
January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

AN NP-COMPLETE FRAGMENT OF LTL

ANCA MUSCHOLL∗

LIAFA, Université Paris 7
2, pl. Jussieu, case 7014

F-75251 Paris cedex 05, France

anca@liafa.jussieu.fr

IGOR WALUKIEWICZ∗

LaBRI, Université Bordeaux-1

351, Cours de la Libération

F-33 405, Talence cedex, France
igw@labri.fr

Received (Day Month Year)

Accepted (Day Month Year)
Communicated by (xxxxxxxxxx)

A fragment of linear time temporal logic (LTL) is presented. It is proved that the satisfi-
ability problem for this fragment is NP-complete. The fragment is larger than previously

known NP-complete fragments. It is obtained by prohibiting the use of until operator

and requiring to use only next operators indexed by a letter.

Keywords: Linear temporal logic, satisfiability, complexity.

1. Introduction

Linear time temporal logic (LTL) is a well-studied and broadly used formalism for
reasoning about events in time. It is equivalent to first-order logic over finite and
infinite words [6]. The operators of the logic correspond to well-known semigroups
which gives a starting point of the successful classification research [13]. LTL is used
to formulate properties of finite or infinite words. Such a formalization permits to
do model-checking – verify if the given model has the given property. It turns out
that, for LTL and its fragments, in almost all cases the model-checking problem is
equivalent to a satisfiability-checking problem. This is why the satisfiability problem
for LTL and its fragments is so well-studied. It is well-known that the problem for
whole LTL is Pspace-complete [11]. It is known also [11] that the fragment using
only the “sometimes in the future” modality, denoted F , as well as the fragment us-
ing only the “next” modality, denoted X, have NP-complete satisfiability problems.

∗Work supported by the ACI Sécurité Informatique VERSYDIS.

1

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

2

Nevertheless, the fragment when both F and X are allowed is Pspace-complete.
This is a decidable fragment of LTL [1, 13]. We show that restricting the next op-
erator X to operators Xa (a ∈ Σ) that enforce the current letter to be a, we get a
fragment with the satisfiability problem in NP.

Thus, this paper shows that the Pspace-completeness of the F+X fragment is in
some sense an accident due to some syntactic conventions. A very common approach
to formalization of LTL is to have propositions in the logic and to consider a model
to be a sequence of valuations of propositions. Another approach is to consider
models to be words over a given alphabet and to have next modalities indexed by
the letters, i.e. Xaϕ says that the first letter of the model is a and after cutting
a the rest of the model satisfies ϕ. Of course it is very easy to translate between
the two conventions but the fragments that look natural in one convention do not
necessary do so in the other. In particular consider the next operator X. Having
operators Xa we can express X as Xϕ ≡

∨
a∈ΣXaϕ, where Σ is the alphabet. An

important point about this translation is that it induces an exponential blow-up.
We show that it is having X as a primitive in the language that is the source of
Pspace-hardness. We prove that the fragment of LTL without until operator and
using Xa operators instead of X is NP-complete.

Related work. We have mentioned already above the classic results on Pspace-
completeness of the full logic and NP-completeness of the fragments only with F and
only with X, [11]. Matched with the Pspace-completeness of F+X fragment, these
results were considered sharp and the later work has concentrated mostly on ex-
tensions of LTL [7, 4, 3, 8]. Nevertheless the question about the fragment considered
here was posed by the second author [12]. Recently the search of “easy” fragments of
LTL has regained some interest [5, 2, 10]. The main motivation is to understand why
the model-checkers (or the satisfiability-checkers) behave relatively well in practice
despite the Pspace lower bound. The fragments considered in recent papers put
restrictions on the nesting of operators and on the number of propositions used [2].

2. Preliminaries

We will use Σ for a finite alphabet, the letters of which will be denoted by a, b, c, . . .
As usual Σ∗ denotes the set of finite and Σω the set of infinite words over Σ. We
use u, v, w, . . . to range over words.

Let A ⊆ Σ∗ be a finite set of words. The size of A is the sum of the lengths |v|
of all v ∈ A. We write Σ≤n for the set of words of length ≤ n.

Definition 1. The set of subLTL formulas over an alphabet Σ is defined by the
following grammar:

ϕ ::= tt | ff | Xbϕ | Fϕ | Gϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

where subscript b ranges over Σ and Xb, F and G are called “next”, “finally” and
“globally” modalities.

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

3

For a non-empty word v = a1 · · · ak we write for short Xvφ instead of the formula
Xa1 . . . Xakϕ.

The models are infinite words v ∈ Σω. The semantic is standard so we recall
just the most important clauses:

• v |= Xaϕ if v can be factorized as av′ and v′ |= ϕ;
• v |= Fϕ if there is a factorization uw of v, where u ∈ Σ∗, such that w |= ϕ;
• v |= Gϕ if for all factorizations uw of v with u ∈ Σ∗, we have w |= ϕ.

Observe that there is no negation in the syntax. This is because we can define the
negation of a formula using the equivalence rules ¬(Fϕ) = G(¬ϕ) and ¬(Xaϕ) =
Xa(¬ϕ) ∨

∨
b 6=aXbtt. Note that these rules increase the size of the formula by a

linear factor only.
In this paper we prove:

Theorem 2. The satisfiability problem for subLTL is NP-complete.

Let us compare subLTL with linear time temporal logic with propositional con-
stants, that we call PTL here. In PTL instead of an alphabet we have a set of
propositional constants Prop = {P,Q, . . . }. The formulas are built from proposi-
tions and their negations using the modalities X, F and G. There is also an until
operator but we do not need it for our discussion here. The models are infinite
sequences of valuations of propositions. When interested in satisfiability of a given
formula ϕ one can restrict to the set of propositions that appear in the formula,
call it Propϕ. This way a model can be coded as a word over the finite alphabet
∆ = 2Propϕ . Given this, the semantics is the best explained by the translation to
LTL:

• P is translated to
∨
{Xatt | a ∈ ∆, P true in a} (recall that letters are

valuations),
• Xϕ =

∨
a∈∆Xaϕ

The rest of the clauses being identities.
Having definitions of both subLTL and PTL we can make the comparisons.

First, observe that the fragment of PTL without X corresponds to the fragment
of subLTL where after Xa we can put only tt. Next, observe that the translation
of Xϕ induces an exponential blowup. For example a formula Xntt (X n-times
followed by tt) is translated to a formula of exponential size. Finally, observe that
subLTL can express more properties than PTL without X. A simple example is
G(Xatt ⇒ Xabtt) which states that after each a there is b. This property is not
expressible in PTL without X if we have more than two letters. Another interesting
formula is G(Xabtt ∨ Xbatt). This formula has only the words (ab)ω and (ba)ω as
models. This indicates that constructing a model for a subLTL formula may require
a bit of combinatorics on words as the phenomena of interplay between different
prefixes start to occur.

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

4

3. The lower bound

Showing NP-hardness of the satisfiability problem for subLTL is quite straightfor-
ward.

We reduce SAT. Given a propositional formula α over variables x1, . . . , xn we
consider models over the letters b, a1, . . . , an were b will be used to fill the “empty
spaces”. A valuation of the variables x1, . . . , xn will be encoded by a word in such
a way that xi is true iff ai occurs in the word. Let ϕα be a formula obtained by
replacing each occurrence of xi in α by FXaitt. Then there is a valuation satisfying
α iff there is a word which is a model for ϕα.

In this reduction the alphabet is not fixed. Nevertheless it is quite straightfor-
ward to modify the reduction so that it works also for a two letter alphabet. For
example, one can code each letter ai as a word baib. We can then replace each xi
by FXbaibtt instead of FXai as we have done before.

4. The upper bound

To show that the satisfiability problem for subLTL is in NP we will prove the small
model property. The algorithm will be then to guess the model, of the form uvω

for u, v ∈ Σ∗ and to check if the formula holds. This latter task can be done in
polynomial time [11]. As a digression let us mention that the precise complexity of
this problem is not known [9].

Hence, our goal in this section is the following theorem:

Theorem 3. Every satisfiable formula ϕ of subLTL has a model of the form uvω

with |u|+ |v| polynomial in the size of ϕ.

The proof will be split into two subsections. In the first we will consider periodic
words, i.e., ones of the form vω. We will show that if ϕ has a model vω then there is
short word w such that wω is also a model of ϕ. In the second subsection we consider
the case of ultimately periodic words, i.e., of the form uvω and show how to shorten
u. Putting the two together we will obtain a small model for any satisfiable formula.

4.1. Periodic words

We will first characterize the models of a subLTL formula that are periodic infinite
words, i.e., words of the form vω for some v ∈ Σ∗.

Let Swords(w) be the set of finite factors of w.

Definition 4. For A,B ⊆ Σ∗ and p ∈ Σ∗ we say that w ∈ Σ∗ ∪Σω is an (A,B, p)-
word if

• p is a prefix of w,
• A ⊆ Swords(w),
• B ∩ Swords(w) = ∅.

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

5

For the proof of the proposition below it is important to note that for any word
v ∈ Σ∗ and any factorization v = xy we have that Swords(vω) = Swords((yx)ω).

Proposition 5. Let φ be a subLTL formula of size n. Then there exists a set T (φ)
of triples (A,B, p), where A,B ⊆ Σ≤n are of polynomial size in n and p ∈ Σ≤n,
such that for any word v ∈ Σ∗:

vω |= φ iff vω is an (A,B, p)-word for some (A,B, p) ∈ T (φ).

Proof. We show the assertion by induction on the given formula φ.

(1) We have T (tt) = {(∅, ∅, λ)} and T (ff) = {(∅,Σ, λ)}.
(2) Suppose φ = φ1 ∧ φ2. We define T (φ) as the set of triples (A,B, p)

constructed as follows. For every two triples (A1, B1, p1) ∈ T (φ1) and
(A2, B2, p2) ∈ T (φ2) with p1 ≤ p2 (p2 ≤ p1 respectively) we let A = A1∪A2,
B = B1 ∪ B2 and p = p2 (p = p1 respectively). It is easy to check that vω

is a (Ai, Bi, pi)-word for i = 1, 2 if and only if it is a (A,B, p)-word.
(3) Suppose φ = Xaψ. We define T (φ) = {(A,B, ap) | (A,B, p) ∈ T (ψ)}.

We have vω |= φ if and only if v = aw and (wa)ω |= ψ. By induction, this
happens if and only if (wa)ω is an (A,B, p)-word for some (A,B, p) ∈ T (ψ).
But this is the case if and only if (aw)ω is an (A,B, ap)-word.

(4) Suppose φ = Fψ. We define T (φ) = {(A ∪ {p}, B, λ) | (A,B, p) ∈ T (ψ)}.
We have vω |= Fψ if and only if there exists some factorization v = wx

with (xw)ω |= ψ. By induction hypothesis this is equivalent to (xw)ω being
an (A,B, p)-word for some triple (A,B, p) ∈ T (ψ). It is now easy to see
that vω is an (A ∪ {p}, B, λ)-word iff there is a factorization xw of v with
(wx)ω being an (A,B, p)-word.

(5) Let φ = Gψ. For each subset {(A0, B0, p0), . . . , (Ak, Bk, pk)} ⊆ T (ψ) with
a distinguished element (A0, B0, p0) we add the tuple (A,B, p0) to T (φ)
where

A =
⋃

i=0,...,k

Ai, B =
⋃

i=0,...,k

Bi ∪ Y

and Y is the set of minimal words that are neither prefixes nor contain as
a prefix any of the words p0, . . . , pk. It is easy to see that Y is of the size
polynomial in n. A word belongs to Y if it is of the form va with v a prefix
of one of the words p0, . . . , pn and va neither a prefix of any of these words
nor containing any of them.

Suppose that vω |= Gψ. For every factorization xw of v we know,
by the induction hypothesis, that (wx)ω is a (Aw, Bw, pw)-word for some
(Aw, Bw, pw) in T (ψ). Let (A,B, pv) ∈ T (φ) be the triple constructed
as above from the set {(Aw, Bw, pw) | w suffix of v}. A direct verifi-
cation shows that vω is a (A,B, pv)-word. For example, let us show
that Swords(vω) ∩ B = ∅. Directly from the definition we have that
Swords(vω) ∩ Bw for every w a suffix of v. For the set Y defined as above

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

6

we have Swords(vω) ∩ Y = ∅ because all suffixes of vω have some pw as a
prefix.

For the opposite direction suppose that v is an (A,B, p)-word con-
structed from some set {(A0, B0, p0), . . . , (Ak, Bk, pk)} ⊆ T (ψ). Take any
factorization xw of v. We want to show that (wx)ω |= ψ. Because of the set
Y , as defined above, the word (wx)ω has some pi as a prefix. From the defi-
nition we know that Ai ⊆ A and Bi ⊆ B. Hence (wx)ω is a (Ai, Bi, pi)-word
and consequently (wx)ω |= ψ.

Example 6. Consider the formula φ = Gψ, where ψ = Xabtt ∨ Xbatt and
Σ = {a, b}. We have T (ψ) = {(∅, ∅, ab), (∅, ∅, ba)}. The construction above yields
T (φ) = {(∅, {b, aa}, ab), (∅, {a, bb}, ba), (∅, {aa, bb}, ab), (∅, {aa, bb}, ba)}. Clearly,
only for the last two triples of T (φ) there can be a solution.

The next two lemmas show that finite (periodic, respectively.) (A,B, p)-words
can be chosen of polynomial length.

Lemma 7. Let A,B ⊆ Σ∗ and p ∈ Σ∗. If there is a finite (A,B, p)-word then there
is one of size polynomial in the sizes of A, B and p.

Proof. We construct a (deterministic) finite automaton A accepting (A,B, p)-
words. Then we show that it accepts a short word.

As a preparation observe that we may assume that no word in A is a factor
of some other word in A; if it is the case then we simply delete the smaller one.
Similarly for B but here we can delete the bigger one.

The states of A will be triples (u, v, r) where u is a prefix of a word in A, v is a
prefix of a word in B and r is a prefix of p. Intuitively such a state will say that u
and v are suffixes of the word being read and they are the longest possible suffixes
for the words in A and B respectively. The last component r is used for testing that
the word starts with p. The initial state will be (λ, λ, λ).

The transitions of A are deterministic. We have

(u, v, r) a→ (u′, v′, r′)

when

• either u′ = ua, or if ua is not a prefix of a word in A then u′ is the longest
suffix of ua that is a prefix of word from A.

• for v′ we have exactly the same rule but with respect to B.
• either r = p = r′, or r′ = ra if ra is a prefix of p.

A state (u, v, r) is rejecting if v ∈ B. It is a u-state if its first component is u.
Our first claim is that a word w is an (A,B, p)-word iff A has a particular kind

of run that we call admissible. A run is admissible iff it does not visit a rejecting
state, passes through a u-state for every u ∈ A and ends in a state where the

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

7

last component is p (called a p-state). The connection between (A,B, p) words and
admissible runs follows from the observation that if there is a B-factor v in w then
after reading the last letter of v the automaton A enters in the rejecting state. If
u ∈ A is a factor of w, then after reading u the state of A is a u-state.

It remains to see that there is a short (A,B, p)-word if there is one at all. Given
a run of A we can reconstruct a word to which this run corresponds. Hence, it is
enough to find a short admissible run; this run will determine a short word that
will be an (A,B, p)-word by the remark from the previous paragraph. Consider an
(A,B, p)-word u and an accepting run ρ = (s0, s1, . . . , sm) of A on u = a1 · · · am.
Thus, sm is p-state and for each u ∈ A there is some position j such that sj is a
u-state. Let us fix for each u ∈ A such a position j(u) and let J = {j(u) | u ∈ A}.
We can delete now any loop contained between two consecutive positions in J , and
the run obtained is still accepting. The length of the run is at most O(|A||A|), hence
polynomial in |A|, |B|, |p|.

Lemma 8. If there is a periodic (A,B, p)-word then there is one of the form sω

with |s| polynomial in the sizes of A, B and p.

Proof. The construction is as in the previous lemma but now we need to start the
automaton in some state of the form (u, v, λ) and to require that it reaches the state
(u, v, p).

Suppose that we have a run from (u, v, λ) to (u, v, p) for some u, v, and let s be
the word defining this run. Then s defines also a run from (u, v, p) back to itself, thus
sω is the desired periodic (A,B, p)-word. By the same argument as in the lemma
before we can also see that there is always a run of polynomial length, if any. For
the other direction, suppose that sω is a periodic (A,B, p)-word. We can consider
the run of A on this word starting in (λ, λ, λ). Since sω is an (A,B, p)-word, this
run never blocks. Hence, there must be two indices i < j such that after reading si

and sj the automaton is in the same state, say (u, v, p). But then, there is a run of
automaton A from (u, v, λ) to (u, v, p) on sj−i.

4.2. Ultimately periodic words

We turn now to the case where the model of ϕ is ultimately periodic, i.e., of the
form uvω for some u, v ∈ Σ∗. For the rest of the section, n denotes the length of
the given formula ϕ.

Lemma 9. Any subLTL formula φ using only the operators Xa (a ∈ Σ) is equiva-
lent to a disjunction of the form

∨
v∈V Xvtt, for some set V ⊆ Σ≤|φ| of at most |φ|

words.

Proof. We show the assertion by induction on the given formula φ. For φ = Xaψ

we suppose that ψ is equivalent to
∨
v∈V Xvtt, hence φ is equivalent to

∨
v∈V ′ Xvtt

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

8

for V ′ = aV . Let now φi be equivalent to ∨v∈ViXvtt for i = 1, 2. Then φ1 ∧ φ2 is
equivalent to

∨
v∈V Xvtt, for V defined as follows: a word v ∈ Vi belongs to V if

and only if there exists v′ ∈ Vj , j 6= i, such that v′ ≤ v.

An F -formula is a formula that begins with F . Similarly for X and G-formulas.
The set El(ϕ) of elementary subformulas of ϕ is the set of those subformulas of ϕ
that are either F - or G-formulas.

For any word w = a1a2 . . . we write w[i, j] for the factor ai . . . aj . For an infinite
word w = a1a2 . . . we write w[j,∞] for the suffix ajaj+1 . . . We use w(i) to denote
ai, the i-th letter of w.

For the rest of the section we fix a model uvω of a formula ϕ. With each position
i ≤ |u| in the word uvω we associate the set of subformulas:

Si = {ψ ∈ El(ϕ) | u[i, |u|] vω |= ψ}

Remark 10. If a formula Gα is in Si then it is in all Sj for j ≥ i. Analogously,
if Fα ∈ Si then Fα ∈ Sj for all j ≤ i.

A position i ≤ |u| is called important if there is a formula Fα in Si \ Si+1 or
there is a formula Gα in Si+1 \ Si. Let VIP be the set of important positions in u.
Clearly the number of important positions is bounded by n = |ϕ|.

We will show how to reduce distances between consecutive important positions,
in order to obtain a short word u. From now on we fix two consecutive important
positions i, j ∈ VIP. This means that Si+1 = · · · = Sj contain the same F - and
G-subformulas and Si 6= Si+1, Sj 6= Sj+1.

For a subformula ψ of ϕ let ψ̂ be a formula obtained by substituting tt for every
F - or G-subformula of ψ appearing in Sj and ff for all other F or G subformulas.
By Lemma 9, for every subformula ψ there exists a polynomial-size set of words
Vψ ⊆ Σ≤n such that ψ̂ is

∨
v∈Vψ Xvtt (in consequence, if Vψ = ∅ then ψ̂ = ff and if

Vψ = {λ} then ψ̂ = tt).

Example 11. ̂XaG(Xbtt) is Xatt or Xaff depending on G(Xbtt) being in Sj or not.
Moreover ̂G(XaG(Xbtt)) is just tt or ff. (Both hats range over whole formulas).

Our goal is to replace u[i+1, j] in uvω by a short word so that the result is still
a model of ϕ. In order to do this we will use (Y, p, s)-words, that we define in the
following. Let Y ⊆ Σ∗ and p, s ∈ Σ∗. A finite word w is a (Y, p, s)-word, if it starts
with p, finishes with s and for all positions 1 ≤ k ≤ |w| − |s|, the suffix w[k, |w|]
starts with a word from Y .

Lemma 12. If there exists some (Y, p, s) word, then there exists one of length poly-
nomial in the sizes of Y, p, s.

Proof. Consider some (Y, p, s)-word w and a position k ≤ |w| − |s|. By definition,
there exists some l > k such that w[k, l] ∈ Y . With k we associate the position

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

9

r(k) defined by r(k) = max{l′ ≥ l | ∃k′ ≤ k : w[k′, l′] ∈ Y }. That is, r(k) is the
rightmost end of a word in Y that begins at the left of k. By definition, w[l+1, r(k)]
is a suffix (possibly empty) of a word in Y . Since the number of suffixes is at most
|Y |, there can be at most |Y |2 different words w[k, r(k)].

Suppose now that |p| < k < k′ ≤ |w|− |s| are such that w[k, r(k)] = w[k′, r(k′)].
Obviously, the word w[1, k]w[k′+1, |w|] obtained by cutting out w[k+1, k′] is still a
(Y, p, s)-word. Thus, by the above remark we know that there exists a (Y, p, s)-word
of length at most |Y |2 + |ps|.

For each Gα ∈ Sj let Vα be the set of words obtained by Lemma 9 such that
α̂ =

∨
v∈Vα Xvtt. Applying again Lemma 9 we obtain a set Y such that

∧
Gα∈Sj α̂ =∨

v∈Y Xvtt. Note that Y is of polynomial size and contains only words of length at
most n, since Y ⊆

⋃
Gα∈Sj Vα. Moreover, let p = u[i+ 1, i+ n], s = u[j − n+ 1, j]

be the prefix and suffix, respectively, of length n of u[i, j].
The next lemma follows immediately from the definition of Y :

Lemma 13. Let i, j ∈ VIP be consecutive important positions with j − i > n, and
let Y, p, s be defined as above. Then the word u[i+1, j] is a (Y, p, s)-word. Moreover,
each (Y, p, s)-word w starts with u[i+ 1, i+ n], finishes with u[j − n+ 1, j] and for
all k ≤ |w|−n the word w[k, |w|] has a word from Vα as a prefix for all subformulas
Gα ∈ Sj.

Our goal is to show that wu[j + 1, |u|]vω |= Si+1 for any (Y, p, s)-word w, as
this will imply u[1, i]wu[j + 1, |u|]vω |= ϕ. To do this we will need a definition and
several lemmas. Consider a formula α and let

γα =
∧
{δ ∈ Si+1 | δ ∈ El(α)}

Hence γα is the conjunction of all F - and G-formulas that appear in Si+1 =
Sj and that are subformulas of α. By Lemma 9 the formula α̂ is equivalent to∨
r∈RXrtt. We define α̃ to be the formula

∨
r∈R

∧
s≤rXsγα. The definition of α̃ is

important because it gives an underapproximation of α that is easy to work with.

Lemma 14. If α is a subformula of the initial formula then α̃⇒ α holds.

Proof. By induction on α:
If α is an F - or G-formula then α̂ is either tt or ff and α̃ is either γα or ff,

respectively. We have that α̃⇒ α in this case.
If α = Xaβ then γα ⇒ γβ . Let β̂ =

∨
r∈RXrtt, then β̃ =

∨
r∈R

∧
s≤rXsγβ .

We have that α̃ =
∨
ar∈aR

∧
s≤arXsγα =

∨
r∈R(γα ∧

∧
s≤rXaXsγα) = γα ∧

Xa(
∨
r∈R

∧
s≤rXsγα) ⇒ Xa(

∨
r∈R

∧
s≤rXsγβ) = Xaβ̃ ⇒ Xaβ = α.

For α = β0∨β1 the argument is straightforward. It remains to consider the case
when α is of the form β0 ∧ β1. We have that β̂0 is of the form

∨
r∈R0

Xrtt and β̂1

is
∨
r∈R1

Xrtt. Now by construction β̂0 ∧ β1 is
∨
s∈S Xstt where s ∈ S if there is

i ∈ {0, 1} with s ∈ Ri and some prefix of s in R1−i. We have by definition that

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

10

β̃0 ∧ β1 is
∨
s∈S

∧
w≤sXwγα. It is easy to check that this implies

∨
s∈Ri

∧
w≤sXwγα

for i ∈ {0, 1}, hence also β̃0 ∧ β̃1.

We have now all ingredients to show that wu[j+1, |u|]vω |= Si+1 for any (Y, p, s)-
word w. To shorten the notation we will write z for the suffix u[j + 1, |u|]vω. The
proof goes through two lemmas because we need to consider G-formulas separately.

Lemma 15. Let w be a (Y, p, s)-word. For every F-formula or G-formula α ∈ Si+1

and every non-empty suffix w′ of w we have w′z |= α.

Proof. For formulas Fα ∈ Si+1 we know that u(j)z |= Sj = Si+1 and we are done
as w ends with the letter u(j). The proof for G-formulas is by induction on the size
of Gα. Take a formula Gα ∈ Si+1 and any suffix w′ of w. We want to show that
w′z |= α. Since z |= Gα, this suffices for showing that w′z |= Gα.

If |w′| ≤ n then w′ is a suffix of u[j − n + 1, j] and we have w′z |= Gα by
definition of Si+1. Hence also w′z |= α.

If |w′| > n then we know by Lemma 13 that w′ starts with a word from Vα, say
r ∈ Vα. We will show that w′z |= α̃. Consider now the conjunct

∧
s≤rXsγα of α̃,

where γα is, as before, the conjunction of all F and G-subformulas of α from Si+1.
We know that |w′| > n and |r| ≤ n, hence we can use the induction hypothesis
and we obtain that w′z |=

∧
s≤rXsγα. But then we have w′z |= α̃ which implies

w′z |= α by Lemma 14.

Lemma 16. If w is a (Y, p, s)-word then wz |= Si+1.

Proof. The case of F -formulas and G-formulas follows from the previous lemma.
It remains to consider an X-formula α. The first observation is that wz |= α̂. This
is because u[i + 1, j]z |= α, the size of α is not bigger than n, and w starts with
u[i + 1, i + n]. Now, by the same reasoning as in the previous lemma we get that
wz |= α̃. Finally, by Lemma 14 we have wz |= α.

We obtain:

Proposition 17. If uvω |= ϕ and i, j ∈ VIP are successive important positions
then there is a word w of size polynomial in n = |ϕ| such that u[1, i]wu[j +
1, |u|]vω |= ϕ.

Proof. From Lemma 16 we know that wz |= Si+1. By induction on k = i, . . . , 1 it
is easy to see that u[k, i]w [j + 1, |u|]vω |= Sk. Lemma 12 gives the bound on the
length of w.

Using Proposition 17 repetitively we can shorten the size of u. From the previous
subsection, Proposition 5 and Lemma 8, we know that we can shorten v. This proves
the small model theorem, Theorem 3.

January 15, 2006 14:44 WSPC/INSTRUCTION FILE ws-ijfcs

11

5. Conclusions

We have shown the small model property for subLTL which implies that the satisfi-
ability problem for the logic is NP-complete. This indicates that the temporal logic
formalism based on word models is more subtle than the one based on propositions
and on sequences of valuations. This also indicates that the X operator of LTL may
be a source of complexity. On the other hand it seems that Xa operators are easier
algorithmically, but the proofs become much more involved because some combi-
natorics on words becomes necessary. As further work we would like to investigate
global trace logics with Xa instead of X. The hope being to have a reasonable such
logic with the complexity lower than Expspace. The other question is the com-
plexity of the model-checking problem for subLTL with respect to a single path
uvω. This question has been asked for general LTL in [9]. For general LTL it can
be solved in polynomial time, but no good lower bound is known.

References

[1] J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal logic. Journal
of Computer and System Sciences, 46(3):271–294, 1993.

[2] S. Demri and Ph. Schnoebelen. The complexity of propositional linear temporal logics
in simple cases. Information and Computation, 174(1):84–103, 2002.

[3] C. Dixon, M. Fisher, and M. Reynolds. Execution and proof in a horn-clause temporal
logic. In H. Barringer et al., editors, Advances in Temporal Logic, volume 16 of Applied
Logic Series, pages 413–433. Kluwer Academic, 2000.

[4] E. A. Emerson and C. Lei. Modalities for model-checking: Branching-time logic strikes
back. Science of Computer Programming, 8(3):275–306, 1987.

[5] K. Etessami, M. Vardi, and Th. Wilke. First-order logic with two variables and unary
temporal logic. In LICS’97 - 12th Annual IEEE Symposium on Logic in Computer
Science, pages 228–235, 1997.

[6] J. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, University of
California, Los Angeles, 1968.

[7] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy
their linear specification. In POPL’85 - 12th Annual ACM Symposium on Principles
of Programming Languages, pages 97–107, 1985.

[8] N. Markey. Past is for free: On the complexity of verifying linear temporal properties
with past. Acta Informatica, 40(6-7):431–458, 2004.

[9] N. Markey and Ph. Schnoebelen. Model checking a path. In CONCUR’03 - Con-
currency Theory, 14th International Conference, number 2761 in Lecture Notes in
Computer Science, pages 248–262. Springer, 2003.

[10] Ph. Schnoebelen. The complexity of temporal logic model checking. Advances in
Modal Logic, 4:437–459, 2003.

[11] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logic.
Journal of the ACM, 32(3):733–749, 1985.

[12] I. Walukiewicz. Difficult configurations – on the complexity of LTrL. In ICALP’98
- Automata, Languages and Programming, 25th International Colloquium, number
1443 in Lecture Notes in Computer Science, pages 140–151, 1998.

[13] Th. Wilke. Classifying discrete temporal properties. In STACS’99, 16th Annual Sym-
posium on Theoretical Aspects of Computer Science, number 1563 in Lecture Notes
in Computer Science, pages 32–46, 1999.

	Introduction
	Preliminaries
	The lower bound
	The upper bound
	Periodic words
	Ultimately periodic words

	Conclusions

