Small Logs for Transactional Services:
Distinction is much more accurate than (Positive) Discrimmnation *

Debmalya Biswas, Blaise Genest Thomas Gazagnaire
IRISA/INRIA & CNRS Citrix Systems R&D Ltd.
Campus Universitaire de Beaulieu Black Horse House, Castle Park
35042 Rennes Cedex, France Cambridge, CB3 OFL, United Kingdom
firsthname.lastname@irisa.fr thomas.gazagnaire@citrix.com
Abstract service. A Web service [1] refers to an online service acces-

sible via Internet standard protocols. A composite sefvice
For complex services, logging is an integral part of many composed of already existing (component) services, com-
middleware aspects, especially, transactions and monitor bines the capabilities of its components to provide a new
ing. In the event of a failure, the log allows us to deduce the service. A service schema which specifies the execution or-
cause of failure (diagnosis), recover by compensating theder of its components, can be modeled as a Finite State Ma-
logged actions (atomicity), etc. However, for heterogerseo chine (FSM), performing actions on global variables. We do
services, logging all the actions is often impracticabledu not tackle here the transformation of a service into a FSM,
to privacy/security constraints. Also, logging is expgasi which should be handled with care to yield a FSM of small
in terms of both time and space. Thus, we are interestedsize (see [14] and example 1).
in determining a small number of actions that needs to be | long-term objective is to provide a transactional

logged, tq know with cert_amty the_actual sequence of EXe-tramework for (composite) Web services. A transaction [3]
cuted actions from any given partial log. We propose tWo ¢, pe considered as a group of actions encapsulated by

heur_lstlcs to :eltedrmm?:_sgchg sma'\l/ll se:].of tranﬁflo?én WIt the operations Begin and Commit/Abort, having the follow-
services modeled as Finite State Machines. The first on€, - qherties: Atomicity (A), Consistency (C), Isolatigi
is based or(Positive) Discriminatiorof transitions, using

b) K discrimi h ol and Durability (D). Here, we focus on the atomicity aspect,
every o servatpr_n to know (discriminate) that a maximal ¢ is, either all the actions of a transaction are executed
number of transitions occurred. We characterize it alge-

braically. qivi tast alqorithm. Th q al or none. In the event of a failure, atomicity is preserved by
raically, giving a very 1ast algorithm. € second algo- compensation [4]. Compensation consists of executing the
rithm, thedistinguishingalgorithm, uses every observation

. L : compensating actions, corresponding to each executed ac-
to maximize the number of transitions which are ensua@d P P

h d We sh s llv that th dtion of the failed process, in reverse order of the origixal e
to ave occurred. Ve snow experimentally that the S€CONTgcytion. Thus, for compensation to be feasible, we need to
algorithm gives much more accurate results than the first

o) reconstruct each executed action or the complete history of
one, although it is also slower (but still fast enough). any execution. The usual way of achieving that is to main-
tain a log of observable actions. However, in addition to the
obvious space overhead of logging (in our testing, about 5
1. Introduction times more), the complete log may not always be accessi-

ble. For a composite service, the providers of its component
An interesting problem for complex systems is to deter- Services are different. As such, their privacy/security-co
mine a minimal set of actions that needs to be observableStraints may prevent them from exposing (part of) the logs
such that a given property holds. Some of the propertiescorresponding to the execution at their sites. Hence, we
studied in literature of discrete event systems are notynali Want from such a partial log to know with certainty the ac-
[8], observability [7], state observability [10], diagradisl- tual sequence of executed actions, to be able to compensate
ity [13], etc. Our system corresponds to a (composite) Web 't

*This work is supported by la Region Bretagne (CREATE ACTIVE- . Sec_:t|on 2 mtro.duces the required formal prellmlnarlgs
DOC) and ANR-06-MDCA-005 DOCFLOW. including the precise problem statement. Clearly, we are in

1 Work done while the author was at IRISA, France. terested in logging the smallest number of transitionsiposs

ble. However, finding [15, 9] or approximating [11] the ab- ¢ is uncertain if there exists two paths having the same pro-
solute minimal number of such transitions is NP-Complete. jection. The FSMAM is execution sequence detectable iff
We thus propose our first heuristic in Section 3. The idea none of its observable projections are uncertain.

behind it is that a logged transition allows ¢positively)

discriminateseveral transitions. That is, we optimize the Definition 1 For an FSMAM, let 7o C 7 be the set of
observable set such that every logged transition impligs th Observable transitions. The observation projection @bs

a maximum number of transitions are sure to have occurredZ * — 7 is the morphism with Obsg(a) = a if a € 7o,
We then characterize this algorithm in algebraic terms with and Obs)(a) = ¢ if a € 7 \ 7o, with e the empty word.

a matrix, giving a very fast algorithm (see Section 3.2). Our) , .

second idea, presented in Section 4, is that a logged transi- 1 nat is, Obg (p) is the subsequence pf obtained by
tion also allows tadistinguishseveral transitions. Thatis, €liminating fromp every occurrence of a transition which

we optimize the observable set such that every logged traniS N0t in Zo. With such an observation projection Qs
sition implies that a maximum number of transitiatid not € only way of having execution sequence detectability
occur. We test both algorithms experimentally in Section 5. 1S 10 have every transition observable. Indeed, as soon as
The results show that the distinguishing algorithm gives re there exists even one non-observable transition, thecgervi
sult from1 (at least as good, which we prove theoretically) S not execution sequence detectable. Else, let us take a

to 10 times smaller than the discriminating algorithm, with PathpT with the last transition ¢ 7o. Then, Obs (p7) =
an average of.9 times smaller. Obs(p). A usual way to overcome such a problem is to

ask for certainty only up to the last few events of the se-
guence [10]. However, this turnaround does not make sense
in our framework since if we cannot compensate the very
last action, then we cannot compensate any action at all. As
Formally, we model a transactional service as a Fi- such, we design a new observation mechanism, where the

2. Preliminaries

nite State Machine (FSM), that is, a 4-tuplel = last control point reached before failure is monitored reve
(Q, 50,57, 7T), where: if the last action is not logged. In practice, it means that
. o every state that is reached is monitored, and overstack the
e Qs the finite set of states, previous state in a special memory buffer.

e 5o andsy are the initial and final states, respectively, Definition 2 Let M be an ESM7Z5, C 7. The observa-

e 7 C Q x Qs the (partial) transition relation. tion projection ObE™ : 7* — (73,Q) is the function
0b$(p) = (Obsy(p),) for all p € P(M) ending ing.
We describe our FSMs as graphs with a unique input and o _) o -
output point, each node and edge corresponds to a state and We will stick with this definition of observability for the
transition, but we ignore the alphabet. We assume that the'®St of the paper. As mentioned before, we are interested in
serviceM does not have any unreachable states and that all°99ing as few transitions as possible.
states can reach the final state For a statey, *¢ (¢*) de-

notes the set of incoming (outgoing) transitions to (from) Problem statement. Given an FSMM = (Q, so, 57, 7),
¢. For convenience, we also assume that there are no outWe callZo an observable set of transitions if the service is

:]
going transitions frons ; and no incoming transitions tg, execution sequence detectable with bsve want to de-
(Notice that we could deal with a service without these re- {€rmine an observable set of transitighs C 7 of minimal

quirements, but the proof would be more technical.) For Size. We refer to such a set asunimal observable set
a transitiont = (qi1,¢;), ¢; andg; are referred to as the

source and target statesaf We say that an execution se- __The cardinality of a minimal observable s&b of an
quencep = 71 ---7, € T*is a path ofM if there exists ~FSM M is referred to as its observable Si2éO(M) =
o, qn € Q" With 73 = (g;—1,¢;) forall 1 < i < n. |70]. Notice that as is usual with decision and computation

A path is called initial if furthermore, = so. We denote @lgorithms, it is sufficient to have an algorithm which from

by P (M) the set of initial paths i\/. Finally, we denote ~ an FSM gives its observable size. That is, we can derive a
by | M| the size ofAM, that s, its number of transitions. minimal observable set of the FSM based on an algorithm

Under restricted observability, for a servidd = answering yvh_ether its obsgrvable s_ize is bigger thafor
(Q, s0, 57, T), only a subset of its transitior, C T are anyn, and in time polynomially equivalent.
observable, that is, can be logged. In general, for any exe-
cutionp, we call observation projection, the observation we
have aftep was executed (a sequence of transitions, control
points, data. ., etc.). We say that an observable projection

Order American
Exp. Cheque (€5) Send by courier
(€g)

Order
American Process $
Express
Cheque

Get Supervisor's
Approval

Get Team
Lead's
T Approval

nitiate A A 4 . . .
Payment Terminate |—] Detiver Cheque | —] Update Aceounts Figure 2. FSM representation of Fig. 1.

Request Request Database

Finance
Director's
approval?

(€27 Process Euros on
Finance Director's
Reject (€4)

Updatc Accounts

. Database (€7)
Order Citibank Hand deliver (€9)

Cheque (€6)

Initiate Funds
Request (€1) Process
Euros (€3)

Order Citibank
Cheque

Send by Courier
Hand Deliver

Different
campusg

Terminate
Delivery

placement problenf9], in the meaning of the following
proposition.

Initiate
Delivery

Same campus|

Proposition 1 Let M be an FSM and a subset of transi-
tions of M. Denote byM’ the FSMM obtained by deleting
all transitions belonging t&. Then, 7y is an observable
set of M iff there does not exist a pair of paths # ps of

M’ with p; beginning and ending at the same pair of states

Example 1 We considerin Fig. 1 a travel funds request ser- aSp2.
vice, inspired by the workflow in [12]. It involves different
departments across organizations.

We model the service using the F3M= (.S, so, s¢,7T)
representation, as shown in Fig. 2. Notice that this FSM is

a simplification of the service, since for instance the choic find alaorithms which approximate an observable size close
between the team leader or supervisor approvals is not rep- ! gorthms which approximat DSErvVanie siz s
to the absolute minimal size (within a fairly limiting bound

resented. The reason is that they are both associated with aq,or all FSMs. Anyway, one can ry to identify subclasses of
empty compensating transition, hence knowing which pathFSMs for which this is possible. For instance, hierarchical

was taken here is not necessary to be able to perform recov-)
ery. However, it is necessary to know which bank issued theES'\/lsl\";‘rfj ?nna;uraflﬁcliai? SJ FS'\é'S far V\;’Vh'shrth: $r0|t|)l|§rsn|\:an
cheque in order to able to compensate it, by a “Cancel Last °¢ SO'V€d [N an eflcient way [5]. However, not a S

American Express (Citibank) Cheque”. It is also possible Esedffort mlode_llr?g serhv_|crt]as are h|eLarch|c2I|. W? p;rtopos_e
to handle data being written to the database. For instance, ere fast algonithms which give an observable set of transi-

if there is no “Cancel Last Cheque” mechanism, it is possi- tions for every FSM. We will then analyze experimentally

ble to force the transition “Update Accounts Database” to how far they are from a minimal set, and how often they

be observable, which would lead to the exact amount of thedr® far away from the absqlute minima_l. Indeed, foIIovx_/ing
cheque being written to the log, and recovery would man- [11], we know that there will always exist FSMs for which

ually credit the amount of money written in the log to the oqr_polyllnsnzlﬁl time :T_gorlthhmsh\{wll ?? tfar a\zvgyhfrorTl(thle
corresponding account. minimal, but the question which is of interest is how likely

it is for such FSMs to occur.

Figure 1. Travel funds request workflow.

This problem is NP-complete [9], even with strong re-
strictions on the graph (acyclic, small indegree and outde-
gree) [5]. Moreover, this problem cannot be approximated
[11] in polynomial time. It means that it is impossible to

Now, let7o = {es,e3} and a failure occurs while
processinges, that is, the cheque is not issued or deliv- o S)
ered correctly. Then, OBS(eieseser) = (ea,s5) = 3 (Positively) Discriminating Algorithm

Ob&(e;eze4e6e7). Thus, we do not know if an Amer-
ican Express or Citibank cheque was processed. With3.1. A Quadratic Time Algorithm
TCI) = {62,66}, we have Oligﬁ(€1€2€5€7) = (62,55) and

Obs5™(e1ezeseser) = (eaes, s5), and 7Y is an observable Our firstidea is to use the observation as a discriminator.
set of transitions. Notice that every path fragito sy uses ~ When an observable transition is logged, it allows not only
75. to know that this transition occurred (positive discrimina
tion), but also that othampliedtransitions occurred. That
We first relate the problem of computidg O(M) using is, the occurrence of some transitions can be deduced from

our definition of observable projections with other known the occurrence of another transition. For example, with ref
problems. We state now that computing the minimal ob- erence to Fig. 2, it; occurred, we can also infer that the
servable set is equivalent to thaiconnected subgraph transitionses, eo, ez have occurred. The intuition is to not
problem This problem is also called thainimal marker consider a transition as possibly observable if its ocauoee

e p; is a straight line, that is, all intermediate states in
p1 have indegree and outdegree equal to 1. Then, it is
easy to see that the outgoing transitiorspfalongp;
would be in7”.

o At least one intermediate staten has indegree- 1.
Let us consider the first intermediate state having inde-
gree> 1, says;. Traverse backward (towardsg) from
s; alongp; till we encounter a state having outdegree
> 1, says;. Then, the subpath @f; from s; to s; is a
straight line. And, the outgoing transition ef along
p1 willbe in 7.

e Atleast one intermediate stategnhas outdegree 1.
Figure 3. FSM (a), after compression (b), after Analogous to the above case.
deleting e; (c) and compressing again (d).
Notice that the observable s&t obtained by compres-
sion has scope for optimization, as for each pair of states
s1 # so of M having> 1 paths between them, the transi-

can be inferred from the occurrence of other transitions. ions in7” cutall paths (as proven earlier). Recall that the
We thus simply delete such transitions, using the algorithm existence of one path between a pair of states is not an is-

Compress defined below. sue with respect to observability. Thus, instead of selgcti
all the remaining transitions, let us just select one titéorsi
Algorithm Compress FSMI = (S, so, 57,7). 71 and declare it as observable. For instance, in Fig. 3, let
fori:=1,...,19] 71 = e;. We can delete it from the original FSM since it
if (|*si| =1and|s;| = 1) is positively discriminated (giving Fig. 3(c)). Now, imag-
Letm = (s;,5:), 72 = (si, i) for somes;, si. ine that some states{ in the example) had two incoming
Setr = (s;, sx), deletes; from S andr, from 7 transitions beforer;, » (72 = ez here). After deletion of
elseif(|*s;| = 1 and|s}| > 1) 71, the state has only one incoming transition, which means
Letr = (s;, s;) for somes;. thatr, will get deleted by the compress algorithm (see Fig.
ForallT = (s;, s,) € sf, setr = (s;, Sk)- 3(d)). Basically, it means that if we compress, select one
Deletes; from S andr; from 7. transition at a time, delete it from the FSM, and compress
elseif(|sy] = 1 and|*s;| > 1) again, we end up (in that case) with strictly fewer observ-
Letr, = (s;, 55) for somesy. able transitions than befores(is not in the observation set
ForallT = (sj,s;) €* s;, Setr = (sj, sk). anymore, and we need to obseiMeansitions instead d).
Deletes; from S andr, from 7. This gives rise to the following algorithm.
endif

Algorithm Discriminate FSMVI = (S, s, s¢, 7).
Output.An observable sefy .

The FSMM in Fig. 3(a), after compression is shown in Initialization. 7o = 0, M’ = Compress(M).
Fig. 3(b). Itis pretty clear that observing all the remagin Steps.

endfor

transitions{ey, ez, €5, €5, €7, es } is an observable set af, while |M'| > 1 do

as shown in the next proposition. Select one transition of M.
Add 7 to 7y, deleter from M.

Proposition 2 Given a serviceM = (5, so,s¢,7), the M’ = Compress(M).

subset of transition§”’ C 7T obtained on applying algo- endwhile

rithm compress td/, is an observable set of transitions of

M.

Proposition 3 For a given servicéll = (S, so,sf,T), the
Proof. We show that for each pair of states=# s; € .5, output7yp of the discriminating algorithm is an observable
having more than one distinct path- - - p,, between them, set of M.
at least one transition of each of the paths i¥h With-
out loss of generality, we consider the different cases with The problem of this algorithm is that it is in quadratic
respect tg;. Then, we have the following cases: time: we need to consider every transition twice for each

compress step, then we need to call it once for every ob-

served transition. We will now try to characterize the se-
lected observable set of transitions algebraically to iobta
an efficient algorithm.

3.2. Algebraic Characterization

Let us define an extension of the classical incidence ma-
trix of a directed acyclic graph (and of a FSM seen as a di-
rected graph), which encodes a directed graph in a matrix.
Its first rows express the directed graph, and its last rows ex

press the observation from an observable set of transitions ¢’

7o. For convenience, we index the matrix by states and
transitions rather than numbers.

Definition 3 (extended incidence matrix) Let
M = (Q,s0,s5,7) be an FSM andlpo C 7 be a
subset of transitions oM. Theincidence matrixof M,
relative to7o is a matrix A, 7, of size(|Q| + |7o|) x |T|
defined as follows:

For every(s,7) € Q x T:

o Au1,ls, 7] =1if 7 endsins;

o Au1,ls, 7] = —1if 7 starts froms;
e A 1,5, 7] = 0, otherwise.
Forevery(r,7') € To x T

o Ay1,lm, Tl =1;

o Ay, 7 =0,if1" #T.

The first|Q| rows of this matrix correspond exactly to the
classical incidence matrix. We just append to it a (almost
identity) |7o| x |7| matrix in order to obtain an extended
incidence matrix. For example, the matrix corresponding to
the FSMM in Fig. 3(a) andZp = {e1,es,¢6,€7,€8}, IS
shown in Fig. 4.

Furthermore, as we translated an FSIW
(@, s0,sf,T) into an algebraic object ys 7,,, we do now
transform a path of P(M) into an algebraic object. Let us
denote byy(p) the vector in{0, 1}171, such thaty(p)[7]
1if 7 is fired inp, otherwisey(p)[r] = 0. Notice thaty(p)
characterizes any paihof an acyclic graph (the order of
transitions can be recovered unambiguously). We now de-
fine the observatioiy; 1, (X) associated with a vectoY
in {0, 1}/7! representing a path.

Definition 4 (observation vector) The observationof a
vector X in {0,1}171, relative to7o is a vectorVy, 7, (X)
of size|Q)| + | 70|, such that for every € Q

o Viro (X)[s]
o Vi1, (X)[s] =1if X ends ins;

—1if X starts froms;

el e es e4 es €6 er es €9 €10
si|—-1 -1 0 0 0 0 0 0 0 0
s2 | 1 1 -1 -1 0 0 0 0 0 0
ss| O 0 1 0O -1 -1 0 0 0 0
s4 | O 0 0 1 0 0O -1 -1 0 0
s5 | O 0 0 0 1 0 1 0 -1 0
se | O 0 0 0 0 1 0 1 0o -1
s7| O 0 0 0 0 0 0 0 1 1
er | 1 0 0 0 0 0 0 0 0 0
es | O 0 0 0 1 0 0 0 0 0
es | O 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0
es| O 0 0 0 0 0 0 1 0 0

Figure 4. Matrix of the FSM M in Fig. 3(a) and
TO = {617 €5, €6, €7, 68}-

0.

o otherwiseVs 7., (X)[i]
Moreover, for every € 75, we have:
o Virzo (X)) =1if X[1] =1,

o otherwiseVy; 7, (X)[r] = 0.

Clearly, 7o is an observable set of transitions iff there
does noexist X # Y with Vas 7, (X) = Va7, (V). We
use now the algebraic characterization.

Proposition 4 Let X, Y € {0, 1}/7]. Then we have:

VM,TO (X) = VM,TO (Y>
2N
Ava, Y =Vur,(X)=Au71, - X

Using proposition 4, we obtain that,, 7, is injective
implies that7y is an observable set of transition$ can be
shown that the discriminating algorithm gives a minimal set
for which A,/ 7, is injective thus giving us the algebraic
characterization we were looking for (we also checked that
fact experimentally).

Now, it is well known that a matrix is injective iff its ker-
nel has dimensiof. In our case, it is also well known [6]
that the kernel of the incidence matrik,, » corresponds
exactly to the so-called cycle space &f. Moreover, the
dimension of the cycle space (also known as the cyclomatic
number) of a graph with vertices,m edges and< con-
nected components (considering edges are unoriented) is
exactlym —n+ K. Thatis, it suffices to observe —n+ K
edges to have an injective matrix (and equivalently an ob-
servable set of transitions). Thatig,O(M) < m—n+K.

3.3. Analysis of the Matrix Algorithm

The matrix algorithm is clearly very fast to give an ap-
proximation of M O(M), since the starting graph is con-
nected. It suffices to coumt — n + 1 to know the number
of observable transitions output by the discriminating al-
gorithm, which is an immediate humber to compute. For
instance, in the example of Fig. B) — 7 + 1 = 4. Know-
ing the transitions to log is not much harder to compute ei-
ther. It suffices to run the algorithm incrementally, setegt
one transition at a time. Let us now analyze which transi-
tions are important to log. Assume we are choosing to log
some transition-. Either deletingr increases the number
of connected components 8f or not. If it increases the
number of connected components, logging it leads to the
matrix algorithm on the resulting FSM giving us the tran-
sition to observe, plus)’ — n’ + K’, wherem/,n’, K’ are
the values for the new FSM, that is+ m' —n' + K' =
1+(m—-1)—n+(K+1) =m—n+ K + 1. Clearly,
logging this transition is not a good idea since it increases

the number of transitions to log in the end. Hence, we shall €1~ €ms f1.-+~ fo ande; & {f; |
never log a transition whose deletion increases the numberthat deleting:;

of connected components.

On the other hand, if deletingkeeps the number of con-
nected components constant, ther- m’ — n’ + K’
1+ (m—-1)—n+ K = m—n+ K, and the transition
we are choosing is useful. That is, any sethof- n + 1
transitions whose deletion keeps the FSM connected is a
observable set of transitions. To sum up, we know that we

can select any transition, as long as its deletion does not

disconnect connected components. Choosing with care th
transition we select may optimize the result. For that, we
need some heuristical metrics to tell us which transition is
or is not good to observe.

Let us analyze the algorithm. Notice first that thinking

in terms of positive discrimination is not always good. In- '

n

of e1,€eq4,€e10,m—n—+1 7& 0, but{el, €4, 61()} is already an
observable set.

4 Distinguishing Algorithm

Based on the second observation, we design the follow-
ing method to select transitions to be observed:

1. Select a transition whose deletion does not discon-
nect the FSM.

2. Ensure that there is an initial statg a states and two
paths betweefisg, s), one using: and one not using
(if it is not the case, then this transition is useless for
observability).

With such a method, we are sure to get at most as many
transitions as observed by the matrix algorithm. Now, no-
tice that the first condition is actually implied by the sedon
condition. Indeed, if there exists two stateg, two paths
j < n}, then it means
cannot disconnect the FSM, since the undi-
rected pathe;—1---(e1 = f1) - (fn = em)---eip1 al-
lows to indirectly connece;_1* =* e; and*e;11 = e].

So, we can just delete the first condition. Here is the algo-

rithm we use for testing the second condition in an efficient

manner, based on Depth First Search (DFS). Basically, the
algorithm breaks and returrisas soon as one transitign

points to a state’ which has been previously explored (that
is, there is another path, not usihgvhich reaches’ from

an initial states from whicht is reachable. That is, we have
wo paths connectingto s’, one using and one not using

t). DFS keeps a stack, a hash tablé/ of states which have
already been explored by the search, and each transition is
tagged as explored or unexplored.head designates the

head of the stack, anddest the target state of a transition

deed, in the example of Fig. 3, the compressed versions”

are shown in Fig. 3(b and d), leading to the observable
set{es, es5, eg, €7}. However, a minimal observation set is
{e1,e4, €10}, and observing any transition , eg, e7, es
leads to observing at leagttransitions in order to get an
observable set.

We call initial (final) state a state which has no incom-
ing (outgoing) transitions. In the matrix algorithm, there
can be more than one initial and/or final states. Indeed, in
Fig. 3, if we deleteey, thens, becomes an initial state.
However, the matrix algorithm does not consider which
transition is reachable from which initial state, and which
final state it can reach. In particular, it is possible that
m —n + K # 0, but that the FSM is observable with the
current set of observable transitions (no more transitwas
needed), while the matrix algorithm still asks to selecteom
more. For example, with reference to Fig. 3, after deletion

Algorithm Test
CreateHash tablef] .
for each initial state of M.
Initialize H to empty,S to sq.
Setall the tags to unexplored.
Run DFS fromsg:
while S is nonempty do
while there is an unexplored transition
from stateS.head do
Tagt as explored.
if t.dest € H, thenreturnt.
elseinsertt.dest into H and puslt.dest on S.
endif
endwhile
pop S
endwhile

endfor time, we know that there are FSMs on which they give an
return “No more transitions to explore”. answer far away from the optimum [11]. The question is

Now, notice that there can be plenty of transitions which .hOW far they are, and how often it happens. The second fact

satisfy condition 2. We would like to have a more precise wa;zatthtgi)gsu?\?:r:sg m‘?hzlgr?a?ttr??a?I\(/)?ﬁhar:etr?wivelrjgs%%i
metric to choose the transition to observe in that set. Rathe me one g y 9 ' q
L - o then is: is it better, and if yes, by how much and how often
than optimizing the number of transitions we are positively .
L L is it much better.
discriminating, we want now to optimize the number of
transitions we distinguish the transition from. That is, we

. . . No. of Obs. size
want to optimize the number of other paths not using that Edges Matrix Distinguishing
. . . 97 41 11
transition, but connecting two states which are also con- 127 55 13
nected with a path using that transition. However, comput- o ot
ing exactly that number of paths would be really inefficient. L7 o2 2
We thus propose an efficient but slightly less accurate ver- 264 120 20
sion: we want to maximize the number of initial or final i es e
states from or to which the second condition is true. It suf- No. of Observable size jReR o
fices simply to modify the previous algorithm, by keeping edges Absoute Maix Disthg. 42205 “
a counter associated with each transition, and not breaking 58 14 14 14 200 72 39
.y aian . . . 133 36 25
when a transition hitting is seen, but by increasing the B O w6 14 7
counter of that transition. Furthermore, we also increment w23 o 2 oo X
the counter of the first transition which led to the insertion 146 33 34 34 o -
of that state intad initially. The counter of a transition is - ez 98 16 16
increased at most once per initial state. We call this new 185 38 38 38 95 o
. . . 223 43 47 44
algorithmCount Obviously, an algorithn€CountBackcan 221 53 57 55 O I
be similarly devised, running from all final states and tra- 241 57 62 58 4% 203 13
. o . . . 273 51 57 53 464 188 110
versing transitions backwards. Now, our new distinguighin 280 72 75 72 158 37 27
i . 294 74 76 75 115 17 17
algorithm proceeds as follows: e 69 w7 620 268 140
. . . 326 75 79 76 i 17 17
Algorithm Distinguish FSMVI = (Q, so, s5,7). 35 74 81 77 S at
345 88 91 88
ICreateSetTo . 3 s % e 128 18 1
oop 387 92 96 94 114 56 56
. 410 81 87 83
Setall transition counters to. s 89 97 % e >
448 100 106 104 508 223 86
_Runat ranq_om Count or CountBack. e e o S8 2 e
if all transition counters ai@ thenreturn7y. 484 99 107 103 747 315 178
o . . 222 55 38
elseselect one transitiohwith maximal counter value. PSP S 047 a5 27
550 93 101 95 790 340 219
Addt to 7. 570 108 18 111 1621 23 223
Deletet from 7. c0s 108 124 111 Wz k7 57
endif 618 121 136 125 997 431 230
634 120 131 124 311 89 60
endloop 631 115 121 118 253 58 ps
657 131 141 134 923 419 106
i i i 672 134 146 139 321 90 63
Thg previous claims we made allow easily to state the e e 1 1m = &
following. 704 142 156 150 1110 480 276

Proposition 5 For an FSMM = (Q, so, sf, 7T), the distin-
guishing algorithm returns an observable > of transi-
tions. Moreover, its size is alway$o| < (|7| — |Q| + 1),
which is the observable size returned by the matrix algo-
rithm and the positively discriminating algorithm.

Figure 5. Raw data for hierarchical (left) and
general (right) FSMs.

)) The first question is difficult to answer accurately,
5. Experimental Evaluation since obtaining the absolute minimal observable size is in-
tractable. One solution could be to look at small enough
We have some theoretical clues about how our algo- FSMs to get the values, but the problem is a variation of
rithms fair against each other, and how close they can ap-one observable transition having a big impact percentage
proximate the absolute minimal observable size. Becausewise in small sets, so the results would not be very mean-
our matrix and distinguishing algorithms are polynomial ingful. Instead, we focus on particular non-trivial FSMs,

20

namely hierarchical FSMs [2]. For instance, the system in
Fig. 1 is hierarchical, witl2 components. In [5], we present
a polynomial time divide and conquer algorithm to compute 15
the minimal observable size of a hierarchical FSM based on

the observable sizes of its components. This allows us to = w0
compute the absolute minimal observable size of large hier-
archical FSMs, as long as the components are small enough. s
We thus performed our two heuristics plus the absolute min-

imal algorithm on hierarchical FSMs, giving the results on 0
the left part of Fig. 5, analyzing the data in the next sec-

tion. Furthermore, to confirm or infirm the conclusions we Figure 7. Deviation in percentage from the ab-
draw on hierarchical FSMs, we also performed experiments splute minimal observable size over 40 ran-
for our two heuristics on general FSMs, whose results are domly generated hierarchical FSMs.

given on the right part of Fig. 5.

—eo— disting.
—&— matrix

5.1. Hierarchical FSMs

We generate hierarchical FSMs randomly, using the
following method for each FSM. First, we choose a servable sizes given by the matrix and distinguishing al-
number (between one and forty) of base Subcompo-gorithms, on the same data (see Fig. 7). It seems that the
nents in the FSM. Then, we generate each of themdistinguishing algorithm comes much closer to the absolute
randomly by using theSynthetic DAG Generation Tool ~minimum, from 0% to 6%, 2% in mean value. The matrix
(http://www.loria.fr/'suter/dags.html), varying ranuty algorithm is sometimes as good as the absolute minimum,
the input parameters, to get FSMs as diverse as possibleSometimes much worse (20% more transitions need to be
We then generate inductively a hierarchical FSM having logged), 6% in mean value, that is 3 times more than the
these base components. On those FSMs, we run the algodistinguishing algorithm.
rithm from [5] to get the absolute minimal observable size,
as well as the matrix and distinguishing algorithms. Fig. 6
shows the result we obtained, according to the number of
transitions of the global FSM.

Last, we can analyze the percentage of transitions logged
by the different algorithms (see Fig. 8). As mentioned in the
beginning, this number is quite close for the 3 algorithms,
ranging from 17% to 33%. In mean values, the algorithms
150 needs to log 20%, 21% and 22% of transitions, respectively.
In terms of time taken, the matrix algorithm is instantareeou
for our biggest FSM700 transitions), the distinguishing al-
gorithm take=2.5 seconds to finish, and the absolute mini-
mum takes half an hour.

150 b 4
120 1

90

60

size of observable set

30 | == matrix === abs0lute == disting ‘»

0
a

0

w
S

0 100 200 300 400 500 600 700 800

N
a

size of graph

N
S

N
@

Figure 6. Observable size vs. number of tran-
sitions, over 40 randomly generated hierar-
chical FSMs.

% of edges logged

.
o

—e— disting. —&— matrix —a— absolute

@

0

Figure 8. Percentage of edges logged by the
different algorithms, over 40 randomly gener-
ated hierarchical FSMs.

The graph confirms that the matrix algorithm gives
worse results than the distinguishing algorithm, whicregiv
worse results than the absolute algorithm, but the diffezen
does not seem very important.

Let us analyze more precisely the percentage difference
between the absolute minimal observable size and the ob-

5.2. General FSMs

As mentioned previously, our first analysis is made only

on particular FSMs, hence no general conclusions can be

made by considering only hierarchical FSMs. We now turn
to more general FSMs (on which however we cannot know
the absolute minimum), to get a clue whether our first con-
clusions are true or not. We again use Synthetic DAG
Generation Toqglwith random parameters for each size of
FSM from80 to 1200 transitions.

Fig. 9 shows the result we obtained using the matrix and
distinguishing algorithms, according to the number of fran
sitions of the FSM. The graph shows a much more chaotic
picture than the one obtained on hierarchical FSMs. Fur-
thermore, the distinguishing algorithm seems to often do
much better than the matrix algorithm. Still, there are sev-
eral cases (around0 transitions) where both give the same
results. Concerning time, the distinguishing algorithketa
at mostl5 seconds to perform (remark that the time taken is
proportional to the number of transitions logged rathentha
to the number of transitions in the FSM).

500

400

+ matrix
= disting.

w
o]
S]

N
S
S]

size of observable set

H
15}
3

600 800 1000

size of graph

400

o

1200

Figure 9. Observable size vs. number of tran-
sitions, over 60 randomly generated general
FSMs.

Let us now analyze the percentage of transitions logged
by the different algorithms (Fig. 10). Again, we see the
chaosness of the picture, ranging from 15% to 50% of tran-
sitions logged by the matrix algorithm (mean value 34%),
and from 4% to 50% for the distinguishing algorithm (mean
value 18%). The comparison with results obtained on hier-
archical FSMs (Fig. 8) is quite interesting. The percentage
of transitions can vary frorh to 10, while it was from1 to
2 in the hierarchical case. The matrix does much worse in

mean value (34% vs 22%), which is understandable since
the FSMs are less regular and more complicated than in the

hierarchical case. On the other hand, the distinguishing al
gorithm succeeds slightly better on this unrestricted FSMs
than on hierarchical FSMs (18% vs 21%).

50

40

2]
S

e N\M AAM [

ITIATR A

VA

% of edges logged

N
=3

—e— disting.

0

Figure 10. Percentage of edges logged by the
matrix and distinguishing algorithms, over 60
randomly generated general FSMs.

Finally, we give a summing up graph in Fig. 11, where
we put each random FSM we generated according to the
percentage of transitions logged by the matrix algorithm
and by the distinguishing algorithm, together with two bro-
ken lines labelled by 18% (vertically for the distinguistin
algorithm) and 34% (horizontally for the matrix algorithm)
showing the mean values of the percentage of transitions
logged. On this graph, we can draw the line (broken line la-
belled 100%) on which both algorithms perform similarly.
We can see that it happens several times, but mainly when
the matrix algorithm already gives good results (from 12%
to 18% of transitions logged, which shall be close if not
equal to the optimal). Only once, the matrix is bad and so
is the distinguishing algorithm (around 50% of transitions
logged). It was to be expected that such cases occur, since
we know that the absolute minimal is not approximable, but
luckily, it is pretty rare.

60

50

30 t

20

%edges logged by Matrix

10 20 30 40

50
"/Jedges logged by the distinguishing algorithm

60

Figure 11. Percentage of edges logged by the
matrix vs. distinguishing algorithm, over 60
randomly generated general FSMs.

Overall, the distinguishing algorithm gives an observable [6] C. Godsil and G. RoyleAlgebraic Graph TheorySpringer,
size0.6 times the size returned by the matrix one (we draw ISBN: 0387952209, 2001.
a broken line labelled by 60% to separate the experiments [7] R. Kumar and V. K. Garg.Modeling and Control of Logi-
under and over that value), and almost all of its answers ~ cal Discrete Event SystemSpringer, ISBN: 0792395387,
are within 0.7 times of the matrix algorithm. Moreover, 1994.

. . . - [8] F. Lin and W. M. Wonham. On observability of discrete-
it sometimes gives one tenth the number of transitions to event systemsnformation Sciences, 44(ages 173-198,

log compared to the matrix algorithm (which implies that 1988.

the matrix algorithm can be very inaccurate). Also, notice 9] s. Maheshwari. Traversal marker placement problems are
that only once, the dlStIthlShlng algorlthm gives moratha np-complete.Boulder University Research Report CU-CS-
30% of transitions to log (1.5% of the FSMs), while it is the 092-76 1976.

case for 50% of the FSMs in the matrix algorithm. [10] C. M. Ozveren and A. S. Wilsky. Observability of discrete

event dynamical system$EEE Transactions on Automatic
Control, 35(7) pages 797-806, 1990.

6. Conclusion [11] K. Rohloff, S. Khuller, and G. Kortsarz. Approximatitige
minimal sensor selection for supervisory contr@liscrete
We proposed two polynomial time algorithms to get an Event Dynamic Systems, 16(fiages 143-170, 2006.

(over) approximation of the minimal number of actions to [12] W. Sadiq and M. E. Orlowska. Analyzing process mod-
log in composite services to be able to compensate it. We €IS using graph reduction techniquésformation Systems,
- - - 25(2), pages 117-134, 2000.
modeled the services as FSMs. Ouir first algorithm, based on . !
) R " 13] M. h, R. . Laf K. ini
an algebraic characterization, is very fast, though it can b [13] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohidee

. . - and D. Teneketzis. Diagnosability of discrete event sys-
imprecise (in several cases, it gives at [d&dimes as many tems. IEEE Transactions on Automatic Control, 40(9)

transitions to log compared to the absolute minimal size). pages 1555-1575, 1995.

Our second algorithm based on a heuristic trying to dis- [14] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform
tinguish as many conflicting transitions as possible with an ing bpel into annotated deterministic finite state autorfata
observable transition, is slower but still efficient (we don service discoveryln proceedings of the IEEE International
need more thai5 seconds foil 200 transitions), and usu- Conference on Web Services (ICW&ges 316-323, 2004.

ally gives much smaller observable sets. Still, in one case, [13] T--S. Yoo and S. Lafortune. Np-completeness of sensor s
it seems to give inaccurate results. There are probably some ~ |€ction problems arising in partially-observed discretent
more heuristics to apply to get a more accurate algorithm. systems. IEEE Transactions on Automatic Control, 47(9)
Nevertheless, in mean value, it seems that the distinguish- pages 1495-1499, 2002.

ing algorithm gives results close to the absolute minimum

(18% of transitions, while we get 20% for the absolute min-

imal, looking at hierarchical FSMs), so efforts to optimize

it further would probably not be worth it but for very few

pathological cases, and would slow down the algorithm.

References

[1] G. Alonso, F. Casati, and H. KunoWeb Services: Con-
cepts, Architecture and Applications Springer, ISBN:
3540440089, 2004.

[2] R. Alur and M. Yannakakis. Model checking of hierarcHica
state machinesACM Transactions on Programming Lan-
guages and Systems (TOPLAS), 23¢38pes 1-31, 2001.

[3] P. A. Bernstein, V. Hadzilacos, and N. GoodmaBoncur-
rency Control and Recovery in Database Systefuglison-
Wesley, ISBN: 0201107155, 1987.

[4] D. Biswas. Compensation in the world of web services
composition.In proceedings of the International Workshop
on Semantic Web Services and Web Process Composition
(SWSWPC), LNCS 338Fages 69-80, 2004.

[5] D. Biswas and B. Genest. Minimal observability for trans
tional hierarchical servicesn proceedings of the 20th Inter-
national Conference on Software Engineering and Knowl-
edge Engineering (SEKR)ages 531-536, 2008.

