seconds.

• Moderate: The services likeUSWeather, XMethodsand
Bushism, with response times in the 800-2000 ms range.

Figure 6. Fitting of a T Location-scale distribution on the plot of
20,000 measured delays of the serviceUSWeather.

Fitting distributions on measured data:To validate the
use of certain families of distributions, we performed their
best fit on the measured data. When applied to the mea-
sured response times of the six different web services, we
observed that T location-scale distributions served as good
approximations in most cases. Moreover, Gamma and the Log-
Logistic distributions [20] were also reasonably good fits for
the response times. Figure6 shows the results of the fit of
a T Location-Scale distribution on the response times of the
serviceUSWeather.

While the quality of fit is reasonably good, this point is
anyway not central in our study. We only see the use of
certain families of distributions as an alternative to bootstrap
techniques, when measurements are not available. In general,
however, we prefer using bootstrapping techniques.

Orchestration Engine Overhead:The events of an orches-
tration could be seen as one of these two types : 1) the service
call events which are calls to a external sites. 2) the events
internal to the orchestration, implementing the processing and
coordination actions of the orchestration. Depending on the
relative cost (in terms of execution time) of these events the
following scenarios can be considered:

• Zero delay: The delay due to the internal events is zero (or
negligible) when compared to that of the site calls. The
overall delay of the orchestration would depend solely on
the response times of the services it calls in this case.

• Non-zero delay: The delays of the internal events in this
case are non zero, comparable to the delays of site calls.

Since the performance of our prototype can not be regarded
as representative of that of a real orchestration engine, we
considered only the first scenario.

B. Simulation results

All the measurements and simulations were performed on
a 2 GHz Pentium dual core processor with 2 Gb RAM. We
consider two cases of simulations, depending on the timeout
value T for the calls to the garages (see siteTimer(T ) in



Table I ) : 1) No timeout (equally,T is infinite) 2) T is a
finite value, which is lesser than the maximum response time
of a garage.

Case 1: No timeouts

Based on the way delays of site calls are generated, we
performed two types of simulations: those in which delays
generation is done by 1) bootstrapping measured values, 2)
sampling a T location-scale distribution, previously fit to
measured data.

a) Bootstrap based Simulations:In these simulations,
we associated each service in the CarOnLine example with
delay behaviors of one of the six web services mentioned
previously. The associations are shown in TableII and the
cumulative distribution functions of the observed response
times for each of the called services are shown in Figure7.
During any run of CarOnLine, the response time of a call is
picked uniformly from the set of 20,000 delay values of its
associated site. Since the response times of these serviceswere
measured from the client’s side, they include the network’s
delay too. So we do not consider the explicit delays modeled
by the sitesNetGA,NetGB,NetC and NetCP , and give
them zero delay each (if the contracts modeled only the
performance from the server’s perspective, without accounting
for the network, we could give delays to each of these sites
according pings done to the web services).

Site Service

GarageA USWeather
GarageB Bushism
AllCredit XMethods

AllCreditPlus StockQuote
GoldInsure Caribbean
InsureAll CongressMembers
InsurePlus CongressMembers

Table II
RESPONSE TIME ASSOCIATIONS FOR SITES INCARONL INE

Results using hard contracts:Consider the following “hard
contract” policy—which is close to current state of practice.
Contracts have the form of a certain quantile, e.g.: “the
response time shall not exceedx ms in y% of the cases.”

More precisely, let contracts of the orchestration with a
site be of the form

P(δi ≤ Ki) ≥ pi (2)

wherei = 1, ...,m ranges over the sites involved in the orches-
tration, δi is the response time of sitei, Ki is the promised
bound of sitei, and pi is the corresponding probability (so
that δi ≤ Ki holds iny% of the cases, wherey = 100 × pi).
Assuming the called sites to be probabilistically independent,
what the orchestration can guarantee to its clients is

P(δ ≤ K) ≥
m∏

i=i

pi (3)
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Figure 7. Cumulative distribution function for the measured delays of the
six web services.

where δ is the response time of the orchestration andK is
the max-plus combination theKi’s, according to the orches-
tration’s partial ordering of call events.

By setting the delay contracts (maximum delay values) of
each of the sites involved in CarOnLine to their 99.2% quantile
values, we get the end-to-end orchestration delay bound to be
K = 44, 243 ms, which can be guaranteed for 94.53% of the
cases.

Results using probabilistic soft contracts:We now com-
pare the above results with our approach using probabilistic
contracts. To this end, we performed 100,000 runs of the
orchestration in the bootstrap mode. The empirical distribution
of end-to-end delays of the orchestration is shown in Figure8.
The minimum delay observed in this case is 1,511 ms and
the maximum is 369,559 ms. The 94.53% delay quantile of
this distribution is 23,189 ms, to be compared with the more
pessimistic value 44,243 of ms that we obtained using the
usual approach.

b) T Location-Scale Sampling based Simulations:In
this mode of simulation, T location-scale distributions are
sampled to generate delay values for site calls. The delay
values of the six web services were fitted with a T Location-
scale distribution, giving the estimatedµ, σ andν parameters
of the distribution. The pdf for this distribution is:

p(x) =
Γ(ν+1

2
)

σ
√

νπΓ(ν
2
)

[
ν +

(
x−µ

2

)2

ν

]−( ν+1

2 )

The association of sites of CarOnLine and the Web services
remains unchanged, as given in TableII . The parameterν for
the fitted T Location-Scale distribution for each of the sites is
given in TableIII .

Results using hard contracts:On setting the delay con-
tracts of each of the sites to their 99.2% quantile values, weget
the end-to-end orchestration delay bound to beK = 1469, 539
ms, which can be guaranteed for 94.53% of the cases.
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Figure 8. Empirical distribution of end-to-end orchestration delays for
100000 simulations in the bootstrapping case.

Site Paramν Site Paramν

GarageA 2.678 GoldInsure 1.338
GarageB 0.835 InsureAll 0.835
AllCredit 0.297 InsurePlus 0.835

AllCreditPlus 2.258

Table III
PARAMETER ν OF THE FITTEDT LOCATION DISTRIBUTIONS

Results using probabilistic soft contracts:As before, we
assume zero delay for all the internal orchestration actions and
perform 100,000 runs of the orchestration in this configuration.
End to end orchestration delays from the simulations were
recorded. In this case, the 94.53% quantile is found to be
14,658 ms.

The results are summarized in TableIV.

Mode
Soft contract

94.53% quantile
Hard contract

94.53% quantile
BootStrap 23,189 44,243

T Location Dist 14,658 1,469,539

Table IV
NO TIMEOUT CASE: COMPARISON OFDELAY QUANTILES

The time taken for the 100,000 simulations in the bootstrap
mode was 37.74 sec and in the T Location-sampling mode was
42.13 sec.

Case 2: Finite Timeouts

Using hard contracts in orchestrations having timeouts
raises difficulties. As an illustration, consider again Figure 4.
Let K1 andK2 be the two hard bounds (in ms) for response
times in the contracts of sitesS1 andS2, respectively. Assume
that timers are used to guard the two site calls, with timeout
occurring atλ ms. Then, clearly, the contract that results for
this orchestration entirely depends on the relative position of
λ, K1, and K2. If λ > Ki for i = 1, 2, then a timeout is
supposed to never occur (unless one of the site contracts is
violated). On the other hand, ifλ < Ki for i = 1, 2 then,

even if the sites respect their contracts, this may at times be
seen by the orchestration as a timeout. Clearly, using timers
in combination with hard contracts makes little sense.

In contrast, probabilistic soft contracts allow using timers
with no contradiction. The reason is that Monte-Carlo sim-
ulations have no problem simulating timers and their effect
on the distribution of the orchestration response time. As a
consequence, we only present the results from our simulations
without a comparison to the hard contract based composition.

We again perform simulations in two modes: Bootstrap and
T Location-scale based simulations.

a) Bootstrap based Simulations:As before, we asso-
ciated each service in the CarOnLine example with delay
behaviors of one of the six web services measured. The
associations are the same as before, given in TableII . We
now have timeouts for the calls to sites GarageA and GarageB.
The 99.2% delay quantiles for these two sites are 3,304 msec
and 4,183 msec respectively. We perform simulations with
different timeout values: 3,000, 4,000 and 5,000 msec. The
results are given in TableV.

b) T-Location Scale Sampling based Simulations:We
maintain the associations of TableII and perform simulations
by sampling the fitted T Location-scale distributions. The
results of these simulations summarized in TableV. The

Mode
Soft contract

94.53% quantile Timeout ValueT

BootStrap 23,040 3,000
BootStrap 22,681 4,000
BootStrap 22,834 5,000

T Location Dist 13,258 3,000
T Location Dist 13,364 4,000
T Location Dist 13,582 5,000

Table V
FINITE TIMEOUT CASE: DELAY QUANTILES

average time for 100,000 simulations in the bootstrap mode
was 34.29 sec and in the T Location-sampling mode was 43.75
sec.

V. M ONITORING

In this section we describe our technique for monitoring
soft contracts. We show how monitoring is done for any
contracted service when it is called by the orchestration.

We want to compare the observed performance of a service
S to that promised in its soft contractFS . Recall that the
soft contractFS is a distribution on the response times ofS:
FS(x) = P(δS ≤ x). We denote byGS theactualdistribution
function of S. We say thatcontractFS is met if

∀x,GS(x) ≥ FS(x) (4)

holds. Condition (4) expresses that the response time ofS is
stochastically smallerthan the promiseFS [2]. Now, we want
to performon-linemonitoring, meaning that we want to detect
as soon as possible ifS starts breaching its contract. To this
end, denote byGS,t the actual distribution function of site
S at time t. We want to detect as quickly as possible when



condition (4) gets violated byS, that is, to set a red light at
the first timet when the following condition occurs:

sup
x

(FS(x) − GS,t(x)) > 0, (5)

which is the negation of condition (4).
Unfortunately, the orchestrator does not knowGS,t; it only

can estimate it by observingS. To this end, let∆t be a finite
set of sample response times ofS, collected up to timet,
we call it a population. For a while, we remove subscriptt

for notational convenience. ForX a set, let|X| denote its
cardinality. Then

ĜS,∆(x) =def

|{ δ | δ ∈ ∆ andδ ≤ x}|
|∆| (6)

is theempirical distribution function, defined as the proportion
of sample response times less thanx among population∆.
Then, as a first sight, the contract is violated when

sup
x∈R+

(FS(x) − ĜS,∆(x)) (7)

occurs. The problem with equation (7) is that ĜS,∆(x) can
randomly fluctuate aroundFS(x), especially when|∆| is
small. A solution to this problem is to have atolerance zone
for such deviations.

Our on-line monitoring procedure is then as follows. De-
cide that siteS violated its contract at the first timet (if any)
when

sup
x∈R+

(FS(x) − ĜS,∆t
(x)) ≥ λ (8)

occurs, whereλ is a small positive parameter which defines the
tolerance zone. Reducingλ improves the chances of detecting
contract violation earlier (it reduces thedetection delay), but
it also increases the risk of a false alarm (it increases the
false alarm rate), see [6]. Thus, tolerance parameterλ has
to be tuned in a meaningful way. This is done in an off-line
“calibration phase”, performed prior to the monitoring.

1) Calibration Phase:As explained in SectionIII , during
contract composition, sample response times are drawn from
the contract distributionFS(x) for each serviceS involved in
the orchestration. Suppose the total number of samples drawn
for a given serviceS is M , i.e. the set of sampled delay
values forS during the simulation is∆ = {δ1, . . . δM}. In
the calibration phase, we apply the followingbootstrapping
method [14]:

a) Generate∆∗ by re-sampling∆ at random. This means
that ∆∗ is a randomly selected subset of∆, of fixed
size |∆∗| = N . According to bootstrapping discipline,
N should be smaller thanlog(M). Using ∆∗, we can
produce a bootstrap estimatêGS,∆∗(x) of FS(x) using
equation (6). Denote byΩ be the set of such randomly
generated∆∗ ⊆ ∆. In our experiments, we have chosen
its cardinality|Ω| to be about10, 000.

b) A false alarm level L (e.g., 5%) during monitoring
is agreed between the orchestrator and the serviceS.
TakingĜS,∆∗(x) as a population, where∆∗ ranges over

Ω, the tolerance parameterλ is tuned to the smallest
value such that

sup
x∈X

(FS(x) − ĜS,∆∗(x)) ≤ λ

holds for100 − L percent (e.g., 95%) of the∆∗ ∈ Ω.

In fact, it is a result due to Kolmogorov [20], sect. 14.2, that,
for N large enough, the so obtained value for the tolerance
zoneλ does not depend on the distributionFS . Yet, to avoid
dealing with size issues ofN , we prefer calibrating tolerance
parameters for each site individually. But, clearly, thereis
room for saving computations at this step.

2) Monitoring Phase:Once the tolerance parameterλ is
set, monitoring can be done in the following way: suppose
the firstN responses of serviceS have latencies{δ1, . . . δN}.
Taking ∆ = {δ1 . . . δN}, we computeĜS,∆(x) and then
check if condition (8) is violated. When the(N + 1)st delay,
δN+1 is recorded, weshift ∆ by one observation, making
it {δ2, . . . δN+1}. We computeĜS,∆(x) for this new∆ and
check violation of (8) again. This process is repeated for
further observed response times, each time shifting∆ by one
observation.2 So ∆ is a sliding window of fixed sizeN . The
window sizeN is the same as the size|∆∗| in the calibration
phase.

Window length N appears as an additional design pa-
rameter for the monitoring procedure.N can be entirely
decided by the orchestrator and need not be a part of the
contract. The rationale for tuningN is as follows: Observe
that N is strongly correlated with the detection delay in case
of a contract violation. On the one hand, the proportion of
breaching data must be large enough in the window∆ in order
for condition (8) to get violated. Thus, reducingN contributes
to the reduction of detection delay. On the other hand, reducing
N increases random fluctuations ofĜS,∆∗(x) when∆∗ ranges
over Ω, thus resulting in the need for increasing tolerance
parameterλ to maintain the agreed false alarm rate, which in
turn increases the delay for detecting violation. This results in
a tradeoff leading to an optimal choice forN . Anyway, this
need not be part of the agreed contract.

VI. EXPERIMENTAL RESULTS: MONITORING

We now describe the implementation of our monitoring
technique and the results obtained. We first discuss the kind
of soft contracts we use in the simulations. After this, we
present results on the monitoring on contracts, as explained in
section V.

A. Contract of the orchestration

We take the contract of a serviceS, FS to be a probability
distribution of the response time. Expecting a service provider
to able to give a precise probability forevery possiblevalue of
latency is however impractical. So, we take the contract with
providerS to be a set of quantiles of latencies{x1 . . . xk} with
the corresponding probabilities{FS(x1) . . . FS(xk)}. Hard

2Actually, we do not need to shift the window by1; any fixed amount can
be used instead provided that successive windows overlap.



contracts are just a special case of our soft contracts, in which
only one such quantile exists. We thus requires the providerto
pass from promising a performance probability of one quantile
to multiple quantiles.

During simulation, two possibilities may be considered
when usingFS = {FS(x1) . . . FS(xk)} for sampling response
times:

• Use FS as it is, by sampling each time one of the
quantiles{x1 . . . xk}, in proportion withFS . This would
lead to over-pessimistic distributions, however.

• Hypothesize a constant probability density within each
quantile, except for the last one where exponential distri-
bution is hypothesized. From our experiments regarding
web services response times, we preferred this second
approach.

While monitoring, we check for violation of condition (8) only
for the set of quantiles that have been promised by the service
S in its contractFS . The set of positive realsR+ in equation
(8) is thus replaced by the setX = {x1 . . . xk} of latency
quantiles promised in the contract.

B. Results

We ran CarOnline orchestration and monitored the single
service GarageA in isolation, according to sectionV. We
only show the monitoring of one service, since the process
of monitoring is identical for any other service of the orches-
tration. There was no particular reason for choosing to monitor
GarageA, we could have done the same with any other service
of CarOnline. The delay behaviors associated with each of
CarOnLine remains the same as in sectionIV-B, given by
Table II . The contract ofGarageA, the finite set of quantiles
and their corresponding probabilities, is given in the firstand
second column of TableVI , respectively. These values were
derived from the measured response times of the USWeather
service. The false alarm rate agreed with the orchestrator is
95%.

Contract Delay CDF Experimental Delay
Quantile (msec) Quantile (msec)

1149 0.1 1199
1229 0.2 1279
1310 0.3 1360
1462 0.5 1520
1645 0.7 1745
1905 0.85 2005
2312 0.95 2412

Table VI
Contract and experimental distributions ofGarageA.

As mentioned in the end of sectionV, we need to find a
good value for the window lengthN for the calibration and
the monitoring phase (it directly affects the detection delay).
For this, we ran the calibration and monitoring onGarageAfor
three different window lengths: 10, 30 and 50. The violations
were detected after 10 to 25 calls (with lots of variations)
whenN = 10, 20 to 30 calls whenN = 30 and between 40
to 80 calls whenN = 50. N = 30 was preferred toN = 10

because less variations were observed in the detection delay,
and is clearly preferred overN = 50 where the detection delay
was too large.

With N = 30, the calibration phase (V-1) on this distribu-
tion of GarageAgave the tolerance parameterλ equal to 0.167.
After the calibration phase, the CarOnline orchestration was
run 1000 times as follows: From run 1 to 700,GarageA’s
actual performance was exactly that as the promised dis-
tribution. From run 700 to 1000, we slightly deteriorated
GarageA’s performance to follow a “slower” distribution. The
delay quantiles and their corresponding probabilities of this
slower distribution is given in the third and second column of
TableVI , respectively.

The result of the monitoring is shown in Figure9. The
value of supx∈X(FS(x) − ĜS,∆∗(x)) is plotted for each call
made toGarageA. The horizontal line shows the value ofλ,
0.167. The detection occurs around the 747th run, i.e. around
47 calls later.
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Figure 9. Monitoring of GarageA. The plot shows the deviation
from its contract for each run of the simulation. This deviation is
supx∈X(FS(x) − bGS,∆∗ (x)).

The test statistics used in Figure9 for behaves in a quite
noisy way. This suggests that the ratio false alarm rate versus
detection delay may not be optimal. Monitoring procedure (8)
could be improved in many respects, however, using the huge
background of sequential and non-parametric statistics [6].
First, empirical estimate (6) for the distribution functionGS

of S could be improved by using (possibly adaptive)kernel
estimators. Second, instead of relying on an estimate basedon
a sliding window, truly sequential estimates could be used.We
have, however, decided to keep basic in the techniques we used
from statistics, for two reasons: they are easily understandable
by non specialists, and they are robust and easy to tune.

VII. R ELATED WORK

Proposals for such QoS-based compositions are few and no
well-accepted standard exists to date. Menascé [22] discusses
QoS issues in Web services, introducing the response times,
availability, security and throughput as QoS parameters. He
also talks about the need of having SLAs and monitoring them



for violations. He does not however, advocate a specific model
to capture the QoS behaviour of a service, or a composition
approach to compose SLAs.

Agarwal et. al [1] view QoS based composition as a con-
straint satisfaction/optimization problem in the METEOR-S
project. Services have selection criteria which are constraints,
for which an optimal solution is found using integer linear
programming. Cardoso et al. in [11] aim to derive QoS
parameters for a workflow, given the QoS parameters of its
component tasks. Using a graph reduction technique, they
repeatedly re-write the workflow, merging different component
tasks and also their QoS attributes according to different rules.

Zeng et al. [36] use Statecharts to model composite
services. An orchestration is taken to be a finite execution
path. For each task of the orchestration, a service is selected
from a pool of candidate services, using linear programming
techniques such that it optimizes a specific global QoS criteria.
In [24], the authors propose using fuzzy distributed constraint
satisfaction programming (CSP) techniques for finding the
optimal composite service.

Canfora et. al [10] use Genetic Algorithms for deriving
optimal QoS compositions. They use techniques similar to [11]
for modeling QoS of services. Compared to the linear pro-
gramming method of Cardoso et. al [11], the genetic algorithm
is typically slower on small to moderate size applications,
but is more scalable, outperforming linear programming tech-
niques when the number of candidate services increase.

A distinguishing feature of our proposal from the above
composition techniques is that we do not consider the QoS
parameters of a service to be fixed, hard bound values. We
believe that in reality, these parameters exhibit significant vari-
ations in their values and are better modeled by a probability
distribution. This alternative approach has two advantages.
First, it reduces pessimism in contract composition, as we shall
see. And, second, it allows for “soft” monitoring of contract
breaching (have a delayed response once upon a time should
not be seen as a breaching).

In [12] the authors use WSFL (Web Service Flow Lan-
guage) - a language proposed by IBM to model web service
compositions - and enhance it with the capability to specify
QoS attributes. These are then translated into a simulation
model in Java (JSim) which can then be simulated for
performance analysis. The fundamental difference from our
approach is that the approach assumes a ”non-open world”
scenario, assuming that the services of the orchestration can
be instrumented with measurement code to get information
about its performance. This information then seems to be used
in queuing based models, to generate queuing and service
execution time during simulations. The authors however, do
not give any detailed information about the models and the
associated parameters used in the simulations. This approach
also requires the orchestrator to be able to control all the
load on the external service too, which is often an unrealistic
approach.

Web service Performance Analysis Center (sPAC) [30], is
another similar approach for performance evaluation of ser-

vices and their compositions. The authors use UML diagrams
to model a service composition which is then translated into
a simulation model in Java (SimJava). sPAC also generates
code to call the services in the composition under a light load,
to record the performance of the services. The performance
statistics collected are then used in the simulation mode to
model the performance of the services. However, as in [12],
sPAC also assumes that the services whose performance it
evaluates can be instrumented to collect the performance
statistics for use in simulations.

The notion of probabilistic QoS has been introduced and
developed in [16], [17] with the ambition to compute an exact
formula for the composed QoS, which is only possible for
restricted forms of orchestrations without any data depen-
dency. We propose using simulation techniques to analyze
the QoS of a composite service, this allows us to use non-
trivial distributions as models for performance and also permits
analysis of orchestrations whose control flow have data and
time related dependencies.

Most of the work in QoS monitoring is dedicated to
the design of service monitoring architectures [37]. Service
monitoring needs to be integrated in the infrastructure at large
in order to enable detection and routing of the service opera-
tional events. We have proposed a framework for probabilistic
contracts and shown how they can be composed. For run-
time monitoring, this leads directly to the use of statistical
testing techniques to detect violation of QoS contracts. Such
techniques have already been used in [7] to adapt SLA
checkers to the variation of the environment, but in a context
of deterministic contracts.

VIII. C ONCLUSION

We have studied softprobabilistic contracts, their compo-
sition, and their monitoring, for web services orchestrations.
Probabilistic soft contracts have a number of advantages:
they compose easily, as shown by our Monte-Carlo based
dimensioning toolTOrQuE; they provide opportunity for well
sound overbooking, thus avoiding pessimistic contracts; they
allow handling timers as part of the orchestration, a frequent
and desirable practice. We stress that ourTOrQuE tool can
indeed be used for the dimensioning of realistic orchestrations,
as the cost of running Monte-Carlo simulation for design space
exploration is acceptable. We have also proposed a statistical
approach to design monitors for services promising soft con-
tracts for monotonic orchestrations. Our method requires prior
calibration of the detection threshold, in order to achievean
agreed false alarm rate.

We plan to extend our work in two directions. The first
direction is the real deployment of the method on the Web,
based on the ORC run-time environment. More precisely,
we are currently working on QoS-enabled extensions of this
language.

The second direction is to generalize what we have done
on response times to other QoS parameters, addressing the
fact that different QoS parameters are often correlated. Indeed,



we believe that a large part of the techniques we have de-
veloped generalize to other QoS parameters (e.g., availability,
reliability, security, and possibly quality of data). In particular,
our abstract representation of runs of orchestrations as partial
orders of events allows us to combine performance quanta in
a flexible way.
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