
QoS monitoring of soft contracts for transaction

based Web services orchestrations⋆

Albert Benveniste1, Stefan Haar3, Claude Jard2, and Sidney Rosario1

1 Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France
2 Irisa/ENS Cachan, Campus de Beaulieu, 35042 Rennes cedex, France

3 Irisa/Inria Rennes and SITE, University of Ottawa, Canada

Abstract. Web services orchestrations and choreographies require es-
tablishing Quality of Service (QoS) contracts with the user. This is
achieved by performing QoS composition, based on contracts established
between the orchestrator and the Web services called in the orchestration.
Typical QoS parameters include maximum query throughput, response
time, security, and validity of the response. Usually, QoS contracts are
stated in the form of hard guarantees (e.g., response time always less
than 5 msec). However, experiments and measurements from existing
Web services show evidence that soft guarantees, not hard, should be
stated instead (e.g., response time less than 5 msec in 95% of the cases).

In a previous work [1] we have proposed using soft contracts, by taking
a probabilistic approach. Contracts are characterized by means of a set
of selected quantiles of probability distributions for QoS parameters. We
showed how to compose such contracts, to yield a global QoS (proba-
bilistic) contract for the orchestration. Our approach is supported by
the TOrQuE tool, that performs probabilistic contract composition, au-
tomatically, from orchestration specification and QoS contracts with the
Web services called by the orchestration.

In this work in progress, we develop monitoring techniques for detecting
the violation of such soft probabilistic contracts. Monitoring of the called
services is performed by the orchestration. We propose two simple sta-
tistical methods for monitoring the called services for contract violation.

1 Introduction

Web Services Orchestrations have attracted growing interest over the last years
[7,20]. They are now considered an infrastructure of choice for managing busi-
ness processes and workflow activities over the Web infrastructure [3]. In this
context, the Web services for composition are mainly of transactional nature.
BPEL [7] has become the industrial standard for specifying orchestrations. Nu-
merous studies have been devoted to relating BPEL to mathematical formalisms
for workflows, such as WorkFlow nets (WFnets) [8] a special subclass of Petri
nets, or the pi-calculus [15]. This has allowed developing analysis techniques and

⋆ This work is still in progress

tools for BPEL [16,18] including functional aspects of contracts [10], as well as
techniques for workflow mining from logs [17].

When applied to the management of OEM/supplier cooperations, orchestra-
tions must make precise the duties and responsibilities of the different actors
in such chains. This is achieved by relying on contracts [6]. Contracts specify
the requirements each subcontractor must satisfy; from these, the overall con-
tract between orchestration and its customers can be established. This process
is called contract composition.

While functional aspects of contract composition rely on the above mentioned
formal models and techniques [10], Quality of Service (QoS) aspects must be
handled as well. The Web Service Level Agreement (WSLA) framework [19] is a
standard proposed by IBM for specifying (and monitoring) QoS parameters in
Web Services. Most SLAs commonly tend to have QoS parameters which are mild
variations of the the following measures: response time (latency); availability;
maximum allowed query rate (throughput); and security.

To the best of our knowledge, all composition studies consider performance
related QoS parameters of contracts in the form of hard bounds; two noticeable
exceptions are [22] and [12]. For instance, response times and query throughput
are required to be less than a certain fixed value and validity of answers to queries
must be guaranteed at all times. When composing contracts, hard composition
rules are used such as addition or maximum (for response times), or conjunction
(for validity of answers to queries).

Whereas this results in elegant and simple composition rules, this general
approach by using hard bounds does not fit the reality well. Figure 1 displays

0 0.5 1 1.5 2 2.5 3

x 10
4

0

50

100

150

200

250

300

350

400

Delays

N
o.

 o
f o

cc
ur

en
ce

s

Fig. 1. Measurement records for response times, for Web service StockQuote.

a histogram of measured response times for a “StockQuote” Web Service which
returns stock prices of a queried entity [30]. These measurements show evidence
that the tail of the above distribution cannot be neglected. For example, in this
histogram, quantiles of 90%, 95%, and 98%, correspond to response times of
6,494 ms, 13,794 ms, and 23,506 ms respectively. Setting hard bounds in terms
of response time would amount to selecting, e.g., the 98% quantile of 23,506 ms,
leading to an over pessimistic promise, for this service.

In fact, users would find it very natural to “soften” contracts: a contract
should promise, e.g., a response time in less than T milli-sec for 95% of the cases,
validity in 99% of the cases, accept a throughput not larger than N queries per
second for 98% of a time period of M hours, etc. This sounds reasonable but is
not used in practice, partly because soft contracts based on quantiles as above
are not supported by composition rules.

In [1] we proposed a probabilistic approach to soft QoS contract composi-
tion. Our soft contracts are based on probability distributions. While probabilis-
tic contracts seem, at a first glance, technically involved, we showed that they
compose easily. We also showed that the QoS contract for the orchestration ob-
tained by our method are much less pessimistic than those based on hard bound
reasoning, thus evidencing opportunities for well sound overbooking. In [12], the
authors present a tool for statistical exploration of QoS in composed services in
order to detect performance bottlenecks, i.e., components whose replacement
would improve overall performance, from an offline point of view. Contract de-
sign and algorithms for on-the-fly monitoring are not considered. Moreover, the
approach deals only with “box-and-lines” descriptions of workflows; here, we
incorporate general orchestrations formally described by programs in the Orc
language [24].

The paper is organized as follows. Section 2 briefly reviews probabilistic soft
contracts [1]. Then, the problem of soft contract monitoring is set in Section 3.
Section 4 is devoted to the presentation of two different statistical monitoring
techniques of individual services.

2 Probabilistic soft contracts

For transaction based Web services orchestrations, the situation is the following:

– The orchestration has direct knowledge of the resources of its own server
architecture. It knows the traffic it can support, and it can measure the
ongoing traffic at a given time.

– The resources and extra traffic for each called Web service is not known to
the orchestration—other users of these services belong to the “open world”
and the orchestration just ignores their existence.

– The resources and extra traffic for the transport network infrastructure are
not known to the orchestration—other traffic belongs to the “open world”
and the orchestration just ignores it.

Contracts have therefore emerged as the adequate paradigm for QoS of orches-
trations and, more generally, of composite Web services in open world contexts.

A contract consists of an agreement on QoS parameters of the kind listed before.
Contracts provide the orchestration with the information needed to construct its
own offer to customers. Classically, contracts are formulated as hard bounds on
some QoS parameters. As argued in the introduction, it is preferable to charac-
terize contracts in terms of probability distributions over QoS parameters. Hard
bounds on parameters will then be replaced by “soft” bounds, of probabilistic
or statistical nature. A technique for probabilistic contract composition has been
developed in [1]. It consists of a Monte-Carlo technique to be applied at design
time, for composing contracts with sub-contracting Web services to derive the
contract that the orchestration can offer to its customers. This technique is im-
plemented in the TOrQuE (Tool for Orchestration simulation and Quality of
service Evaluation) tool , see [1], which performs the following:

1. Starting from an orchestration specified in Orc [24], TOrQuE produces par-
tially ordered executions for it, and labels the corresponding events with QoS
attributes.

2. For each called service, samples of answers to queries equipped with their
QoS parameters are drawn at random, either from a probability distribution
promised by contract, or by re-sampling collected measurements.

3. Each sample of answer to query, randomly produced for the different services,
is then fed to the above QoS-enhanced orchestration model, and executed to
produce one sample of {orchestration outputs, associated QoS parameters}.

4. These Monte-Carlo runs produce an empirical probability distribution for the
tuples consisting of {orchestration outputs, associated QoS parameters}. The
latter can be used to establish contracts with customers of the orchestration.

Compared with either techniques using hard bounds, or heuristics manipulating
soft contracts, our probabilistic technique was shown to be much less conserva-
tive, opening room for well sound overbooking.

3 Monitoring probabilistic soft contracts: problem setting

The very principle of the paradigm of contracts can be stated as “trust and
monitor”. That is, when setting its own contracts with customers by contract
composition following the principles of Section 2, the orchestration will trust the
called services that they will meet their contracts. However, life is not so simple
and in reality the orchestration must monitor the called services for possible
violation of their contracts. Follow up actions can consist of setting financial
penalties and/or reconfiguring the orchestration by calling alternative, function-
ally equivalent, services.

Reconfiguration has been studied by several authors [4,5,9,11,14] in the con-
text of hard contracts where detection is trivial (the considered QoS parameter
exceeds the threshold value agreed in the contract). As we said, hard contract
monitoring naturally results in drastic policies, possibly leading to excessive
decisions—a single contract violation would be seen, by the orchestration, as a
fault of the called service. In practice, heuristics would be used to soften such

drastic decisions. Our approach of soft probabilistic contracts offers a math-
ematically sound framework for soft monitoring of the called services, by the
orchestration. In this paper, we illustrate it for the case of response time.

The idea is as follows: Suppose that a given service S has promised, to
the orchestration, a probability distribution PS for its response time δ. Equiv-
alently, probability distribution PS is also characterized by the collection of all
its quantiles FS(x) =def PS(δ ≤ x), for x ranging over the interval of all pos-
sible values for the response time. Let the orchestration observe the sequence
δ1, δ2, . . . , δn, . . . of actual response times for the service S. Then

F̂S,n(x) =def

Card({ δm | m ≤ n and δm ≤ x})
n

(1)

is the proportion of observed response times less than x among the n first queries
of service S, by the orchestration (symbol “Card” denotes cardinality of the
referred set). Then, informally, the contract is met if, “for n large enough”:

∀x : F̂S,n(x) ≥ FS(x) (2)

holds, i.e., the observed empirical probability that the response time is less than
x is not smaller than promised.

Statement (2) is too informal, however, since the empirical cumulative dis-

tribution function F̂S,n(x) fluctuates with n, depending on the recorded ob-
servations. As a result, rejection decisions would heavily depend on particular
abnormal value observed for the response time, something that soft monitoring
should precisely avoid. To develop suitable algorithms, we cast our problem in
the framework of (sequential) statistical decision theory.

Statistical testing for stochastic dominance [2] provides the adequate math-
ematical framework to properly state and solve the monitoring problem. Here
the problem is stated as follows: let FS be the cumulative distribution function
promised by the service’s contract; let F be the actual cumulative distribution
function of the service. We wish to decide between the two hypotheses:

H0(the contract is met) : ∀x, F (x) ≥ FS(x)
against) :

H1(the contract is violated) : ∃x, F (x) < FS(x)
(3)

In the next section, we propose two different methods for solving statistical
decision problem (3). The first method is a sequential method. Rather than
detecting if the contract is violated, the method detects when it gets violated.

4 Two statistical methods for soft contract monitoring

4.1 First method: Page-Hinkley Cumulative Sum

Let F (x) = P(δ ≤ x) be the cumulative distribution function for the response
time δ of the considered service. Fix an integer K > 0, select K successive
quantiles

0 < d1 < · · · < dK = +∞ (4)

and set, for k = 1, . . . ,K:

pk = F (dk) − F (dk−1) (5)

Consider the following statistics:

ξk,n =def

Card({ δm | m ≤ n and dk−1 < δm ≤ dk})
n

(6)

which counts the proportion of observations sitting between dk−1 and dk, for the
n first observations. Let ξn be the column vector obtained by stacking the ξk,n,
for k = 1, . . . ,K. The multivariate Central Limit Theorem [13] states that 4, for

µT =
[
p1 p2 · · · pK

]
, (7)

and n large enough,

ζn =def

√
n(ξn − µ) (8)

is asymptotically distributed as the zero mean Gaussian distribution N (0, Σ),
written

ζn ∼ N (0, Σ), (9)

where covariance matrix Σ is equal to

Σ =

p1(1 − p1) −p1p2 . . . −p1pK

−p2p1 p2(1 − p2) . . . −p2pK

.

.
−pKp1 −pKp2 . . . pK(1 − pK)

(10)

The interest of statistics ζn is that it (asymptotically) has a known probability
distribution, meaning that statistically sound decision procedures can be devel-
oped on top of it.

Following (3), let FS(x) be the cumulative distribution function for the re-
sponse time of service S. Cumulative distribution function FS(x) is called the
nominal model for the response time, and it is assumed known (in our case, it is
set by contract). Then, let F (x) be the actual cumulative distribution function
of service S. The latter may or may not coincide with FS(x) but is in any case
unknown a priori (we do not know how the called service will actually behave).
The orchestration’s task is to detect whether or not the contract is met by the
called service, i.e., whether or not

“F (x) sits on the right, not wrong, side of FS(x)” (11)

Fix 0 < d1 < · · · < dK = +∞ as in (4). Denote by µ and µS , and by Σ and
ΣS , the quantities associated with F and FS via (5), (7) and (10), respectively.

4
X

T denotes transpose of matrix X.

Problem (11) is formalized as the following statistical decision problem. Let
θ ∈ RK be a design parameter vector (its selection is discussed later). Upon
observing the QoS parameters of the considered service, decide

H0(θ) : θT (µ − µS) ≥ 0
against H1(θ) : θT (µ − µS) < 0

(12)

where superscript T denotes transpose, so that θT (µ− µS) is the scalar product
between the two K-dimensional vectors θ and µ−µS . Note that µ−µS captures
how the actual behaviour of the considered service deviates from the nominal
one. How should we select θ? Let θ1, . . . , θK be the components of vector θ. Pick
some k ∈ {1, . . . ,K} and take

θ1 = · · · = θk = 1 , θk+1 = · · · = θK = 0 (13)

Then,

θT (µ − µS) =
k∑

j=1

(pj − pS,j) =
k∑

j=1

pj −
k∑

j=1

pS,j = F (dk) − FS(dk)

Thus, considering decision problem (12) with design choice (13) amounts to
monitoring the kth quantile, for the considered service. The different quantiles
can then be monitored by selecting k in (13) accordingly.

The next step is to translate decision problem (12) into some appropriate
statistics based on observations. To this end, consider the scalar quantity:

ζθ
n =def θT ζn =

√
nθT (ξn − µS) (14)

By (9), we know that
√

nθT (ξn − µ) ∼ N (0, σ2
θ), which implies ζθ

n ∼ N (µ̃θ, σ
2
θ),

where

µ̃θ =def θT
√

n(µ − µS) , σ2
θ =def θT Σθ

Therefore,
H0 holds iff µ̃θ ≥ 0
H1 holds iff µ̃θ < 0

Thus our decision problem boils down to that of detecting when the mean of
approximately Gaussian scalar random variable ζθ

n crosses the zero axis down-
ward. Now, at this point, the covariance matrix Σ is associated with unknown
cumulative distribution function F . We could estimate it, but we prefer to sim-
ply replace it by ΣS , which is associated to FS and can thus be pre-computed
prior to running the monitoring procedure. Consider the statistics

Xθ
n = 1

σθ

((∑K
k=1

θk1{dk−1<δn≤dk}

)
− θT µS

)

We have E(Xθ
n) = 1

σθ

θT (µ − µS), where E denotes expectation under actual
cumulative distribution function F . Also, for n large, we asymptotically have

1√
n

n∑

m=1

Xθ
m =

1

σθ

ζθ
n ∼ N

(
µ̃θ

σθ

, 1

)

Following an argument used in Section 5.4 of [27], we can replace decision Prob-
lem (12) by the following asymptotically equivalent one:

detect when E(Xθ
n) becomes negative,

where Xθ
n is considered an independent Gaussian sequence. Thus our decision

procedure needs to decide between the two regions E(Xθ
n) ≥ 0 and E(Xθ

n) < 0.
This raises the well known difficulty in statistics that the two regions are

not distant from each other, which causes problem for constructing a mean-
ingful statistics to separate them. The known technique to deal with this is to
approximate the two regions E(Xθ

n) ≥ 0 and E(Xθ
n) < 0 by E(Xθ

n) ≥ +ε and
E(Xθ

n) ≤ −ε, where ε > 0 is some small parameter. Accordingly, we consider the
following on-line change detection problem for the mean of Xθ

n:

detect when E(Xθ
n) switches from +ε to −ε, (15)

In (15), ε is a design parameter the tuning of which we discuss below. On-
line detection problem (15) is solved by running the following Page-Hinkley
cumulative sum test [28,27]:

Cθ
0 = 0, and Cθ

n = (Cθ
n−1 − Xθ

n − ε)+ (16)

where x+ =def max(x, 0). Parameter ε is the tolerance bound, i.e., it states how
far below zero µ̃θ can be tolerated before detecting contract violation. Now, as
long as E(Xθ

n) ≥ +ε holds, then Cθ
n sticks to zero with random fluctuations

above zero that have a “normalized” size, thanks to the scaling factor used in
the definition of Xθ

n. In turn, as soon as E(Xθ
n) ≤ −ε occurs (the contract gets

violated for the considered quantile), then Cθ
n rapidly grows away from zero and

detection occurs. A typical behaviour of Cθ
n is illustrated on Figure 2. Note that,

−ε

0

0

+ε

detection threshold

X
θ

n

C
θ

n

Fig. 2. Joint behaviour of Xθ
n and Cθ

n. The former is shown on the bottom
diagram, in blue, as a piecewise linear curve interpolating the successive values
Xθ

n−1,X
θ
n,Xθ

n+1, etc. We also show in dashed the two levels ±ε. Then, we show
on top and in red the corresponding behavior of Cθ

n. Note the detection delay.

if θ is selected as in (13), then

E(Xθ
n) = +ε ⇔ F (dk) − F0(dk) = ε × σθ (17)

To monitor a contract consisting of the promised cumulative distribution func-
tion FS , apply (6–10) with the following design choices:

K : user defined; F0 = FS ; p1 = · · · = pK = 1/K.

Choosing K too small amounts to considering coarsely spaced quantiles, which
reduces the accuracy of the monitoring procedure. On the other hand, choosing
K too large would result in finely spaced quantiles, which calls for larger n to
have enough data in each bin, which in turn result in larger delays for detecting
violations. Properly tuning K according the best tradeoff from the designer’s
viewpoint, is therefore important.

Now, at this point it should be clear that our contract monitoring procedure
only uses the K selected quantiles, not the entire cumulative distribution FS .
This also means that the contract itself can be stated in terms of these quantiles,
there is no need for agreeing on a fully detailed probability distribution. Com-
paring with the common sense single-quantile based contracts, we only need to
move to multi-quantile contracts, and our comprehensive soft contract approach
can be applied.

4.2 Second method: bootstrapping

Our second method consists in checking in a more direct way that that condition
(2) gets violated:

∃x : F̂S,n(x) < FS(x) (18)

The problem with detection rule (18) are the random fluctuations of F̂S,n(x).
Thus we introduce some tolerance zone in (18), by strengthening it as ∃x :

F̂S,n(x) < FS(x) − λ, or, equivalently

sup
x

(FS(x) − F̂S,n(x)) ≥ λ (19)

where λ is a small positive parameter. Thus the remaining issue is to tune λ
in a statistically meaningful way. This is achieved by applying the following
bootstrapping procedure:

1. As sketched in Section 2 (see [1] for details), at design time, the contract
of the orchestration is evaluated by performing Monte-Carlo based contract
composition. To this end, sample response times are drawn for Monte-Carlo
simulations, based on the assumed cumulative distribution function FS(x)
for the service. To prepare for monitoring, in addition, we produce bootstrap
estimates of the cumulative distribution function F̂S,γ(x) for this service:

F̂S,γ(x) =
Card({ δm | m ∈ γ and δm ≤ x})

|γ| ,

where γ is a randomly selected subset of {1, . . . , n}, the index set of the ran-
dom data generated, based on the assumed cumulative distribution function
FS(x) for the service. Let Γ be the set of such γ’s.

2. At design time, select a level (e.g., 95%). Regard F̂S,γ(x) as a population,
where γ ranges over Γ . Select threshold λ such that the following holds, for
95% of the γ ∈ Γ :

sup
x

(FS(x) − F̂S,γ(x)) ≤ λ

3. At run time, compute F̂S,n(x) as in formula (1) and decide upon violation if
(19) occurs.

Unlike our method of Section 4.1, decision rule (19) is not sequential. To get
a sequential and on-line monitoring procedure, a possibility is to run (19) for

F̂S,n,m(x) computed over successive overlapping windows of data: {1, . . . , n},
{p, . . . , p + n}, . . . , {mp, . . . ,mp + n}, and so on, for n fixed, p ≤ n fixed (to
ensure that windows overlap), and m = 1, 2, . . .

5 Discussion and Future Work

We have presented a QoS contract monitoring technique, based on the new
concept of soft probabilistic contract. Contract monitoring must be soft too (we
do not want to be harsh in rejecting a service because of an isolated, outlier
QoS parameter value, but we want that repeated defaults lead to rejection).
Probabilistic contracts provide the rationale for developing soft monitoring in
this sense.

The two techniques we propose are one-sided statistical tests. The first one is
a parametric test. It consists in monitoring a finite pre-specified set of quantiles.
It takes advantage of the Central Limit Theorem to ensure proper calibration
of the test statistics, which in turn avoids tedious tuning of highly non robust
parameters for the decision procedure. The second one is non parametric and
relies on bootstrapping for tuning the associated rejection region. These two
techniques are currently being evaluated on Monte-Carlo simulations as well as
real data from actual Web services.

Two problems are left aside in the present study. First, the transport network
layer is not considered, which biases QoS performance of the called services—the
transport network itself participates to the QoS perceived by the orchestration.
Second, and more importantly, our present technique treats all called services on
an equal basis. While this may seem fair at a first glance, it is not rational from
the point of view of the orchestration. A service whose QoS has little influence on
the overall QoS of the orchestration should be treated differently from a service
whose QoS is critical for the orchestration to meet its own QoS promise. A
method to compensate for this by taking advantage of the QoS-enhanced model
of the orchestration is under development and will be reported in future work.

References

1. S. Rosario, A. Benveniste, S. Haar, and C. Jard. Probabilistic QoS and soft con-
tracts for transaction based Web services orchestrations. Submitted for publication.
Feb. 2007. http://www.irisa.fr/distribcom/benveniste/pub/QoSWS2007.html

2. G. Anderson. Nonparametric tests of stochastic dominance in income distributions.
Econometrica, 64(5), 1183–1193, 1996.

3. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Meth-
ods, and Systems. MIT Press, Cambridge, MA, USA, 2002.

4. F. Barbon, P. Traverso, M. Pistore, and M. Trainotti. Run-Time Monitoring of
Instances and Classes of Web Service Compositions. In Proc. of Int. Conf. on
Web Services, ICWS06, F. Leymann and L.J. Zhang, Eds. September 18-22, 2006,
Chicago, USA. 2006.

5. S. Bhiri, W. Gaaloul, and C. Godart. Discovering and Improving Recovery Mecha-
nisms of Composite Web Services In Proc. of Int. Conf. on Web Services, ICWS06,
F. Leymann and L.J. Zhang, Eds. September 18-22, 2006, Chicago, USA. 2006.

6. P. Bhoj, S. Singhal, and S. Chutani. SLA Management in Federated Environments.
In M. Sloman, S. Mazumdar, and E. Lupu, editors, Proc. of Sixth IFIP/IEEE
Symposium on Integrated Network Management, IM 99, pages 293-308.

7. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte (Editor), I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services. [BPEL4WS.] Version 1.1. 5-May-
2003. 136 pages. http://xml.coverpages.org/BPELv11-May052003Final.pdf

8. W.M.P van der Aalst. Verification of workflow nets. Application and Theory of
Petri Nets 1997, volume 1248 of LNCS, pages 407426.

9. G. Canfora, M. Di Penta, R. Esposito, and M. L. Villani. QoS-Aware Replanning
of Composite Web Services. In Proc. of Int. Conf. on Web Services, ICWS05, C.K.
Chang, L-J. Zhang, Eds. July 11-15, 2005, Orlando, USA.

10. Andries van Dijk. Contracting Workflows and Protocol Patterns. Business Process
Management 2003, Wil M. P. van der Aalst and Arthur H. M. ter Hofstede and
Mathias Weske Eds., LNCS 2678, 152-167, 2003.

11. A. Erradi, P. Maheshwari, and V. Tosic. Recovery Policies for Enhancing Web
Services Reliability. In Proc. of Int. Conf. on Web Services, ICWS06, F. Leymann
and L.J. Zhang, Eds. September 18-22, 2006, Chicago, USA.

12. C. Hughes and J. Hillman. QoS Explorer: A tool for exploring QoS in Composed
Services. Proc. ICWS 2006, 797–804.

13. M.G. Kendall and A. Stewart. The Advanced Theory of Statistics. London, Griffen.
1979.

14. Y. Li, K. Sun, J. Qiu, and Y. Chen. Self-Reconfiguration of Service-Based Systems:
A Case Study for Service Level Agreements and Resource Optimization. In Proc.
of Int. Conf. on Web Services, ICWS05, C.K. Chang, L-J. Zhang, Eds. July 11-15,
2005, Orlando, USA.

15. F. Puhlmann, M. Weske. Using the Pi-Calculus for Formalizing Workflow Patterns.
In W.M.P. van der Aalst et al. (Eds.): BPM 2005, volume 3649 of LNCS, Nancy,
France, Springer-Verlag (2005) 153-168.

16. C. Ouyang, E. Verbeek, W.M.P van der Aalst and S. Breutel. Formal Semantics
and Analysis of Control Flow in WS-BPEL. BPM Center Report BPM-05-15,
BPMcenter.org, 2005.

17. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237-267, 2003.

http://www.irisa.fr/distribcom/benveniste/pub/QoSWS2007.html
http://xml.coverpages.org/BPELv11-May052003Final.pdf

18. J. Arias-Fisteus, L. Sánchez Fernández, and C. Delgado Kloos. Applying model
checking to BPEL4WS business collaborations. SAC 2005: 826-830.

19. Keller A., Ludwig H., The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management,
Vol. 11, No 1, Plenum Publishing, pp. 57-81.

20. N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon. Web
Services Choreography Description Language – WS-CDL, version 1.0.
http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html

21. J. Cardoso, A. Sheth, J. Miller, J. Arnold, and K. Kochut, Quality of Service for
Workflows and Web Service Processes, Journal of Web Semantics 2004.

22. Z. Liu, M. S. Squillante, and J. L. Wolf. On Maximizing Service-Level-Agreement
Profits. ACM E-Commerce Conference, Tampa, FL. October 2001

23. A.C. Davison, and D.V. Hinkley. Bootstrap Methods and their Application. Cam-
bridge University Press, 1997.

24. Jayadev Misra and William Cook. Computation orchestration: A Basis for
Wide-Area Computing. Journal of Software and Systems Modeling, May 2006.
http://www.cs.utexas.edu/~wcook/papers/OrcJSSM05/OrcJSSM.pdf

25. S. Rosario. D. Kitchin, A. Benveniste, W. Cook, S. Haar, and C. Jard. Event
Structure Semantics for Orc. submitted, 2007.

26. A. Sahai, V. Machiraju, M. Sayal, Aad P. A. van Moorsel, and F. Casati. Auto-
mated SLA Monitoring for Web Services. DSOM 2002: 28-41.

27. A. Benveniste, M. Métivier, and P. Priouret. Adaptive Algorithms and Stochastic
Approximations. Applications of Mathematics, 22. Springer Verlag. 1990.

28. M. Basseville and I.V. Nikiforov. Detection of Abrupt Changes,
Theory and Applications. Prentice Hall, 1993. Also available from
http://www.irisa.fr/sisthem/kniga

29. H. G. Song and K. Lee: sPAC (Web Services Performance Analysis Center): Per-
formance Analysis and Estimation Tool of Web Services. Business Process Man-
agement 2005: 109-119.

30. XMethods. http://www.xmethods.net

http://www.w3.org/2002/ws/chor/edcopies/cdl/cdl.html
http://www.cs.utexas.edu/~wcook/papers/OrcJSSM05/OrcJSSM.pdf
http://www.irisa.fr/sisthem/kniga
http://www.xmethods.net

	Introduction
	Probabilistic soft contracts
	Monitoring probabilistic soft contracts: problem setting
	Two statistical methods for soft contract monitoring
	First method: Page-Hinkley Cumulative Sum
	Second method: bootstrapping

	Discussion and Future Work

