
OptimAX: efficient support for data-intensive
mash-ups

S. Abiteboul, I. Manolescu, S. Zoupanos

INRIA Futurs, Gemo group & LRI Université Paris Sud,
4, rue J. Monod, 91893 Orsay Cedex
firstname.lastname@inria.fr

I. SETTING: MASHING UP THE WEB

The Web evolution trend known as the “Web 2.0” entails
moving from a few content publishers and huge number
of content readers, towards a network of peers, where rich,
interactive applications are deployed on the Internet as a
platform. Witness to this evolutions are collaborative editing
and interaction tools like Wikis, blogs, social networking
sites, P2P file-sharing platforms etc. A very recent class
of such applications consists of mash-ups, which compose
information artifacts (such as database queries, calls to Web
services, geo-location information etc.) in a single Web-based
application [1], [2]. Mash-up platforms can be seen as the
ultimate tools for building data integration applications: data
feeds are instantly mixed’n’matched, often with the help of
GUIs. Mash-up success is also due to the wide availability
of public interfaces to valuable data sources, based on XML
(SOAP, RSS etc.) and/or Web services.

The ActiveXML language (AXML, in short) [3] has been
proposed as a tool for decentralized, data-centric Web service
integration. An ActiveXML document is an XML document
including calls to Web services. A call can either be a simple
request-response exchange, or a long-running subscriptions
to some data stream. The language has several interesting
features. It is fully composable: AXML trees can be sent as
parameters to a service call, and a service call can return XML
data with more embedded service call. It allows for resource
sharing and composition: a query over an AXML document
can be exported as a Web service, to be used by other peers in
their own documents. Optimizations have been proposed [4],
[5] to speed-up query evaluation on ActiveXML documents,
and a user-friendly interface has been developed. All these
aspects make AXML a great technology for mash-up style
data integration.

The purpose of this demo is to demonstrate the power
of AXML as a support for complex (yet efficient!), easy-
to-build and easy-to-use mash-up applications. We propose
to demonstrate how users can build an AXML mash-up
application (with the help of a GUI). Further, we demonstrate
the inner workings of OptimAX, our AXML optimizer, which
reformulates a user-specified mash-up into one producing the
same results, but with better performance.

The technical innovation of our demo is twofold. (i) We
show that the AXML language (with a set of minimal exten-

sions) can be used as a specification language, optimization
language (akin to logical plans) and distributed execution lan-
guage (akin to physical plans), for dynamic, distributed Web-
based mash-ups, in varied P2P settings. (ii) We demonstrate
OptimAX’s optimization rules and rewriting engine, also with
the help of GUI. The optimizer draws up an initial query plan,
and then rewrites it using a combination of heuristics and
cost information in order to improve the plan’s performance
estimates. The process is outlined in Figure 1, which we
comment in more detail later on.

By itself, the optimization problem we address is unique,
and notably differs from classical distributed query optimiza-
tion. The reasons are: distribution over a set of sites potentially
unknown at compile time (see Section III); the recursive
character of AXML (a service call may return another service
call); and finally the dynamic aspect of an AXML application,
parts of which can be modified (e.g. the user can add new
service calls etc.) while other parts are running, going through
optimization and evaluation steps.

The rest of this document is organized as follows. Section II
briefly presents the (A)XML data model and the main elements
of our plan algebra. Section III describes the demonstration
scenario. We compare OptiMAX with similar projects and
technologies in Section IV and we conclude.

II. AXML AND ITS ALGEBRA

In this section, we review the basic concepts framing our
OptimAX work: ActiveXML documents and their associated
evaluation algebra. To ease reading, we will rely on a simple
paranthesized notation for XML trees, e.g. writing a(b) to
denote an a node with a b child, and abstract away some
details of the AXML notation [3].

A. ActiveXML documents

ActiveXML documents are XML documents including
some special elements labeled sc (for service call). We now
describe the basic features of the language as they have
been laid out in [3]. Elements labeled sc describe a given
Web service that should be called, and may include XML
parameters of the call. When the call is activated, a request
message (including the parameters) is sent to the Web service,
and when the results are received, they are inserted in the
AXML document as siblings of the sc node.



AXML
optimizer
OptimAX

AXML
optimizer
OptimAX

AXML
evaluation

engine

Peer p2

AXML
optimizer
OptimAX

AXML
evaluation

engine

AXML
evaluation

engine

q plan2

plan4

plan1

results
into

Document d

Peer p1

Peer p3

evaluate

q(d)

plan6

optimize

getInformation
optimize

invocations
Web service

Fig. 1. AXML optimization process.

While the basic mode of interaction with a Web service
consists of a single request and a single response message, as
part of an ongoing thesis in the Gemo group, stream services
are being developed. Once a call to a stream service has
been activated, a stream of XML answers will be returned
asynchronously, and they are all inserted in the caller AXML
document as siblings of the sc node. After all answers have
been returned, a special token “end-of-stream” (or eos) is
returned. Observe that a “regular” service (returning just one
answer) is a special case of continuous service returning a
short stream. Thus, from now on, without loss of generality,
we will refer to continuous services only.

We are mainly concerned with declarative services, de-
fined by XQuery [6] queries. A few optimization techniques
(e.g. factorization, see Sec. II-C) are also possible for non-
declarative services, however, these are more limited. We
consider a distributed setting, where different peers provide
services and/or host AXML documents. We consider a set
of distinct peer identifiers of the form p1, p2, . . ., and a set
of distinct document identifiers inside each peer, of the form
d1, d2, . . .. Inside a given document, sc nodes are identifiable
by their node IDs of the form n1, n2, . . . etc.

The default evaluation strategy of an AXML document d@p
consists of activating all calls in d, receiving the results and
inserting them at p, if there are any service calls among these
results, activating those too etc. The process is potentially
infinite (and the system stops it after a number of rounds),
but practical applications are in fact much simpler and have
a finite depth of recursive calls. The activation order of the
calls in a document obeys the following constraint: whenever
a service call sc1 is a parameter of sc2, sc1 had to be activated
before sc2. Beyond this constraint, all calls can be activated
in parallel. If an application needed to ensure that scx was
activated prior to scy overriding the default order, the element
corresponding to scy was annotated with an attribute of the
form isAfter scx. Observe that the default evaluation strategy
leads to all service call results transiting through peer p.

B. AXML extensions for optimization

We outline here a set of extensions brought in [5] and
our subsequent work to the basic AXML language [3]. These
extensions expose at the level of the language several features
implicitly used in the previous language and platform. The ad-
vantage of this exposure is to make available to the optimizer
flexible building blocks for efficient plans.

First, three new special Web services have been added to
the language: newNode, send and receive. These services are
special in the sense that calls to them are inserted by the
optimizer, not by the AXML user.

The newNode(tree, address) service provided by peer p
copies the XML tree as a child of the node whose address
is given as a second parameter. If address is null, the tree is
installed as a new standalone document hosted by p. Once
activated, this service returns a single response message with
the ID of the tree installed at p.

The send(data, address) service provided by peer p con-
tinually sends data as children of the receive service call
node identified by address. Different from newNode, send can
transfer a whole stream (if data is a stream) as children of
the destination nodes, as they arrive. Observe that send can
transfer all the results obtained from the call to a continuous
service, but we restrict it so that it does not transfer activated
service calls which have not received eos yet. Intuitively, we
do not want to “migrate executing calls”; instead, we are
allowed to move calls which have not yet been activated, and
calls which have completed execution.

The receive(data, address) service provided by peer p is
used as a counterpart to the send. The receive is a place marker
indicating where data from a send should be inserted. The calls
to send and receive are created together (in pairs); streams of
results are transferred between a pair of activated calls to send
respectively to receive. This is in the spirit of communication
channels in pi-calculus [7]. The address is the identifier of the
corresponding send that transmits data. The data argument
of receive is not actually used by the service itself, rather, it
serves to describe the data which is going to be received there.
This description is useful for the optimizer to get a global view
of the ongoing computations, as we will illustrate.

Another useful extension to the language consists of generic
resources [5]. Generic services are Web services identified by
their name and WSDL type description, but whose provider
peer is unknown (or, in WSDL terms, for which bindings
are unknown). We designate such services by s@any, where
any stands for any peer. Similarly, generic documents of the
form d@any designate any replica of a given document. A
generic resource needs to be resolved into a particular concrete
resource prior to being used.

The use of continuous and special services leads to refining
activation order constraints. (i) To constrain the activation
order of calls to continuous services, we replace isAfter by two
attributes. Using isAfterActivated causes the second service’s
activation just after the first one’s activation. Using isAfterT-
erminated allows activating one call when another one has
produced its end-of-stream, e.g., to evaluate an aggregation
over the stream. (ii) A call to the send service is activated
prior to all the calls it may have in its parameters. (Those
calls will only be activated after they have reached their
destination.) (iii) A call to the newNode service is activated
prior to all the calls it has in the tree parameter. However,
it can be activated only after all service calls in its address
parameters have terminated. (iv) A call to the receive service



is activated when the first message from the corresponding
send reaches its destination.

C. AXML optimization

The process of optimizing an AXML computation consists of
enumerating equivalent strategies and choosing one assumed
to have lower computation costs. Here, equivalent means that
the same query result is returned at p, however, different
peers, document and services may have been used during the
computation. As for costs, we are first interested in reducing
the response time, and second, the total work.

The optimization and evaluation process inside a peer P1

is outlined in Fig. 1. To evaluate query q over document
d, OptimAX enumerates several plans, among which one,
say plan6, is chosen. To do so, the optimizer may consult
with other peers’ optimizers, either to gather catalog and cost
information, or to delegate part of the optimization. Inter-
optimizer communications are shown by dotted lines. The
chosen plan is handed to the evaluation engine, which may
interact with other peers’ evaluation engines through Web
service calls (either regular services or send, newNode etc.).
Thick arrows in Fig. 1 trace actual service call activations.
Although not shown in the figure, the process may be repeated
as long as answers to q(d) bring more service calls which need
to be activated and optimized.

Exhaustive application of the rewriting rules leads to an
extremely large search space even for modest problems. The
complete exploration of this space may be impractical. To cope
with this potential problem, the optimizer accepts (i) a limit on
the number of plans developed and (ii) hints on the relative
order of rules to apply. This enables controling the cost of
optimization itself. A further quite standard approach to limit
the cost of optimization consists of caching optimized plans
to avoid re-doing the same effort.

1) Cost models for OptimAX: We consider cost models
focused on communications (messages). Our simplest model
M1 assigns a cost of 1 to each message crossing peer bound-
aries (i.e. whenever peer p activates a call to s@p′). All other
computations, in particular local queries, are considered to
have a cost of zero. This simple model reflects our experience
that communications are by far more expensive than intra-
peer computations [4], [8]. The second model we consider,
M2, assigns a cost of bwp1,p2 to all messages exchanged
between peers p1 and p2, where bwp1,p2 is a constant reflecting
the transfer latency between these two peers. The model M2

takes into account the difference between fast transfers in an
intranet, and more lengthy ones, e.g. between a peer in France
and one in China.

OptimAX optimizes AXML computations by applying suc-
cessive rewriting steps on its AXML plans. The initial plan
is a document containing a call to an ad-hoc query service.
This service is simply defined by the query which the user
asked. The optimizer rewrites this document by applying a set
of rules, as the following simple examples show.

2) Instantiation: Consider the plan a(f@any), where a is
an XML node and f a generic (query) service, at some peer

p. Before evaluating this, any has to be changed into a peer
providing f - for instance, but not necessarily, p itself.

Fig. 2. Delegation example.

3) Delegation: Let the plan d@p2 be:
a(s1@p1(s2@p1(d1@p1))). Here, the (result of the) call
to s2@p1 is an argument of the call to s1@p1. The default
evaluation strategy (Sec. II-A) would transfer d1@p1 to p2,
then ship it back to p1 in order to evaluate the call to s2,
receive these results at p2, then ship them back to p1 in
order to evaluate the call to s1 and finally ship the results
to p2. Instead, the optimizer may rewrite d@p2 into d′@p2,
shown in Figure 2. This plan represents the delegation of
the whole computation to p1. p2 would only be responsible
to receive the final result from p1. More specifically the
evaluation of d′ at p2 would result to calls to receive@p2

and newNode@p1. The evaluation of the latter would
establish the send@p1(s1@p1(s2@p1(d1@p1)), �x@p2) at
p1’s repository as a new tree. As soon as this tree is installed,
its evaluation starts. Before send@p1 starts its execution,
the subtree s1@p1(s2@p1(d1@p1)) has to be materialized
(isAfterActivated pointing to the s1@p1 under the send@p1 is
omitted in Figure 2 for readability). Note that after send@p1’s
activation, results of s1@p1 will be shipped as soon as they
appear. The destination address of send@p1 is the address of
receive@p2 (shown as #x@p2). The address of the send itself
is #y@p1. Note that the execution of s1@p1(s2@p1(d1@p1))
at p1 does not generate any communication cost, because
document and services are hosted by the same peer.

Fig. 3. Factorization example.

4) Factorization: Assume a document d@p1 at peer p1
containing two identical service calls, e.g. two subscriptions
made by different users (see Figure 3). Calling the service
twice leads to an unnecessary overhead. The rewriting, d′, is
shown at right in (Figure 3). In d′, only one call is made to
s1@p2. As soon as the results arrive at p1, send and receive
services are used to copy them to the necessary positions.
Observe that the data parameter of the send is an address,



namely �x@p1), identifying the service call whose results
should be copied as they arrive.

5) Query pushing: Consider a document of the form
f@p1(g@p2(d@p3)) where f is defined by a selective query.
Then, f can be “pushed” closer to d@p3 without affecting the
final result1, leading to the rewritten plan g@p2(f@p1(d@p3)).

How does a peer learns about available peers, documents
and services, and cost information? In a “network of friends”,
peer p learns about other peer’s existence gradually, as p calls
services provided by these peers; in a DHT-based network,
a global distributed index is available to all peers. In this
second setting, peers also insert in the index cost (bandwidth)
information which all other peers can use.

III. DEMO HIGHLIGHTS AND SCENARIO

First and foremost, our demo aims to illustrate the ex-
pressiveness of the AXML language both as a language
for specifying mash-up applications, and as an algebra for
distributing and executing them. Our second aim is to show
OptimAX at work, following it via graphical rendition of the
plans (a flavor of which can be found at the URL [9]).

A scenario we envision is closely inspired from a real
application.2 The scenario concerns the collaborative devel-
opment and distribution of software packages. Several de-
velopers, distributed all over the world, write updates for a
set of software packages. Each developer works at his own
location, and pushes his updates to one or several servers
geographically close to him. Each server hosts some, but not
all, of the distribution’s packages. The application is highly
dynamic. The packages under development and the developer
community change over time. The set of packages a given
developed contributes to, and the sites where he publishes his
updates, may also change, rendering impractical a centralized-
catalog solution. In this context, a typical continuous query is:
Whenever there is a new update on the Emacs package, I want
to receive the update and the name of its developer. We intend
to demonstrate this, and other distributed scenarios, both on
a structured network (DHT) and on an unstructured one. If
network connections is available, some peers will run in a
cluster in INRIA, the others on the demo site. We will explain
the optimizer’s functioning via graphical representations of:
the OptimAX plans, the evolution of the best plan’s cost
during optimization, and the relationships between plans in
the search space considered. Figure 4 illustrates Optimax’s
graphical output.

IV. RELATED WORKS AND CONCLUSION

The ideas behind OptimAX’ algebra have been presented
in [5]; they have since been developed, and implemented in
our prototype. A concurrent project [10] has built a divide-
and-conquer optimizer exploring two dimensions of the op-
timization space: using generic Web services, and choosing
the peer which activates a given call as proposed in [8].

1Peers p1, p2, p3 may or may not coincide.
2We encountered this application in the eDos EU project, concerning the

automatic management of the Mandriva Linux distribution.

Fig. 4. Sample graphical output of the optimizer.

Our work considers more optimizations, such as lazy query
evaluation [4], query pushing, factorization etc.

Many recent works seek to combine Web services, distribu-
tion, and XML queries. One area of such works consider Web
service orchestration via BPEL4WS [11]. BPEL and AXML
share some features, such as the possibility to sequence Web
service calls, but have different focus. BPEL is more process-
oriented, and in particular it allows handling complex process
structure, exceptions etc. In contrast, AXML is data-oriented,
sacrificing some expressive power in exchange for a language
amenable to optimization. One can conceive an architecture
combining BPEL and AXML, where the first one would be
used for high-level process description and the latter one for
data-targeted optimization of the proposed description.

Relevant related works have considered distributed exten-
sions to XQuery [12], [13] using Web services. Going beyond
queries, our approach allows a seamless transition between
data, queries and query plans (which all are AXML). This is
due to the dual character of AXML, mixing intensional and
extensional data. Mutant query plans [14] are similar in spirit,
although in a simpler relational setting.

ACKNOWLEDGMENTS

This work has been partly funded by the French Government
grant RNTL WebContent.

REFERENCES

[1] “Programmable web,” www.programmableweb.com.
[2] R. Ennals and M. Garofalakis, “Datamator: Mash-up for the masses

(demo),” in SIGMOD, 2007.
[3] “Active XML Primer,” Gemo Report no. 307, 2003.
[4] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu, T. Milo, and

N. Preda, “Lazy query evaluation for Active XML.” in SIGMOD, 2004.
[5] S. Abiteboul, I. Manolescu, and E. Taropa, “A framework for distributed

XML data management.” in EDBT, 2006.
[6] W3C, “XQuery: An XML Query Language 1.0.”
[7] R. Milner, Communicating and Mobile Systems: The Pi Calculus.

Cambridge University Press, 1999.
[8] N. Ruberg, G. Ruberg, and I. Manolescu, “Towards cost-based optimiza-

tion for data-intensive web service computations.” in SBBD, 2004.
[9] S. Zoupanos, www-rocq.inria.fr/˜zoupanos/?page=axml.

[10] G. Ruberg and M. Mattoso, “XCraft: Boosting the performance of
AXML materialization,” Tech. report, UFRJ, 2007.

[11] “Web services business process execution language version 2.0,” OASIS
Consortium, 2007.

[12] M. Fernandez, T. Jim, K. Morton, U. N. Onose, and J. Simeon, “Highly
distributed xquery with DXQ (demo),” in SIGMOD, 2007.

[13] Y. Zhang and P. Boncz, “XRPC: Interoperable and efficient distributed
XQuery,” in VLDB, 2007.

[14] V. Papadimos, D. Maier, and K. Tufte, “Distributed query processing
and catalogs for p2p systems,” in CIDR, 2003.


