
Small Logs for Transactional Services:
Distinction is much more accurate than (Positive) Discrimination ∗

Debmalya Biswas, Blaise Genest
IRISA/INRIA & CNRS

Campus Universitaire de Beaulieu
35042 Rennes Cedex, France
firstname.lastname@irisa.fr

Thomas Gazagnaire1

Citrix Systems R&D Ltd.
Black Horse House, Castle Park

Cambridge, CB3 0FL, United Kingdom
thomas.gazagnaire@citrix.com

Abstract

For complex services, logging is an integral part of many
middleware aspects, especially, transactions and monitor-
ing. In the event of a failure, the log allows us to deduce the
cause of failure (diagnosis), recover by compensating the
logged actions (atomicity), etc. However, for heterogeneous
services, logging all the actions is often impracticable due
to privacy/security constraints. Also, logging is expensive
in terms of both time and space. Thus, we are interested
in determining a small number of actions that needs to be
logged, to know with certainty the actual sequence of exe-
cuted actions from any given partial log. We propose two
heuristics to determine such a small set of transitions, with
services modeled as Finite State Machines. The first one
is based on(Positive) Discriminationof transitions, using
every observation to know (discriminate) that a maximal
number of transitions occurred. We characterize it alge-
braically, giving a very fast algorithm. The second algo-
rithm, thedistinguishingalgorithm, uses every observation
to maximize the number of transitions which are ensurednot
to have occurred. We show experimentally that the second
algorithm gives much more accurate results than the first
one, although it is also slower (but still fast enough).

1. Introduction

An interesting problem for complex systems is to deter-
mine a minimal set of actions that needs to be observable
such that a given property holds. Some of the properties
studied in literature of discrete event systems are normality
[8], observability [7], state observability [10], diagnosabil-
ity [13], etc. Our system corresponds to a (composite) Web

∗This work is supported by la Region Bretagne (CREATE ACTIVE-
DOC) and ANR-06-MDCA-005 DOCFLOW.
1 Work done while the author was at IRISA, France.

service. A Web service [1] refers to an online service acces-
sible via Internet standard protocols. A composite service,
composed of already existing (component) services, com-
bines the capabilities of its components to provide a new
service. A service schema which specifies the execution or-
der of its components, can be modeled as a Finite State Ma-
chine (FSM), performing actions on global variables. We do
not tackle here the transformation of a service into a FSM,
which should be handled with care to yield a FSM of small
size (see [14] and example 1).

Our long-term objective is to provide a transactional
framework for (composite) Web services. A transaction [3]
can be considered as a group of actions encapsulated by
the operations Begin and Commit/Abort, having the follow-
ing properties: Atomicity (A), Consistency (C), Isolation(I)
and Durability (D). Here, we focus on the atomicity aspect,
that is, either all the actions of a transaction are executed
or none. In the event of a failure, atomicity is preserved by
compensation [4]. Compensation consists of executing the
compensating actions, corresponding to each executed ac-
tion of the failed process, in reverse order of the original ex-
ecution. Thus, for compensation to be feasible, we need to
reconstruct each executed action or the complete history of
any execution. The usual way of achieving that is to main-
tain a log of observable actions. However, in addition to the
obvious space overhead of logging (in our testing, about 5
times more), the complete log may not always be accessi-
ble. For a composite service, the providers of its component
services are different. As such, their privacy/security con-
straints may prevent them from exposing (part of) the logs
corresponding to the execution at their sites. Hence, we
want from such a partial log to know with certainty the ac-
tual sequence of executed actions, to be able to compensate
it.

Section 2 introduces the required formal preliminaries
including the precise problem statement. Clearly, we are in-
terested in logging the smallest number of transitions possi-

ble. However, finding [15, 9] or approximating [11] the ab-
solute minimal number of such transitions is NP-Complete.
We thus propose our first heuristic in Section 3. The idea
behind it is that a logged transition allows to(positively)
discriminateseveral transitions. That is, we optimize the
observable set such that every logged transition implies that
a maximum number of transitions are sure to have occurred.
We then characterize this algorithm in algebraic terms with
a matrix, giving a very fast algorithm (see Section 3.2). Our
second idea, presented in Section 4, is that a logged transi-
tion also allows todistinguishseveral transitions. That is,
we optimize the observable set such that every logged tran-
sition implies that a maximum number of transitionsdid not
occur. We test both algorithms experimentally in Section 5.
The results show that the distinguishing algorithm gives re-
sult from1 (at least as good, which we prove theoretically)
to 10 times smaller than the discriminating algorithm, with
an average of1.9 times smaller.

2. Preliminaries

Formally, we model a transactional service as a Fi-
nite State Machine (FSM), that is, a 4-tupleM =
(Q, s0, sf , T), where:

• Q is the finite set of states,

• s0 andsf are the initial and final states, respectively,

• T ⊆ Q × Q is the (partial) transition relation.

We describe our FSMs as graphs with a unique input and
output point, each node and edge corresponds to a state and
transition, but we ignore the alphabet. We assume that the
serviceM does not have any unreachable states and that all
states can reach the final statesf . For a stateq, ∗q (q∗) de-
notes the set of incoming (outgoing) transitions to (from)
q. For convenience, we also assume that there are no out-
going transitions fromsf and no incoming transitions tos0

(Notice that we could deal with a service without these re-
quirements, but the proof would be more technical.) For
a transitionτ = (q1, qj), qi andqj are referred to as the
source and target states ofτ . We say that an execution se-
quenceρ = τ1 · · · τn ∈ T ∗ is a path ofM if there exists
q0, · · · , qn ∈ Qn+1 with τi = (qi−1, qi) for all 1 ≤ i ≤ n.
A path is called initial if furthermoreq0 = s0. We denote
by P(M) the set of initial paths inM . Finally, we denote
by |M | the size ofM , that is, its number of transitions.

Under restricted observability, for a serviceM =
(Q, s0, sf , T), only a subset of its transitionsTO ⊆ T are
observable, that is, can be logged. In general, for any exe-
cutionρ, we call observation projection, the observation we
have afterρ was executed (a sequence of transitions, control
points, data. . ., etc.). We say that an observable projection

σ is uncertain if there exists two paths having the same pro-
jection. The FSMM is execution sequence detectable iff
none of its observable projections are uncertain.

Definition 1 For an FSMM , let TO ⊆ T be the set of
observable transitions. The observation projection ObsO :
T ∗ −→ T ∗

O is the morphism with ObsO(a) = a if a ∈ TO,
and ObsO(a) = ǫ if a ∈ T \ TO, with ǫ the empty word.

That is, ObsO(ρ) is the subsequence ofρ obtained by
eliminating fromρ every occurrence of a transition which
is not in TO. With such an observation projection ObsO,
the only way of having execution sequence detectability
is to have every transition observable. Indeed, as soon as
there exists even one non-observable transition, the service
is not execution sequence detectable. Else, let us take a
pathρτ with the last transitionτ /∈ TO. Then, ObsO(ρτ) =
ObsO(ρ). A usual way to overcome such a problem is to
ask for certainty only up to the last few events of the se-
quence [10]. However, this turnaround does not make sense
in our framework since if we cannot compensate the very
last action, then we cannot compensate any action at all. As
such, we design a new observation mechanism, where the
last control point reached before failure is monitored, even
if the last action is not logged. In practice, it means that
every state that is reached is monitored, and overstack the
previous state in a special memory buffer.

Definition 2 Let M be an FSM,TO ⊆ T . The observa-
tion projection Obslast

O : T ∗ −→ (T ∗
O , Q) is the function

Obslast
O (ρ) = (ObsO(ρ), q) for all ρ ∈ P(M) ending inq.

We will stick with this definition of observability for the
rest of the paper. As mentioned before, we are interested in
logging as few transitions as possible.

Problem statement. Given an FSMM = (Q, s0, sf , T),
we callTO an observable set of transitions if the service is
execution sequence detectable with Obslast

O . We want to de-
termine an observable set of transitionsTO ⊆ T of minimal
size. We refer to such a set as aminimal observable set.

The cardinality of a minimal observable setTO of an
FSM M is referred to as its observable sizeMO(M) =
|TO|. Notice that as is usual with decision and computation
algorithms, it is sufficient to have an algorithm which from
an FSM gives its observable size. That is, we can derive a
minimal observable set of the FSM based on an algorithm
answering whether its observable size is bigger thann, for
anyn, and in time polynomially equivalent.

Initiate
Payment
Request

Currency
Type?

Finance
Director's
approval?

$

Order Citibank
Cheque

Order
American
Express

Cheque

Euro

Y

N

Update Accounts
Database

Deliver Cheque Terminate
Request

Get Supervisor's
Approval

Y

Get Team
Lead's

Approval

N
Student

?

Send by Courier

Hand Deliver

Geographic
Location?

Initiate
Delivery

Same campus

Different
campus Terminate

Delivery

Figure 1. Travel funds request workflow.

Example 1 We consider in Fig. 1 a travel funds request ser-
vice, inspired by the workflow in [12]. It involves different
departments across organizations.

We model the service using the FSMM = (S, s0, sf , T)
representation, as shown in Fig. 2. Notice that this FSM is
a simplification of the service, since for instance the choice
between the team leader or supervisor approvals is not rep-
resented. The reason is that they are both associated with an
empty compensating transition, hence knowing which path
was taken here is not necessary to be able to perform recov-
ery. However, it is necessary to know which bank issued the
cheque in order to able to compensate it, by a “Cancel Last
American Express (Citibank) Cheque”. It is also possible
to handle data being written to the database. For instance,
if there is no “Cancel Last Cheque” mechanism, it is possi-
ble to force the transition “Update Accounts Database” to
be observable, which would lead to the exact amount of the
cheque being written to the log, and recovery would man-
ually credit the amount of money written in the log to the
corresponding account.

Now, let TO = {e2, e3} and a failure occurs while
processinge8, that is, the cheque is not issued or deliv-
ered correctly. Then, Obslast

O (e1e2e5e7) = (e2, s5) =
Obslast

O (e1e2e4e6e7). Thus, we do not know if an Amer-
ican Express or Citibank cheque was processed. With
T ′

O = {e2, e6}, we have Obslast
O (e1e2e5e7) = (e2, s5) and

Obslast
O (e1e2e4e6e7) = (e2e6, s5), andT ′

O is an observable
set of transitions. Notice that every path froms0 to sf uses
T ′

O.

We first relate the problem of computingMO(M) using
our definition of observable projections with other known
problems. We state now that computing the minimal ob-
servable set is equivalent to theuniconnected subgraph
problem. This problem is also called theminimal marker

s2

s3

Initiate Funds

Request (e1)

Process $

(e2)

Process

Euros (e3)

Order American

Exp. Cheque (e5)

Order Citibank

Cheque (e6)

Update Accounts

Database (e7)

Send by courier

(e8)

s5 s0

Process Euros on
Finance Director's

Reject (e4) sf s4 s1

Hand deliver (e9)

Figure 2. FSM representation of Fig. 1.

placement problem[9], in the meaning of the following
proposition.

Proposition 1 LetM be an FSM andTO a subset of transi-
tions ofM . Denote byM ′ the FSMM obtained by deleting
all transitions belonging toTO. Then,TO is an observable
set ofM iff there does not exist a pair of pathsρ1 6= ρ2 of
M ′ with ρ1 beginning and ending at the same pair of states
asρ2.

This problem is NP-complete [9], even with strong re-
strictions on the graph (acyclic, small indegree and outde-
gree) [5]. Moreover, this problem cannot be approximated
[11] in polynomial time. It means that it is impossible to
find algorithms which approximate an observable size close
to the absolute minimal size (within a fairly limiting bound),
for all FSMs. Anyway, one can try to identify subclasses of
FSMs for which this is possible. For instance, hierarchical
FSMs are a natural class of FSMs for which the problem can
be solved in an efficient way [5]. However, not all FSMs
used for modeling services are hierarchical. We propose
here fast algorithms which give an observable set of transi-
tions for every FSM. We will then analyze experimentally
how far they are from a minimal set, and how often they
are far away from the absolute minimal. Indeed, following
[11], we know that there will always exist FSMs for which
our polynomial time algorithms will be far away from the
minimal, but the question which is of interest is how likely
it is for such FSMs to occur.

3 (Positively) Discriminating Algorithm

3.1. A Quadratic Time Algorithm

Our first idea is to use the observation as a discriminator.
When an observable transition is logged, it allows not only
to know that this transition occurred (positive discrimina-
tion), but also that otherimplied transitions occurred. That
is, the occurrence of some transitions can be deduced from
the occurrence of another transition. For example, with ref-
erence to Fig. 2, ife5 occurred, we can also infer that the
transitionse1, e2, e7 have occurred. The intuition is to not
consider a transition as possibly observable if its occurrence

Figure 3. FSM (a), after compression (b), after
deleting e1 (c) and compressing again (d).

can be inferred from the occurrence of other transitions.
We thus simply delete such transitions, using the algorithm
Compress defined below.

Algorithm Compress FSMM = (S, s0, sf , T).
for i := 1, . . . , |S|
if (|∗si| = 1 and|s∗i | = 1)

Let τ1 = (sj , si), τ2 = (si, sk) for somesj , sk.
Setτ1 = (sj , sk), deletesi from S andτ2 from T

else if (|∗si| = 1 and|s∗i | > 1)
Let τ1 = (sj , si) for somesj .
For all τ = (si, sk) ∈ s∗i , setτ = (sj , sk).
Deletesi from S andτ1 from T .

else if (|s∗i | = 1 and|∗si| > 1)
Let τ2 = (si, sk) for somesk.
For allτ = (sj , si) ∈∗ si, setτ = (sj , sk).
Deletesi from S andτ2 from T .

endif
endfor

The FSMM in Fig. 3(a), after compression is shown in
Fig. 3(b). It is pretty clear that observing all the remaining
transitions{e1, e2, e5, e6, e7, e8} is an observable set ofM ,
as shown in the next proposition.

Proposition 2 Given a serviceM = (S, s0, sf , T), the
subset of transitionsT ′ ⊆ T obtained on applying algo-
rithm compress toM , is an observable set of transitions of
M .

Proof. We show that for each pair of statess1 6= s2 ∈ S,
having more than one distinct pathρ1 · · · ρn between them,
at least one transition of each of the paths is inT ′. With-
out loss of generality, we consider the different cases with
respect toρ1. Then, we have the following cases:

• ρ1 is a straight line, that is, all intermediate states in
ρ1 have indegree and outdegree equal to 1. Then, it is
easy to see that the outgoing transition ofs1 alongρ1

would be inT ′.

• At least one intermediate state inρ1 has indegree> 1.
Let us consider the first intermediate state having inde-
gree> 1, saysi. Traverse backward (towardss1) from
si alongρ1 till we encounter a state having outdegree
> 1, saysj . Then, the subpath ofρ1 from sj to si is a
straight line. And, the outgoing transition ofsj along
ρ1 will be in T ′.

• At least one intermediate state inρ1 has outdegree> 1.
Analogous to the above case.

Notice that the observable setT ′ obtained by compres-
sion has scope for optimization, as for each pair of states
s1 6= s2 of M having> 1 paths between them, the transi-
tions inT ′ cut all paths (as proven earlier). Recall that the
existence of one path between a pair of states is not an is-
sue with respect to observability. Thus, instead of selecting
all the remaining transitions, let us just select one transition
τ1 and declare it as observable. For instance, in Fig. 3, let
τ1 = e1. We can delete it from the original FSM since it
is positively discriminated (giving Fig. 3(c)). Now, imag-
ine that some state (s2 in the example) had two incoming
transitions before,τ1, τ2 (τ2 = e2 here). After deletion of
τ1, the state has only one incoming transition, which means
thatτ2 will get deleted by the compress algorithm (see Fig.
3(d)). Basically, it means that if we compress, select one
transition at a time, delete it from the FSM, and compress
again, we end up (in that case) with strictly fewer observ-
able transitions than before (τ2 is not in the observation set
anymore, and we need to observe4 transitions instead of5).
This gives rise to the following algorithm.

Algorithm Discriminate FSMM = (S, s0, sf , T).
Output.An observable setTO.
Initialization. TO = ∅, M ′ = Compress(M).
Steps.
while |M ′| > 1 do
Select one transitionτ of M ′.
Add τ to T0, deleteτ from M .
M ′ = Compress(M).

endwhile

Proposition 3 For a given serviceM = (S, s0, sf , T), the
outputTO of the discriminating algorithm is an observable
set ofM .

The problem of this algorithm is that it is in quadratic
time: we need to consider every transition twice for each

compress step, then we need to call it once for every ob-
served transition. We will now try to characterize the se-
lected observable set of transitions algebraically to obtain
an efficient algorithm.

3.2. Algebraic Characterization

Let us define an extension of the classical incidence ma-
trix of a directed acyclic graph (and of a FSM seen as a di-
rected graph), which encodes a directed graph in a matrix.
Its first rows express the directed graph, and its last rows ex-
press the observation from an observable set of transitions
TO. For convenience, we index the matrix by states and
transitions rather than numbers.

Definition 3 (extended incidence matrix) Let
M = (Q, s0, sf , T) be an FSM andTO ⊆ T be a
subset of transitions ofM . The incidence matrixof M ,
relative toTO is a matrixAM,TO

of size(|Q|+ |TO|)× |T |
defined as follows:

For every(s, τ) ∈ Q × T :

• AM,TO
[s, τ] = 1 if τ ends ins;

• AM,TO
[s, τ] = −1 if τ starts froms;

• AM,TO
[s, τ] = 0, otherwise.

For every(τ, τ ′) ∈ TO × T :

• AM,TO
[τ, τ] = 1;

• AM,TO
[τ, τ ′] = 0, if τ ′ 6= τ .

The first|Q| rows of this matrix correspond exactly to the
classical incidence matrix. We just append to it a (almost
identity) |TO| × |T | matrix in order to obtain an extended
incidence matrix. For example, the matrix corresponding to
the FSMM in Fig. 3(a) andTO = {e1, e5, e6, e7, e8}, is
shown in Fig. 4.

Furthermore, as we translated an FSMM =
(Q, s0, sf , T) into an algebraic objectAM,TO

, we do now
transform a pathρ of P(M) into an algebraic object. Let us
denote byχ(ρ) the vector in{0, 1}|T |, such thatχ(ρ)[τ] =
1 if τ is fired inρ, otherwiseχ(ρ)[τ] = 0. Notice thatχ(ρ)
characterizes any pathρ of an acyclic graph (the order of
transitions can be recovered unambiguously). We now de-
fine the observationVM,TO

(X) associated with a vectorX
in {0, 1}|T | representing a path.

Definition 4 (observation vector) The observation of a
vectorX in {0, 1}|T |, relative toTO is a vectorVM,TO

(X)
of size|Q| + |TO|, such that for everys ∈ Q

• VM,TO
(X)[s] = −1 if X starts froms;

• VM,TO
(X)[s] = 1 if X ends ins;

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

s1 −1 −1 0 0 0 0 0 0 0 0

s2 1 1 −1 −1 0 0 0 0 0 0

s3 0 0 1 0 −1 −1 0 0 0 0

s4 0 0 0 1 0 0 −1 −1 0 0

s5 0 0 0 0 1 0 1 0 −1 0

s6 0 0 0 0 0 1 0 1 0 −1

s7 0 0 0 0 0 0 0 0 1 1

e1 1 0 0 0 0 0 0 0 0 0

e5 0 0 0 0 1 0 0 0 0 0

e6 0 0 0 0 0 1 0 0 0 0

e7 0 0 0 0 0 0 1 0 0 0

e8 0 0 0 0 0 0 0 1 0 0

Figure 4. Matrix of the FSM M in Fig. 3(a) and
TO = {e1, e5, e6, e7, e8}.

• otherwiseVM,TO
(X)[i] = 0.

Moreover, for everyτ ∈ TO, we have:

• VM,TO
(X)[τ] = 1 if X [τ] = 1;

• otherwiseVM,TO
(X)[τ] = 0.

Clearly, TO is an observable set of transitions iff there
does notexistX 6= Y with VM,TO

(X) = VM,TO
(Y). We

use now the algebraic characterization.

Proposition 4 LetX, Y ∈ {0, 1}|T |. Then we have:

VM,TO
(X) = VM,TO

(Y)

⇔

AM,TO
· Y = VM,TO

(X) = AM,TO
· X

Using proposition 4, we obtain thatAM,TO
is injective

implies thatTO is an observable set of transitions. It can be
shown that the discriminating algorithm gives a minimal set
for which AM,TO

is injective, thus giving us the algebraic
characterization we were looking for (we also checked that
fact experimentally).

Now, it is well known that a matrix is injective iff its ker-
nel has dimension0. In our case, it is also well known [6]
that the kernel of the incidence matrixAM,∅ corresponds
exactly to the so-called cycle space ofM . Moreover, the
dimension of the cycle space (also known as the cyclomatic
number) of a graph withn vertices,m edges andK con-
nected components (considering edges are unoriented) is
exactlym−n+K. That is, it suffices to observem−n+K
edges to have an injective matrix (and equivalently an ob-
servable set of transitions). That is,MO(M) ≤ m−n+K.

3.3. Analysis of the Matrix Algorithm

The matrix algorithm is clearly very fast to give an ap-
proximation ofMO(M), since the starting graph is con-
nected. It suffices to countm − n + 1 to know the number
of observable transitions output by the discriminating al-
gorithm, which is an immediate number to compute. For
instance, in the example of Fig. 3,10 − 7 + 1 = 4. Know-
ing the transitions to log is not much harder to compute ei-
ther. It suffices to run the algorithm incrementally, selecting
one transition at a time. Let us now analyze which transi-
tions are important to log. Assume we are choosing to log
some transitionτ . Either deletingτ increases the number
of connected components ofM or not. If it increases the
number of connected components, logging it leads to the
matrix algorithm on the resulting FSM giving us the tran-
sition to observe, plusm′ − n′ + K ′, wherem′, n′, K ′ are
the values for the new FSM, that is,1 + m′ − n′ + K ′ =
1 + (m − 1) − n + (K + 1) = m − n + K + 1. Clearly,
logging this transition is not a good idea since it increases
the number of transitions to log in the end. Hence, we shall
never log a transition whose deletion increases the number
of connected components.

On the other hand, if deletingτ keeps the number of con-
nected components constant, then1 + m′ − n′ + K ′ =
1 + (m − 1) − n + K = m − n + K, and the transition
we are choosing is useful. That is, any set ofm − n + 1
transitions whose deletion keeps the FSM connected is an
observable set of transitions. To sum up, we know that we
can select any transition, as long as its deletion does not
disconnect connected components. Choosing with care the
transition we select may optimize the result. For that, we
need some heuristical metrics to tell us which transition is
or is not good to observe.

Let us analyze the algorithm. Notice first that thinking
in terms of positive discrimination is not always good. In-
deed, in the example of Fig. 3, the compressed versions
are shown in Fig. 3(b and d), leading to the observable
set{e1, e5, e6, e7}. However, a minimal observation set is
{e1, e4, e10}, and observing any transition ine5, e6, e7, e8

leads to observing at least4 transitions in order to get an
observable set.

We call initial (final) state a state which has no incom-
ing (outgoing) transitions. In the matrix algorithm, there
can be more than one initial and/or final states. Indeed, in
Fig. 3, if we deletee4, thens4 becomes an initial state.
However, the matrix algorithm does not consider which
transition is reachable from which initial state, and which
final state it can reach. In particular, it is possible that
m − n + K 6= 0, but that the FSM is observable with the
current set of observable transitions (no more transitionsare
needed), while the matrix algorithm still asks to select some
more. For example, with reference to Fig. 3, after deletion

of e1, e4, e10, m−n+1 6= 0, but{e1, e4, e10} is already an
observable set.

4 Distinguishing Algorithm

Based on the second observation, we design the follow-
ing method to select transitions to be observed:

1. Select a transitione whose deletion does not discon-
nect the FSM.

2. Ensure that there is an initial states0, a states and two
paths between(s0, s), one usinge and one not usinge
(if it is not the case, then this transition is useless for
observability).

With such a method, we are sure to get at most as many
transitions as observed by the matrix algorithm. Now, no-
tice that the first condition is actually implied by the second
condition. Indeed, if there exists two statess, t, two paths
e1 · · · em, f1, · · · fn andei /∈ {fj | j ≤ n}, then it means
that deletingei cannot disconnect the FSM, since the undi-
rected pathei−1 · · · (e1 = f1) · · · (fn = em) · · · ei+1 al-
lows to indirectly connectei−1

∗ =∗ ei and ∗ei+1 = e∗i .
So, we can just delete the first condition. Here is the algo-
rithm we use for testing the second condition in an efficient
manner, based on Depth First Search (DFS). Basically, the
algorithm breaks and returnst as soon as one transitiont
points to a states′ which has been previously explored (that
is, there is another path, not usingt which reachess′ from
an initial states from whicht is reachable. That is, we have
two paths connectings to s′, one usingt and one not using
t). DFS keeps a stackS, a hash tableH of states which have
already been explored by the search, and each transition is
tagged as explored or unexplored.S.head designates the
head of the stack, andt.dest the target state of a transition
t.

Algorithm Test.
CreateHash tableH .
for each initial states0 of M .
Initialize H to empty,S to s0.
Setall the tags to unexplored.
Run DFS froms0:
whileS is nonempty do
while there is an unexplored transitiont

from stateS.head do
Tagt as explored.
if t.dest ∈ H , thenreturnt.
elseinsertt.dest into H and pusht.dest onS.
endif

endwhile
popS

endwhile

endfor
return “No more transitions to explore”.

Now, notice that there can be plenty of transitions which
satisfy condition 2. We would like to have a more precise
metric to choose the transition to observe in that set. Rather
than optimizing the number of transitions we are positively
discriminating, we want now to optimize the number of
transitions we distinguish the transition from. That is, we
want to optimize the number of other paths not using that
transition, but connecting two states which are also con-
nected with a path using that transition. However, comput-
ing exactly that number of paths would be really inefficient.
We thus propose an efficient but slightly less accurate ver-
sion: we want to maximize the number of initial or final
states from or to which the second condition is true. It suf-
fices simply to modify the previous algorithm, by keeping
a counter associated with each transition, and not breaking
when a transition hittingH is seen, but by increasing the
counter of that transition. Furthermore, we also increment
the counter of the first transition which led to the insertion
of that state intoH initially. The counter of a transition is
increased at most once per initial state. We call this new
algorithmCount. Obviously, an algorithmCountBackcan
be similarly devised, running from all final states and tra-
versing transitions backwards. Now, our new distinguishing
algorithm proceeds as follows:

Algorithm Distinguish FSMM = (Q, s0, sf , T).
CreateSetTO.
loop

Setall transition counters to0.
Runat random Count or CountBack.
if all transition counters are0, thenreturnTO.
elseselect one transitiont with maximal counter value.

Addt to T0.
Deletet from T .

endif
endloop

The previous claims we made allow easily to state the
following.

Proposition 5 For an FSMM = (Q, s0, sf , T), the distin-
guishing algorithm returns an observable setTO of transi-
tions. Moreover, its size is always|TO| ≤ (|T | − |Q| + 1),
which is the observable size returned by the matrix algo-
rithm and the positively discriminating algorithm.

5. Experimental Evaluation

We have some theoretical clues about how our algo-
rithms fair against each other, and how close they can ap-
proximate the absolute minimal observable size. Because
our matrix and distinguishing algorithms are polynomial

time, we know that there are FSMs on which they give an
answer far away from the optimum [11]. The question is
how far they are, and how often it happens. The second fact
is that the distinguishing algorithm gives a set never bigger
than the one given by the matrix algorithm. The question
then is: is it better, and if yes, by how much and how often
is it much better.

No. of Observable size
edges Absolute Matrix Disting.

42 9 9 9
58 14 14 14
75 18 19 18
103 20 24 20
102 32 33 32
123 31 33 32
146 33 34 34
146 42 42 42
178 36 37 36
185 38 38 38
223 43 47 44
221 53 57 55
241 57 62 58
273 51 57 53
280 72 75 72
294 74 76 75
325 69 78 73
326 75 79 76
355 74 81 77
345 88 91 88
382 84 90 85
387 92 96 94
410 81 87 83
445 89 97 90
448 100 106 104
460 101 108 105
484 99 107 103
489 104 111 107
540 106 122 112
550 93 101 95
570 108 118 111
605 108 124 111
618 121 136 125
634 120 131 124
631 115 121 118
657 131 141 134
672 134 146 139
699 126 141 131
704 142 156 150

No. of Obs. size
Edges Matrix Distinguishing

97 41 11
127 55 13
85 29 19

115 47 20
137 52 23
126 43 27
264 120 20
312 143 22
173 63 36
201 77 52
431 197 28
452 205 40
103 22 17
200 72 39
133 36 25
356 147 74
301 131 45
114 27 19
785 367 40
169 45 30
98 16 16

101 17 17
175 49 34
987 462 72
132 29 24
490 203 113
464 188 110
158 37 27
115 17 17
620 268 140
121 17 17
631 268 141

1013 468 90
128 18 18
165 53 37
114 56 56
214 58 36
137 19 19
508 223 86
228 53 39
747 315 178
222 55 38
947 416 217
790 340 219
161 23 23

1023 447 257
225 46 34
997 431 230
311 89 60
253 58 40
923 419 106
321 90 63
182 24 24

1110 480 276

Figure 5. Raw data for hierarchical (left) and
general (right) FSMs.

The first question is difficult to answer accurately,
since obtaining the absolute minimal observable size is in-
tractable. One solution could be to look at small enough
FSMs to get the values, but the problem is a variation of
one observable transition having a big impact percentage
wise in small sets, so the results would not be very mean-
ingful. Instead, we focus on particular non-trivial FSMs,

namely hierarchical FSMs [2]. For instance, the system in
Fig. 1 is hierarchical, with2 components. In [5], we present
a polynomial time divide and conquer algorithm to compute
the minimal observable size of a hierarchical FSM based on
the observable sizes of its components. This allows us to
compute the absolute minimal observable size of large hier-
archical FSMs, as long as the components are small enough.
We thus performed our two heuristics plus the absolute min-
imal algorithm on hierarchical FSMs, giving the results on
the left part of Fig. 5, analyzing the data in the next sec-
tion. Furthermore, to confirm or infirm the conclusions we
draw on hierarchical FSMs, we also performed experiments
for our two heuristics on general FSMs, whose results are
given on the right part of Fig. 5.

5.1. Hierarchical FSMs

We generate hierarchical FSMs randomly, using the
following method for each FSM. First, we choose a
number (between one and forty) of base subcompo-
nents in the FSM. Then, we generate each of them
randomly by using theSynthetic DAG Generation Tool
(http://www.loria.fr/˜suter/dags.html), varying randomly
the input parameters, to get FSMs as diverse as possible.
We then generate inductively a hierarchical FSM having
these base components. On those FSMs, we run the algo-
rithm from [5] to get the absolute minimal observable size,
as well as the matrix and distinguishing algorithms. Fig. 6
shows the result we obtained, according to the number of
transitions of the global FSM.

0

30

60

90

120

150

180

0 100 200 300 400 500 600 700 800

size of graph

si
ze

o
f
o

b
se

rv
a

b
le

 s
e

t

matrix absolute disting.

Figure 6. Observable size vs. number of tran-
sitions, over 40 randomly generated hierar-
chical FSMs.

The graph confirms that the matrix algorithm gives
worse results than the distinguishing algorithm, which gives
worse results than the absolute algorithm, but the difference
does not seem very important.

Let us analyze more precisely the percentage difference
between the absolute minimal observable size and the ob-

0

5

10

15

20

%

disting.

matrix

Figure 7. Deviation in percentage from the ab-
solute minimal observable size over 40 ran-
domly generated hierarchical FSMs.

servable sizes given by the matrix and distinguishing al-
gorithms, on the same data (see Fig. 7). It seems that the
distinguishing algorithm comes much closer to the absolute
minimum, from 0% to 6%, 2% in mean value. The matrix
algorithm is sometimes as good as the absolute minimum,
sometimes much worse (20% more transitions need to be
logged), 6% in mean value, that is 3 times more than the
distinguishing algorithm.

Last, we can analyze the percentage of transitions logged
by the different algorithms (see Fig. 8). As mentioned in the
beginning, this number is quite close for the 3 algorithms,
ranging from 17% to 33%. In mean values, the algorithms
needs to log 20%, 21% and 22% of transitions, respectively.
In terms of time taken, the matrix algorithm is instantaneous
for our biggest FSM (700 transitions), the distinguishing al-
gorithm takes2.5 seconds to finish, and the absolute mini-
mum takes half an hour.

0

5

10

15

20

25

30

35

%
 o

f e
dg

es
 lo

gg
ed

disting. matrix absolute

Figure 8. Percentage of edges logged by the
different algorithms, over 40 randomly gener-
ated hierarchical FSMs.

5.2. General FSMs

As mentioned previously, our first analysis is made only
on particular FSMs, hence no general conclusions can be
made by considering only hierarchical FSMs. We now turn
to more general FSMs (on which however we cannot know
the absolute minimum), to get a clue whether our first con-
clusions are true or not. We again use theSynthetic DAG
Generation Tool, with random parameters for each size of
FSM from80 to 1200 transitions.

Fig. 9 shows the result we obtained using the matrix and
distinguishing algorithms, according to the number of tran-
sitions of the FSM. The graph shows a much more chaotic
picture than the one obtained on hierarchical FSMs. Fur-
thermore, the distinguishing algorithm seems to often do
much better than the matrix algorithm. Still, there are sev-
eral cases (around100 transitions) where both give the same
results. Concerning time, the distinguishing algorithm takes
at most15 seconds to perform (remark that the time taken is
proportional to the number of transitions logged rather than
to the number of transitions in the FSM).

0

100

200

300

400

500

0 200 400 600 800 1000 1200

size of graph

si
ze

 o
f o

bs
er

va
bl

e
se

t

matrix

disting.

Figure 9. Observable size vs. number of tran-
sitions, over 60 randomly generated general
FSMs.

Let us now analyze the percentage of transitions logged
by the different algorithms (Fig. 10). Again, we see the
chaosness of the picture, ranging from 15% to 50% of tran-
sitions logged by the matrix algorithm (mean value 34%),
and from 4% to 50% for the distinguishing algorithm (mean
value 18%). The comparison with results obtained on hier-
archical FSMs (Fig. 8) is quite interesting. The percentage
of transitions can vary from1 to 10, while it was from1 to
2 in the hierarchical case. The matrix does much worse in
mean value (34% vs 22%), which is understandable since
the FSMs are less regular and more complicated than in the
hierarchical case. On the other hand, the distinguishing al-
gorithm succeeds slightly better on this unrestricted FSMs
than on hierarchical FSMs (18% vs 21%).

0

10

20

30

40

50

%
 o

f e
dg

es
 lo

gg
ed

matrix

disting.

Figure 10. Percentage of edges logged by the
matrix and distinguishing algorithms, over 60
randomly generated general FSMs.

Finally, we give a summing up graph in Fig. 11, where
we put each random FSM we generated according to the
percentage of transitions logged by the matrix algorithm
and by the distinguishing algorithm, together with two bro-
ken lines labelled by 18% (vertically for the distinguishing
algorithm) and 34% (horizontally for the matrix algorithm)
showing the mean values of the percentage of transitions
logged. On this graph, we can draw the line (broken line la-
belled 100%) on which both algorithms perform similarly.
We can see that it happens several times, but mainly when
the matrix algorithm already gives good results (from 12%
to 18% of transitions logged, which shall be close if not
equal to the optimal). Only once, the matrix is bad and so
is the distinguishing algorithm (around 50% of transitions
logged). It was to be expected that such cases occur, since
we know that the absolute minimal is not approximable, but
luckily, it is pretty rare.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

%edges logged by the distinguishing algorithm

%
ed

ge
s

lo
gg

ed
by

 M
at

rix

logged by disting / logged by matrix

60% 100%

18%

34%

Figure 11. Percentage of edges logged by the
matrix vs. distinguishing algorithm, over 60
randomly generated general FSMs.

Overall, the distinguishing algorithm gives an observable
size0.6 times the size returned by the matrix one (we draw
a broken line labelled by 60% to separate the experiments
under and over that value), and almost all of its answers
are within 0.7 times of the matrix algorithm. Moreover,
it sometimes gives one tenth the number of transitions to
log compared to the matrix algorithm (which implies that
the matrix algorithm can be very inaccurate). Also, notice
that only once, the distinguishing algorithm gives more than
30% of transitions to log (1.5% of the FSMs), while it is the
case for 50% of the FSMs in the matrix algorithm.

6. Conclusion

We proposed two polynomial time algorithms to get an
(over) approximation of the minimal number of actions to
log in composite services to be able to compensate it. We
modeled the services as FSMs. Our first algorithm, based on
an algebraic characterization, is very fast, though it can be
imprecise (in several cases, it gives at least10 times as many
transitions to log compared to the absolute minimal size).
Our second algorithm based on a heuristic trying to dis-
tinguish as many conflicting transitions as possible with an
observable transition, is slower but still efficient (we don’t
need more than15 seconds for1200 transitions), and usu-
ally gives much smaller observable sets. Still, in one case,
it seems to give inaccurate results. There are probably some
more heuristics to apply to get a more accurate algorithm.
Nevertheless, in mean value, it seems that the distinguish-
ing algorithm gives results close to the absolute minimum
(18% of transitions, while we get 20% for the absolute min-
imal, looking at hierarchical FSMs), so efforts to optimize
it further would probably not be worth it but for very few
pathological cases, and would slow down the algorithm.

References

[1] G. Alonso, F. Casati, and H. Kuno.Web Services: Con-
cepts, Architecture and Applications. Springer, ISBN:
3540440089, 2004.

[2] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines.ACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 23(3), pages 1–31, 2001.

[3] P. A. Bernstein, V. Hadzilacos, and N. Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, ISBN: 0201107155, 1987.

[4] D. Biswas. Compensation in the world of web services
composition.In proceedings of the International Workshop
on Semantic Web Services and Web Process Composition
(SWSWPC), LNCS 3387, pages 69–80, 2004.

[5] D. Biswas and B. Genest. Minimal observability for transac-
tional hierarchical services.In proceedings of the 20th Inter-
national Conference on Software Engineering and Knowl-
edge Engineering (SEKE), pages 531–536, 2008.

[6] C. Godsil and G. Royle.Algebraic Graph Theory. Springer,
ISBN: 0387952209, 2001.

[7] R. Kumar and V. K. Garg.Modeling and Control of Logi-
cal Discrete Event Systems. Springer, ISBN: 0792395387,
1994.

[8] F. Lin and W. M. Wonham. On observability of discrete-
event systems.Information Sciences, 44(3), pages 173–198,
1988.

[9] S. Maheshwari. Traversal marker placement problems are
np-complete.Boulder University Research Report CU-CS-
092-76, 1976.

[10] C. M. Özveren and A. S. Wilsky. Observability of discrete
event dynamical systems.IEEE Transactions on Automatic
Control, 35(7), pages 797–806, 1990.

[11] K. Rohloff, S. Khuller, and G. Kortsarz. Approximatingthe
minimal sensor selection for supervisory control.Discrete
Event Dynamic Systems, 16(1), pages 143–170, 2006.

[12] W. Sadiq and M. E. Orlowska. Analyzing process mod-
els using graph reduction techniques.Information Systems,
25(2), pages 117–134, 2000.

[13] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen,
and D. Teneketzis. Diagnosability of discrete event sys-
tems. IEEE Transactions on Automatic Control, 40(9),
pages 1555–1575, 1995.

[14] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform-
ing bpel into annotated deterministic finite state automatafor
service discovery.In proceedings of the IEEE International
Conference on Web Services (ICWS), pages 316–323, 2004.

[15] T.-S. Yoo and S. Lafortune. Np-completeness of sensor se-
lection problems arising in partially-observed discrete-event
systems. IEEE Transactions on Automatic Control, 47(9),
pages 1495–1499, 2002.

