
Minimal Observability for Transactional Hierarchical Services ∗

Debmalya Biswas and Blaise Genest
IRISA/INRIA & CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France

{firstname.lastname}@irisa.fr

Abstract

For complex services, logging is an integral part of many
middleware aspects, especially, transactions and monitor-
ing. In the event of a failure, the log allows us to deduce the
cause of failure (diagnosis), recover by compensating the
logged actions (atomicity), etc. However, for heterogeneous
services, logging all the actions is often impracticable due
to privacy/security constraints. Also, logging is expensive
in terms of both time and space. Thus, we are interested
in determining the absolute minimal number of actions that
needs to be logged, to know with certainty the actual se-
quence of executed actions from any given partial log. This
problem happens to be NP-Complete. We consider complex
services represented as a hierarchy of services, and propose
a decomposition mechanism which dramatically decreases
the complexity (up to 2 exponentials).

1. Introduction

An interesting problem for complex systems is to deter-
mine a minimal set of actions that needs to be observable
such that a given property holds. Some of the properties
studied in literature of discrete event systems are normal-
ity [6], observability [5], state observability [9], diagnos-
ability [13], etc. Our system corresponds to a composite
(workflow) Web service. A Web service [1] refers to an on-
line service accessible via Internet standard protocols. A
composite service, composed of already existing (compo-
nent) services, combines the capabilities of its components
to provide a new service. A service schema which specifies
the execution order of its components, can be modeled as a
graph, performing actions on global variables. We do not
tackle here the modelization of a service as a graph, which
should be handled with care to yield a graph of reasonable
size (see [15] and example 1).

Our long-term objective is to provide a transactional
framework for (composite) Web services. A transaction

∗This work is supported by la Region Bretagne (CREATE ACTIVE-
DOC) and ANR-06-MDCA-005 DOCFLOW.

can be considered as a group of actions encapsulated by
the operations Begin and Commit/Abort, having the fol-
lowing properties: Atomicity (A), Consistency (C), Isola-
tion (I) and Durability (D). Here, we focus on the atomicity
aspect, that is, either all the actions of a transaction are ex-
ecuted or none. In the event of a failure, atomicity is pre-
served by compensation [3, 14]. Compensation consists of
executing the compensating actions, corresponding to each
executed action of the failed process, in reverse order of
the original execution. Many advanced transactional mod-
els have also been proposed, e.g. “semantic compensation”
[14] which do not require any knowledge of the execution
sequence. However, their application to more autonomous
systems like Web Services has been limited, where the de-
fault compensation mechanism of the widely used Busi-
ness Process Execution Language (BPEL) is to “execute the
completed actions in reverse order”. Thus, for compensa-
tion to be feasible, we need to reconstruct each executed
action or the complete history of any execution. To achieve
that, we maintain a log of the observable actions. In addition
to the obvious space overhead of logging, the complete log
may not always be accessible. For a composite service, the
providers of its component services are different. As such,
their privacy/security constraints may prevent them from
exposing (part of) the logs corresponding to the execution
at their sites. Also, heterogeneity may lead to the logs be-
ing maintained in different formats, rendering some of them
incomprehensible. Existing Web services specifications to
provide transactional guarantees, such as WS-Coordination,
WS-AtomicTransaction and WS-BusinessActivity [16], are
basically distributed agreement protocols which are based
on the assumption that “all state transitions are reliably
recorded” and can be compensated. Our approach is tar-
geted towards a more heterogeneous environment where all
transitions may not be observable. Hence, we want from a
partial log of the observable actions to know with certainty
the actual sequence of executed actions, to be able to com-
pensate it.

Section 2 introduces the required formal preliminaries
including the precise problem statement. Clearly, we are
interested in logging the smallest number of actions possi-

ble. However, determining the minimal number of actions
to log, such that any execution of a system is compens-
able, is NP-Complete. This is not very surprising, since the
closely related sensor selection problems [17, 8] are also
NP-Complete (see section 3). Also, the problem cannot be
approximated [11] in polynomial time, which means that
polynomial time algorithms cannot give a minimal set for
all graphs, and that for many graphs, the observable set pro-
duced would be much bigger than the minimal set.

A complex service is often constructed hierarchically
(see section 4), with some services at a high level corre-
sponding to many composite services at a lower level. Each
hierarchical level potentially describes the interactions at a
different level of abstraction, e.g., the top level may describe
the interactions between several providers, then the next
level between services of a provider, and so on. Moreover,
components can be reused in a hierarchical system, giving a
compressed way to represent big systems. Hierarchical sys-
tems are often used for words [10], Finite State Machines
[2], and even trees [7]. For words, e.g., hierarchical struc-
tures correspond to the LZ compression [10]. We show in
section 5 how to use the hierarchical representation to com-
pute efficiently a minimal observable set of transitions. The
algorithm is not straightforward since the log of both mini-
mal sets of actions of different components is not necessar-
ily enough to recover the actual sequence of executed ac-
tions of the whole graph. One solution could be to resort to
function summarization, but then only an overapproxima-
tion of the minimal set of actions would be obtained. Nev-
ertheless, we show that it suffices to run the algorithm with
slightly different parameters on each component. We thus
obtain a divide and conquer algorithm. We present a the-
oretical complexity analysis which illustrates the benefit of
our method (up to two exponentials better when using the
full hierarchical representation and one exponential better
by using the hierarchical representation even if components
are used only once, compared to flattening the hierarchical
graph), that is verified experimentally (section 6). Proofs
and details omitted for lack of space can be found in [4].

2. Preliminaries

Formally, we model a transactional service as a 4-tuple
M = (Q, s0, sf , T), where (Q, T) is a graph (q ∈ Q is
called a state and t ∈ T a transition) and s0 ∈ Q and sf ∈
Q are the initial and final states, respectively.

Our systems are thus graphs with a unique input and
output point, each node and arc corresponds to a state and
transition, but we ignore the alphabet. We assume that the
service M does not have any unreachable states and that
all states can reach the final state sf . For convenience, we
also assume that there are no outgoing edges from sf and

no incoming edges to s0.1 We say that an execution se-
quence ρ = τ1 · · · τn ∈ T ∗ is a path of M if there exists
q0, · · · , qn ∈ Qn+1 with τi = (qi−1, qi) for all 1 ≤ i ≤ n.
A path is called initial if furthermore q0 = s0. We denote
by P(M) the set of initial paths in M . Finally, we denote
by |M | the size of M , that is, its number of transitions.

In general, for any execution ρ, we call observation pro-
jections the observation we have after ρ was executed (a se-
quence of actions, control points, data . . .). We say that an
observable projection σ is uncertain if there exists two paths
having the same projection. The service M is execution se-
quence detectable iff none of its observable projections are
uncertain.

Definition 1 Let TO ⊆ T be the set of observable transi-
tions. The observation projection ObsO : T ∗ −→ T ∗

O is the
morphism with ObsO(a1 . . . an) = o1 · · · on with oi = ai if
ai ∈ TO, and oi = ε if ai ∈ T \ TO , with ε the empty word.

That is, ObsO(ρ) is the subsequence of ρ obtained by
eliminating from ρ every occurrence of a tuple which is not
in TO. With such an observation projection ObsO, the only
way of having execution sequence detectability is to have
every transition observable. Indeed, as soon as there exists
even one non-observable transition, the service is not execu-
tion sequence detectable. Else, let us take a path ρτ with the
last transition τ /∈ TO. Then, ObsO(ρτ) = ObsO(ρ). An
usual way to overcome such a problem is to ask for certainty
only up to the last few events of the sequence [9]. How-
ever, this workaround does not make sense in our frame-
work since if we cannot compensate the very last action,
then we cannot compensate any action at all. As such, we
design a new observation mechanism, where the last control
point reached before failure is monitored, even if the last ac-
tion is not logged. In practice, it means that every state that
is reached is monitored, and overwrite the previous state in
a special memory buffer.

Definition 2 Let M be a service, TO ⊆ T . The observa-
tion projection Obslast

O : T ∗ −→ (T ∗
O , Q) is the function

Obslast
O (ρ) = (ObsO(ρ), q) for all ρ ∈ P(M) ending in q.

We will stick with this definition of observability for the
rest of the paper. As mentioned before, we are interested in
logging as few transitions as possible.

Problem statement. Given an service M = (Q, s0, sf , T),
we call TO an observable set of transitions if the service
is execution sequence detectable with Obslast

O . We want to
determine a minimal observable set of transitions TO ⊆ T .

The cardinality of such a minimal observable set TO of a
service M is referred to as its observable size MO(M) =

1Notice that we could deal with a service without these requirements,
but the proof would be more technical.

Initiate
Payment
Request

Currency
Type?

Finance
Director's
approval?

$

Order Citibank
Cheque

Order
American
Express
Cheque

Euro

Y

N

Update Accounts
Database

Deliver Cheque Terminate
Request

Get Supervisor's
Approval

Y

Get Team
Lead's

Approval

N
Student

?

Send by Courier

Hand Deliver

Geographic
Location?

Initiate
Delivery

Same campus

Different
campus Terminate

Delivery

Figure 1. Travel funds request workflow.

|TO|. Notice that as is usual with decision and computation
algorithms, it is sufficient to have an algorithm which from
a service gives its observable size. That is, we can derive a
minimal observable set of the service based on knowledge
of its observable size in polynomial time.

Example 1 We consider in Fig. 1 a travel funds request ser-
vice, inspired by the workflow in [12]. It involves different
departments across organizations, and it is hierarchical in
that the deliver cheque service is hierarchically described.

We model the service using the service M =
(S, s0, sf , T), as shown in Fig. 2. Notice that this service
is a simplification, since for instance the choice between the
team leader or supervisor approvals is not represented. The
reason is that they are both associated with an empty com-
pensating transition, hence knowing which path was taken
here is not necessary to be able to perform recovery. How-
ever, it is necessary to know which bank issued the cheque in
order to be able to compensate it, by a “Cancel Last Amer-
ican Express (Citibank) Cheque”. Note that we do not ex-
clude the logging of data values (in some persistent storage)
required for compensation. For instance, if there wasn’t any
“Cancel Last Cheque” mechanism, then it would be needed
to log the amount and account number associated with the
’‘Update Accounts Database” transition. Recovery would
manually credit the amount of money written in the log to
the corresponding account. Obviously, we cannot save on
logging the data values, but we optimize the logging asso-
ciated with the path visited. Our experiments performed
on BPEL representations of some workflows reveal that one
transition out of five is logged (which is confirmed in section
6) and that data values logs are small compared to logging
the path.

Now, let TO = {e2, e3, e9} and a failure occurs while
processing e8, that is, the cheque is not issued or deliv-
ered correctly. Then, Obslast

O (e1e2e5e7) = (e2, s5) =
Obslast

O (e1e2e4e6e7). Thus, we do not know if an Amer-

ican Express or Citibank cheque was processed. With
T ′

O = {e2, e6, e9}, we have Obslast
O (e1e2e5e7) = (e2, s5) �=

Obslast
O (e1e2e4e6e7) = (e2e6, s5) �= Obslast

O (e1e2e4e6) =
(e2e6, s4), and T ′

O is an observable set of transitions. Ev-
ery path from s0 to sf uses at least one transition from T ′

O .

s2

s3

Initiate Funds
Request (e1)

Process $

(e2)

Process
Euros (e3)

Order American

Exp. Cheque (e5)

Order Citibank
Cheque (e6)

Update Accounts

Database (e7)

Send by courier

(e8)

s5 s0

Process Euros on
Finance Director's

Reject (e4) sf s4 s1

Hand deliver (e9)

Figure 2. Modelization of Fig. 1.

3. Problem Hardness

We first relate the problem of computing MO(M) using
our definition of observable projections with other known
problems. We state now that computing the minimal ob-
servable set is equivalent to the uniconnected subgraph
problem, also called the minimal marker placement prob-
lem [8], in the meaning of the following proposition.

Proposition 1 Let M be a service and TO a subset of tran-
sitions of M . Denote by M ′ the service M obtained by
deleting all transitions belonging to TO. Then, TO is an
observable set of M iff there does not exist a pair of paths
ρ1 �= ρ2 of M ′ with ρ1 beginning and ending at the same
states as ρ2.

To prove proposition 1, it suffices to prove that if there
does not exist a pair of paths ρ1 �= ρ2 of M ′ with ρ1

beginning and ending at the same states as ρ2, then from
any observable projection (σ, qn+1), we can reconstruct in
a unique way a path with Obslast

O (ρ) = (σ, qn+1). The
converse is trivial. Indeed, it suffices to define the only
path ρi of M ′ between q′i and qi+1 for σ = (qi, q

′
i)

n
i=1,

and i = 0 · · ·n (we fix q′0 = s0 the initial state of M ′,
and recall that qn+1 is the last observed state). Then, the
path ρ = ρ0(q1, q

′
1)ρ1 · · · (qn, q′n)ρn is the only path with

πlast
O (ρ) = (σ, qn+1). The search for each path ρi can be

performed in linear time by a simple depth first search of
M ′.

The fact is that the marker placement problem is an NP-
Complete problem. The question is then to know if there
is a structural subclass of graphs which has a tractable al-
gorithm to give the minimal observable size. We know
from [8] that the minimal marker placement problem is NP-
Complete even for acyclic graphs. However, the proof uses
a graph with unbounded (in and out) degree. We show
that the problem is NP-Complete even if the graph is both
acyclic and the sum of its in and outdegree bounded by 3

(that is, indegree 2 and outdegree 1, or vice versa). The
core of the proof follows the same strategy as [8], but the
encoding to get a unique starting and ending point is both
easier to understand and allows a lower in and outdegree.

Theorem 1 Let M be a service, and k a number. Knowing
whether MO(M) ≤ k is NP-Complete, even if the corre-
sponding graph is acyclic and the sum of in and outdegree
of every node bounded by 3.

This theorem does not mean that the problem is impos-
sible to solve, but that it cannot be solved for all possible
services. For instance, the complexity of the brute force
method which generates every subset of transitions and tests
whether it is observable, is O(2|M|) for a service M with
|M | transitions. The question then is which structural prop-
erty makes the problem easier to solve and often holds for
(real life) composite services. We propose hierarchical ser-
vices as a candidate property.

4. Hierarchical Services

Hierarchical services provide an efficient way to
model large and complex services by allowing a mod-
ular decomposition. We consider hierarchical services
where two transitions (supertransitions) can be further
refined into another service. A hierarchical service
H is a finite sequence 〈Mi〉i=1···n, where M i =
(Qi, si

0, s
i
f , T i, (τ i

1, k
i
1), (τ

i
2, k

i
2)) is defined as follows:

• (Qi, T i) is a finite graph,

• si
0 and si

f are the initial and final states, respectively,

• τ i
1, τ

i
2 ∈ T i∪{ε} are two supertransitions representing

services Mki
1 , Mki

2 respectively, with ki
1, k

i
2 > i.

For instance, the workflow in Fig. 1 can be described by
a hierarchical service 〈M1, M2〉, where M2 is made of an
initial and final state, and two transitions e8, e9 from the
initial to the final state. The service M1 is very similar to
Fig. 2, except that there is a unique transition e10 between
s5 and sf instead of two. This is a supertransition (τ 1

1 , k1
1),

with τ1
1 = e10 and k1

1 = 2, meaning that e10 represents M2.
With each hierarchical service H , we associate an ordi-

nary service H obtained by taking M i, and recursively sub-
stituting each supertransition by the service it represents.
For example 1, H is depicted in Fig. 2. Given a hierarchi-
cal service 〈Hn〉, Hj is a component of Hi, if there is a
supertransition (t, j) in Hi. We define the size |H | of a hi-
erarchical service H as the sum of the number of transitions
of its components M i. Its diameter ||H || is the number of
transitions of H. The diameter ||H || of H can be expo-
nential in the size of H , because components can be reused
several times (for instance, a supertransition of H3 and two

supertransitions of H4 can represent H10, in which case one
does not need to redefine H10 three times).

Now, let us define a hierarchical system H with two lev-
els. The top level H1 has two states, one initial and one
final, with two transitions τ1, τ2 from the initial to the fi-
nal state. Transition τ2 is a supertransition. It is not easy
to determine a minimal set of transitions for H . Consider
first that τ2 describes a system H2 similar to H1, that is
two transitions τ3, τ4 from the initial to the final state, but
without supertransitions. The set T2 = {τ3} is a minimal
observable set of transitions for H2. Now, looking at H1

as a normal system (without supertransitions), T1 = {τ1}
is also a minimal observable set of transitions for H1. We
have furthermore that T1 ∪ T2 is a minimal observable set
of transitions for H .

However, if we take H ′
2 to be the system described in

Fig. 2 and the associated minimal observable set T ′
2 =

T ′
O = {e2, e6, e9} of transitions described in example 1,

then T1 ∪ T ′
2 is not minimal among the observable set of

transitions for H . The reason is that T ′
2 is already an observ-

able set of transitions, because all paths that pass through
H2 use at least one transition in T ′

O , so they can be differ-
entiated from the path τ1. That is, the fact that a subset
of transitions is a minimal observable set of transitions is
global to the whole graph, not local.

5. Algorithm for Minimal Observability

We turn now to defining an algorithm which uses the hi-
erarchical structure of a complex service to compute the
minimal observable set. First, we need the following no-
tations. Given TO , a path ρ is said to be an unobserved path
if it does not use any transition of TO. For a service M
and a set of transitions TO of M , we define the following
predicates:

• P0(M, TO) holds if there does not exist more than one
unobserved path between any two states s1 �= s2 ∈ Q
(TO is an observable set of transitions).

• P1(M, TO) holds if (i) P0(M, TO) holds, and (ii) there
does not exist an unobserved path from s0 to sf .

• P1′(M, TO) holds if (i) P0(M, TO) holds, and (ii)
there do not exist states s1, s2 ∈ Q such that (a) there
is an unobserved path from s0 to s2, (b) there is an
unobserved path from s1 to sf , and (c) there is an un-
observed path from s1 to s2. We refer to such a com-
bination of nodes and edges as an unobserved reverse
cyclic pattern between s1 and s2 (within M) .

For instance, on Fig. 2 with T ′
O = {e2, e6, e9}, P0(T ′

O)
holds because T ′

O is observable, P1(T ′
O) holds because ev-

ery path from s0 to sf uses at least one transition of T ′
O ,

but P1(T ′
O) does not hold since there exists three non ob-

servable paths: e4 from s2 to s3/ e1e3 from s0 to s3/ e5e7e8

from s2 to sf .
By definition, P1′(M, TO) ⇒ P1(M, TO) ⇒

P0(M, TO), since for all s, there always exists a path
from s to s. Let ε < 0 < 1 < 1′. We define
Best(M, TO) = x ∈ {ε, 0, 1, 1′} such that Px(M, TO)
holds, but not Pxx(M, TO) with xx > x, with the conven-
tion Pε(M, TO) is always true. Informally, Best refers to
the best properties a given set of transitions can ensure, if
observed.

Proposition 2 Let C be a component of M , and T1, T2

be subsets of transitions of C, respectively such that
Best(C, T1) = Best(C, T2). Then, for all subset of tran-
sitions TO of M \ C, we have Best(M, TO ∪ T1) =
Best(M, TO ∪ T2).

For x ∈ {0, 1, 1′}, we define Tx(M) as a smallest sub-
set TO of transitions of M such that Px(M, TO) holds.
For a subset of transitions T of a component C of M ,
we also denote by T T,C

x (M) a smallest set TO such that
TO ∩ C = T and Px(M, TO) holds. Every algorithm to
compute the minimal observable set of transitions is recur-
sive, taking the set of transitions considered observable as
input. It is easy to modify them to input in the beginning
not ∅ but T , and disallowing to select any new transitions
in C, such that they compute T T,C

x (M), and they do it
faster than Tx(M) because they cannot choose among the
transitions of C. As proved in proposition 2, the size of
TO is constant for several T such that Best(C, T) = y.
If |T ′| > |T | with Best(C, T) = Best(C, T ′), then
|T T ′,C

x (M)| > |T T,C
x (M)|. We can use this idea to com-

pute Tx(M) in a compositional manner, for a service M
having component C:

MinimalDecomposition(M, C):

1. Compute a minimal set Ty(C) of transitions of C,
∀y ∈ {0, 1, 1′}.

2. Compute a minimal set T Ty(C),C
0 (M) of transitions of

M , ∀y ∈ {0, 1, 1′}.

3. Output a set of smallest size among T Ty(C),C
0 (M).

For example, consider the service M having component
C in Fig. 3.

1. A minimal set T0(C) = {(s′0, s2), (s1, s
′
f)},

T1(C) = {(s′0, s1), (s2, s
′
f)}, and T1′(C) =

{(s′0, s2), (s1, s
′
f), (s1, s2)}.

2. The corresponding observable sets of M :
T T0(C),C

0 (M) = {(s′0, s2), (s1, s
′
f), (s0, sf)} of

size 3, T T1(C),C
0 (M) = {(s′0, s1), (s2, s

′
f)} of size 2,

 s2 s1 s' f s' 0 s0 sf

Figure 3. Service M = (Q, s0, sf , T) having
component C = (Q′, s′0, s′f , T ′).

and T T1′(C),C
0 (M) = {(s′0, s2), (s′1, sf), (s1, s2)} of

size 3.

3. T T1(C),C
0 (M) is a minimal observable set of M .

We can now state the main theorem of the paper.

Theorem 2 Let H = (Mi)n
i=1 be a hierarchical service. It

is NP-complete in the size of H to compute MO(H). More-
over, it takes at most time O(

∑n
i=1 2|Mi|).

It is important to notice that since a service is in par-
ticular a hierarchical service (with hierarchy height of 1),
we know that the problem is at least NP-hard. However,
the complexity could be exponentially worse for hierarchi-
cal graphs, since a small hierarchical graph can represent an
exponentially bigger flat graph. We prove that this is not the
case. Moreover, we prove that the complexity is linear in the
number of components, and exponential only in the size of
each base component. That is, we prove that with a smart
algorithm, one can compute efficiently the absolute minimal
observable size even for huge hierarchical systems, as long
as each component is small enough. The best case com-
parison is with respect to a hierarchical service of diameter
O(2n), having n base components of size 2 (each one be-
ing reused 2n−1 times). The brute force non-compositional
method runs on H and takes time O(22n

), while our method
takes O(n), that is a doubly exponential improvement (one
exponential due to the reuse of components, and another
due to decomposition).

6. Experimental Results

We tested our decomposition algorithm on hierarchical
graphs. First, we choose a number (between one and nine)
of base subcomponents in the graph. Then, we generate
each of them randomly by using the Synthetic DAG gen-
eration tool (http://www.loria.fr/˜suter/dags.html). We then
generate inductively a hierarchical graph having these base
subcomponents randomly using the same tool, by assign-
ing two edges to these components. There is no reuse of
components. For each value, we generate each hierarchi-
cal graph and each base subcomponent five times to com-
pute the mean values (because of variation in runtime and

0,01

0,1

1

10

100

1000

0 20 40 60 80 100
Number of edges (nbr. of subcomponents)

se
co

n
d

s
(l

o
g

 s
ca

le
)

Decomposition

Brute Force
mean decomp.

"mean brute"

5

7

9

11

13

15

17

19

21

23

25

0 20 40 60 80 100

number of edges

%
 o

f
lo

g
g

ed
 e

d
g

es

values

mean values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Figure 4. Execution time & observable size

observable size). We then unfold the hierarchical graphs
as (flat) graphs, whose size is linear in the number of base
components. We then run both a brute force algorithm and
our hierarchical algorithm on these graphs. We do not in-
put the hierarchical shape of the graph, instead the algo-
rithm finds the optimal decomposition with a polynomial
time algorithm, see [4]. Fig. 4(left) shows the times (in log-
arithmic scale) needed to compute a minimal observable set
using brute force and our decomposition algorithm with re-
spect to the number of edges (which is linear with respect
to the number of base subcomponents). Our decomposition
algorithm is indeed linear time with respect to the number
of base subcomponents/number of edges (0.14s for an aver-
age number of edges of 18 and 0.73s for an average number
of edges of 108), while the brute force is exponential in the
number of edges, already timing out at a little over 40 edges.
For 1 subcomponent, the overhead of our method makes the
decomposition slightly worse than the brute force method.
Fig. 4(right) shows the percentage of edges needed to be
logged among all the edges. Both algorithms answer the
same number on the same graphs but there is a huge vari-
ation among graphs, from one edge needs to be logged out
of 4 to one edge out of 15. The mean value seems to tend to
one out of 6.

7. Discussion and Conclusion

We studied compensation under partial log visibility. To
the best of our knowledge, this problem has never been con-
sidered in the context of transactional services. We pro-
posed a framework which uses the hierarchical nature of
composite services, and gives an efficient algorithm to com-
pute the absolute minimum number of transitions to observe
in order to get compensability.

The algorithm we proposed considers only a subset of
the whole set of transitions. It is thus straightforward to add
constraints, such as, a subset of transitions “can/cannot be
observed”. It is very useful since in practice, we have to take
into account privacy/security issues. The algorithm would
then answer the absolute minimal observable set among
those satisfying the constraints. Also, the hierarchical de-
composition allows to deal with dynamicity. Indeed, if a
service gets transformed (e.g., after the discovery/death of

a sub-service), obtaining a minimal observable set would
need recomputation, only at its level of the hierarchy (not
below), plus few levels above (until the properties of a level
are unchanged). It also allows to describe more accurately
the details of a service which was considered atomic until
now, in order to have feedback on where a service failed
exactly. We explain in [4] how to deal with distributed sys-
tems, and with systems which are not given in a hierarchical
way (using a folding algorithm).

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices: Concepts, Architecture and Applications. Springer
Verlag, ISBN: 3540440089, 2004.

[2] R. Alur and M. Yannakakis. Model checking of hierarchical
state machines. ACM TOPLAS, 23(3), pages 1–31, 2001.

[3] D. Biswas. Compensation in the world of web services com-
position. In SWSWPC, pages 69–80, 2004.

[4] D. Biswas and B. Genest. Minimal observability
for transactional hierarchical services. available at
http://www.crans.org/g̃enest/BG08.pdf.

[5] R. Kumar and V. Garg. Modeling and control of logical
discrete event systems. Kluwer Academic, 1995.

[6] F. Lin and W. Wonham. On observability of discrete-event
systems. Information Sciences, 44(3), pages 173–198, 1988.

[7] M. Lohrey and S. Manneth. The complexity of tree automata
and xpath on grammar-compressed trees. Theoretical Com-
puter Science, 363(2), pages 196–210, 2006.

[8] S. Maheshwari. Traversal marker placement problems are
np-complete. Boulder Univ. Report CU-CS-092-76, 1976.

[9] C. Ozveren and A. Wilsky. Observability of discrete event
dynamical systems. IEEE Trans. Auto. Control, 35(7), pages
797–806, 1990.

[10] W. Plandowski and W. Rytter. Complexity of language
recognition problems for compressed words. In Jewels are
Forever, Springer, pages 262–272, 1999.

[11] K. Rohloff and J. Schuppen. Approximating the minimal
cost sensor selection for discrete-event systems. JDEDS,
16(1), pages 143–170, 2006.

[12] W. Sadiq and M. Orlowska. Analyzing process models using
graph reduction techniques. Inf. Syst., 25(2), pages 117–134,
2000.

[13] M. Sampath, R. Sengupta, S. Lafortune, K. Sinaamohideen,
and D. Teneketzis. Diagnosability of discrete event systems.
IEEE Trans. Auto. Control, 40(9), pages 1555–1575, 1995.

[14] G. Weikum, A. Deacon, W. Schaad, and S. H. Open nested
transactions in federated database systems. IEEE Data
Engg. Bulletin, 16(2), pages 4–7, 1993.

[15] A. Wombacher, P. Fankhauser, and E. Neuhold. Transform-
ing bpel into annotated deterministic finite state automata
for service discovery. In ICWS, pages 316–323, 2004.

[16] Web services transactions specifications.
http://msdn2.microsoft.com/en-us/library/ms951262.aspx.

[17] T. Yoo and S. Lafortune. Np-completeness of sensor se-
lection problems arising in partially observed discrete-event
systems. IEEE Trans. Auto. Control, 35(7), pages 797–806,
1990.

