
OptimAX: Optimizing Distributed ActiveXML Applications

Serge Abiteboul Ioana Manolescu
Spyros Zoupanos

INRIA Saclay–Île-de-France, Gemo group & Université Paris Sud, LRI
4, rue J. Monod, 91893 Orsay Cedex

firstname.lastname@inria.fr

Abstract

The Web has become a platform of choice for the de-
ployment of complex applications involving several busi-
ness partners. Typically, such applications interoperate by
means of Web services, exchanging XML information.

We present OptimAX, an optimization Web service that
applies at the static level (prior to enacting an applica-
tion) in order to rewrite it into one whose execution will
be more performant. OptimAX builds on the ActiveXML
(AXML) data-centric Web service composition language,
and demonstrates how database-style techniques can be ef-
ficiently integrated in a loosely-coupled, distributed appli-
cation based on Web services. OptimAX has been fully im-
plemented and we describe its experimental performance.

1 Introduction

The Web has become the platform of choice for the de-
livery of business applications. In particular, the popularity
of Web service technologies (WSDL [22], BPEL4WS [12]
etc.) and their closeness to HTML and XML, the predom-
inant content delivery languages on the Web, has opened
the way to the development of complex business applica-
tions by integrating Web services provided by different par-
ties. This model has several advantages. From a develop-
ment viewpoint, it relies on widely accepted standards, and
benefits from the plethora of available application building
blocks. From a business viewpoint, it allows organizing the
activity in cleanly defined modules, each of which is imple-
mented by some Web services. This enables several entities
to provide implementations of a given module, and facili-
tates replacing one entity with another.

We are currently involved in a large R&D project called
WebContent [25], whose purpose is to build and exploit
large-scale repositories of rich, semantically annotated Web
data. The overall setting of the project, outlined in Figure 1,

Figure 1. WebContent architecture outline.

exemplifies the kinds of applications discussed above. A
focused crawler (1) service returns Web documents related
to specific domains, in our case, aircraft sales by Airbus
and Boeing (for a continuous, online market survey), re-
spectively, food risk information, for a consortium of food
companies seeking to organize and structure information
related to different food problems (contaminations, aller-
gens etc.). The crawler service returns XML documents
with information-rich headers (crawling date, origin site
etc.). A storage (2) service can be invoked to make the
crawled document persistent in the WebContent warehouse.
Observe that multiple Translation (3) services are used to
translate to and from English, French, Chinese etc. Seman-
tic annotation (4) services are invoked to analyze the text of
the crawled pages and extract, e.g., specific aircraft brands,
names of edible plants or bacteria that taint food etc. The
annotations are added as a semantic header to the XML doc-
uments, under the form of XML-ized RDF snippets, and the
modified documents are put back in the store. Visualization
(5) and query (6) services can be used at this point to exploit
the corpus, either via advanced user interfaces (e.g. “fish-



eye lens” view on documents) or by querying it, using a
subset of XQuery (with full-text search) or SPARQL [19].

The WebContent warehouse is deployed in two settings.
First, in a ”closed” scenario, in a company Intranet, all ser-
vices are provided by in-house components and communi-
cation takes place via an ESB [13]. Second, in a distributed,
decentralized setting, computers are connected via the In-
ternet and communication takes place via Web services ex-
changed over SOAP [23]. In both cases, there can be several
instances of each service, in particular, storage services are
provided by multiple machines; and, services can be called
from inside or outside the federation of sites implementing
the warehouse.

Two problems have to be solved in both settings: iden-
tifying services that implement a given interface, and effi-
ciently executing the Web service calls. Efficiency is a par-
ticularly important concern in the distributed setting, since
data transfers from one site to another may become the bot-
tleneck. However, distribution is a great asset for large-scale
warehouses such as the ones envisioned in our target appli-
cations, with large (and growing!) data volumes, therefore
we focus on the distributed setting. Another source of ineffi-
ciency concerns repeated (redundant) execution of identical
service calls, which may occur in large computations.

This work considers the problem of efficient execution
of distributed Web services. Our solution is based on a
composition language, namely ActiveXML (or AXML in
short) [10], which in our setting can be seen as equiva-
lent to a subset of BPEL. An ActiveXML document is an
XML document specifying which services to call, how to
build their input messages, and how the calls should be
ordered. The contribution of this paper is an AXML opti-
mizer called OptimAX, which given an AXML document,
applies equivalence-preserving rewriting that transforms it
into a different document, producing the same results, but
possibly very different in shape and in the set of services
it invokes. Thus, the execution of the rewritten document
is likely to both be faster and consume less CPU resources
than that of the original document.

Following the service-oriented architecture illustrated in
Figure 1, we have implemented OptimAX as a Web ser-
vice which, when invoked with an AXML document, re-
turns the rewritten document. This step allows to benefit
from the kind of performance-enhancing techniques typi-
cally applied in distributed databases [21], but in a new set-
ting: losely coupled (vs. tightly controlled servers), generic
(vs. tailored to specific indices and execution techniques),
extensible to any service (vs. limited to the “inside” of the
database server box). Another important difference is that
AXML (and OptimAX) support continuous (streaming) ser-
vices, such as the crawler service in Figure 1, or more gen-
erally any RSS feed. XML streams are at the core of many
modern Web applications, e.g. for keeping a portal’s con-

tent up to date, or for implementing continuous business
interactions in a workflow-style setting.

OptimAX was demonstrated at [6].
This paper is organized as follows. Section 2 describes

the AXML language and the extensions we bring to it to
enable optimization. Section 3 formalizes the AXML op-
timization problem, and Section 4 describes our optimizer.
Section 5 presents experimental results. Based on our prob-
lem analysis (Section 3), we classify and compare this work
with previous related AXML works and with the state of the
art, then conclude.

2 The AXML language

To introduce the AXML language, we use the follow-
ing alphabets: a set P of peer names, a set D of document
names, a set S of service names, a set N of node identi-
fiers (for the XML tree nodes), and a set L of labels (for the
XML tree tags). All peer names are distinct, thus they also
serve as peer identifiers (or IDs in short). Document and
service names are unique inside each peer, and they also
serve as document/service address. The triple (peer name,
document name, node identifier), suffices to identify a node,
therefore we term it node ID, or node address. We may omit
the document or peer when it is obvious from the context.
Elements in the sets P,D,S,N ,L are respectively denoted
p, d, s, n and l, possibly with adornments such as subscripts
or primes. Trees are denoted by the letter t, possibly with
adornments. For sets, we use capital letters. By convention,
we prefix node IDs with �.

Intuitively, a peer represents a context of computation;
we make no assumption about how the peers are logically
connected, i.e. whether the peer network is structured or
not.

2.1 Documents and services

We view an XML tree as a pair of E ⊆ N × N , and a
labelling function λ from the nodes in E to L. Using the
standard XML syntax, a sample XML tree t is:

〈person id=”#5”〉〈email〉jdoe@ms.com〈/email〉
〈first〉john〈/first〉〈last〉doe〈/last〉〈/person〉

In this example, the node identifier #5 is depicted as an
attribute. An XML document is a pair (t, d) where t is an
XML tree and d ∈ D; we may refer to it by d. A given
document d, resp. service s, on a peer p is denoted d@p,
resp. s@p.

We consider deterministic services, returning the same
answer when invoked with the same parameters. In a Web
environment, we may allow “relatively slow” variations in



call results, and consider the answers at time t and t+ ε, for
some small ε, to be equally acceptable. In its simplest form,
a service can be seen as a function with XML inputs and
outputs, in the style of the request-response operation [22].

Continuous services We also consider continuous ser-
vices that work on streams of trees and start processing their
input incrementally, before it has been fully received. A par-
ticular class of continuous service have no inputs and emit
a stream of XML trees. This corresponds to an XML sub-
scription, in the style of RSS.

Let s be a service with n inputs. When the service is run-
ning, it expects to receive a stream of XML trees for each
input. Any stream finishes with a special token denoted eof,
that no tree may follow. Trees can arrive in all inputs in par-
allel. When a tree is received in one input, the service may
perform an internal computation and/or may output zero or
more trees. More specifically, we consider a large class of
distributive services, such that for each 1 ≤ i ≤ n, and
for any finite streams T1, . . . , T

′
i , T

′′
i , . . . , Tn, the following

holds:
s(T1, . . . , (T ′

i + T ′′
i ), . . . , Tn) =

s(T1, . . . , T
′
i , . . . , Tn) + s(T1, . . . , T

′′
i , . . . , Tn)

where + stands for stream concatenation. This property
holds for all services defined as XPath queries, and also
for a large class of XQuery queries, namely, for-where-let-
return (also known as FLWR) expressions.
Example Consider a query service defined by the following
query:
for $x in $in1, $y in $in2 where $x/b=$y/b return 〈z〉{x/a}〈/z〉
A possible sequence of inputs and outputs for this service is
the following (here and in the rest of the paper, we use bold
fonts to highlight some nodes for readability):

$in1 $in2 result
〈x〉〈a〉0〈/a〉〈b〉1〈/b〉〈/x〉 〈y〉〈b〉0〈/b〉〈/y〉

〈y〉〈b〉1〈/b〉〈/y〉 〈z〉〈a〉0〈/a〉〈/z〉
〈y〉〈b〉2〈/b〉〈/y〉

〈x〉〈a〉3〈/a〉〈b〉0〈/b〉〈/x〉 〈z〉〈a〉3〈/a〉〈/z〉

A non-continuous service may be seen as a particular
case of a continuous one, delaying output until it has re-
ceived an eof token from each of its inputs. At this point,
the service outputs its complete results followed by eof .

2.2 Active XML data

An AXML document is an XML document where some
nodes labeled with the label sc (standing for service call)
are given particular semantics. Specifically, an sc node has:

• Two children, labeled peer and service, specify a peer
name p1 ∈ P and a service name s1 ∈ S, where s1@p1

identifies an existing Web service.

• A set of children labeled param specify the parameters.

Let d0@p0 be an AXML document containing a service
call to a service s1@p1 as above. When the call is activated,
the following sequence of steps takes place: (1) p0 sends a
copy of the param-labeled children of the sc node, to peer
p1, asking it to evaluate s1 on these parameters; (2) p1 eval-
uates s1 on this input; (3) a copy of the result is inserted as
a sibling of the sc node.

When a continuous service call is activated, step 1 above
takes place just once, while steps 2 and 3, together, occur re-
peatedly starting from that moment. The response trees suc-
cessively sent by p1 accumulate as siblings of the sc node.

Observe that sc nodes may appear as children of other
sc nodes. Moreover, the results of an activated service call
may contain other service calls.

AXML supports several mechanisms for deciding when
to activate a service call. One may explicitly request
each call activation. For instance, consider a service call
sc2(sc1), i.e. sc1 is a parameter of sc2. The user may
choose to activate just sc2, in this case the sc1 element as
such is used as a parameter for sc2. The call sc1 may be
activated in the future.

Another more frequent case occurs when users want to
activate all the necessary service calls to bring the docu-
ment to a certain state. For instance, before sending a doc-
ument d to a partner that does not understand AXML, we
need to activate all the calls in d, the calls which may be
received in their results, and so on. Or, it may be necessary
to bring d to a given (A)XML type by selectively activat-
ing some calls only; algorithms to find these calls are given
in [8].

In this work, we define a simple, yet flexible approach for
deciding when to activate calls. This approach is based on
a set of default activation order constraints, which apply by
default, and on some explicit activation order constraints,
which can be manipulated by the user.

The first default activation order rule is dao1 in Table 1.
The reason for this rule is that the majority of the services
available today requires plain XML inputs and returns plain
XML outputs. Activating the inner call first is more likely
to lead to call sc2 with XML input. Rule dao1 cannot influ-
ence the activation order of two calls when none is an an-
cestor of the other. To capture such constraints, we enable
users to specify that a given service call should be activated
only after another call’s activation and more precisely, after
receiving the first answer of that service. Moreover, for con-
tinuous services, we may wish to distinguish between acti-
vating service call sc1 after sc2 has been activated (but has
not finished executing), and activating sc1 after sc2 has been
activated and has finished, i.e. it has sent its eof . Syntac-
tically, such constraints are expressed using two attributes
afterActivated and afterTerminated, whose interpretation is
provided by the rules eao1 and eao2 in Table 1.



(dao1) A call sc1 which is a parameter of sc2 is activa-
ted before sc2.

(eao1) A call sc1 having an afterActivated attribute
whose value is the ID of another call sc2 is
activated after sc2 has been activated.

(eao2) A call sc1 having an afterTerminated attribute
whose value is the ID of a call sc2 is activated
after sc2 has terminated its execution.

(dao2) A call to the service send@p is activated before
all the service calls comprised in its parameters
have been activated.

(dao3) A call to the service receive@p is activated
when the first message from the corresponding
send@p′ call reaches p.

(noa1) Let sc be a call to send@p, in some document
d@p. After activating sc, the calls descendants of
sc are never activated (at p).

(dao4) A call to newnode is activated before all its
descendant calls.

(noa2) After a call to newnode has been activated, its
descendant calls are never activated at the
original peer.

Table 1. Activation order rules.

〈doc〉〈sc service=”f@p1” id=”#1”
afterTerminated=”#4”〉
〈par〉〈sc service=”h@p2” id=”#2”/〉〈/par〉
〈par〉〈sc service=”k@p3” id=”#3”/〉〈/par〉〈/sc〉

〈sc service=”g@p4” id=”#4”〉
〈par〉〈sc service=”j@p2” id=”#5”

afterActivated=”#4”/〉〈/par〉〈/sc〉
〈/doc〉

f@p1

h@p2

j@p2

g@p4

k@p3

Figure 2. Sample AXML document and time-
line for its service call activation.

Example: activation order Figure 2 depicts a simple
AXML document at peer p0, and a possible timeline of the
activations of its calls. The period between the activation
and termination of each service is shown by a horizontal
bar.

doc1@p1

〈doc〉〈sc service=”send@p1” id=”1”〉
〈what〉〈sc service=”f@p3” id=”2”/〉

〈fres〉1〈/fres〉〈fres〉2〈/fres〉
〈/what〉
〈where〉p2.doc2.#3〈/where〉

〈/sc〉
〈/doc〉

doc2@p2

〈doc〉〈sc service=”receive@p2” id=”3”〉
〈from〉p1.doc1.#1〈/from〉

〈/sc〉
〈fres〉1〈/fres〉

〈/doc〉

Figure 3. Sample activation of calls to send
and receive.

2.3 Extension: built-in AXML services
and replication

To the basic AXML model above, we add a small set of
predefined services, which we assume available on all peers.

Send and receive are two services used to send (streams
of) XML data from one place to another. The send ser-
vice has two parameters. The what parameter represents
the data to be sent from one site to another. This may be
plain XML, some service calls or references to service calls.
The where parameter is a node ID. The receive service has
one from parameter which is a node ID. The following in-
tegrity constraint applies: for each call to a send service,
there is exactly one call to a receive service, such that the
value of the where child of the send call is the ID of the
receive call, and the value of the from child of the receive
call is the ID of the send call.

One of the main applications of send and receive con-
cerns the sending of data streams, as Figure 3 illustrates.
Consider for now only the XML content shown in upright
part of the table. The document doc1@p1 contains a call
to the local service send@p1, with a call to f@p3 as pa-
rameter. The destination address is the node identified by
(p2, doc2,#3), which is the call to receive. Once the call
to f@p3 is activated, it returns fres elements shown in
italic font in doc1.xml in Figure 3; activating the calls to
send and receive transmits these elements into the docu-
ment doc2@p2. In the figure, the last element has not yet
arrived in doc2.xml.

A call to send@p or receive@p can only be activated
when the call is in a document at peer p. This is a syntactic
simplification only; we will show that it is possible for a
peer p to trigger the sending of some data from another peer
p′.

The introduction of the send and receive services re-
quires new activation order rules, namely dao2, dao3 and



noa1 in Table 1. Rule dao2 specifies that by default, send
distributes the computation (not its result). Rule dao3 shows
that receive calls are not activated individually but only as
a consequence of receiving a message. Finally, the no acti-
vation rule noa1 states that if a service call sc is sent from
p to p′ by a send, sc is not be evaluated at p.

The newnode service installs new AXML trees on a peer.
It has a single what parameter, which is an AXML tree.
Activating the call to newnode@p(t) creates a new docu-
ment at peer p, whose associated data tree is t. The service
returns the identifier of the new document’s root. Observe
that newnode is quite powerful, since it enables the distri-
bution of data and computations among peers.

The activation order rules dao4 and noa2 apply to calls
to newnode. Rule dao4 favors distribution, i.e. it causes
AXML code to be sent before being activated. The no-
activation rule noa2 is similar to noa1.

Activation order: putting it all together Together, rules
dao1, dao2, dao3 and dao4 provide the default evalua-
tion order for service calls appearing in AXML documents.
These rules cannot cause cyclic dependencies. Explicit or-
der constraints (eao1, eao2) override the default rules, and
may introduce cycles. Documents with cyclic constraints
are invalid and we do not consider them further.
Activation schedule Let d be a document and
sc1, sc2, . . . , sck be the service calls from d. An ac-
tivation schedule (or schedule, in short) for S is a list
of pairs [(sc1, τ1), (sc2, τ2), . . . , (sck, τk)] such that for
1 ≤ i ≤ k, τk is a moment in time, sc1 is activated at
the moment τ1, sc2 is activated at the moment τ2 etc. The
schedule is said valid iff it respects: (i) all the eao1 and
eao2 constraints of d; and (ii) as many of the dao1 − dao4

constraints as possible without violating the (eao1) and
(eao2) constraints.
Observe that valid schedules largely allow parallel activa-
tion of continuous services (the only limitation being the
explicit use of afterTerminated). The activation order exam-
ple of subsection 2.2 illustrates a valid schedule. We focus
on valid ones from now on.

Replication We assume that some AXML documents
may be replicas (or copies) of each other, and similarly ser-
vices may be replicated. A most important example for us
is a query service. Given the string of the query, any peer
equipped with a query processor can provide this query as
a service, and all such services are equivalent. Observe that
different copies of the same document may evolve indepen-
dently with time, however, they will eventually reach the
same state.

Formally, we consider an abstract peer, called any, and
use d@any to refer to any of the replicas of d, and similarly
for services. We assume that each peer is able to to iden-
tify one of the concrete resources corresponding to d@any
or s@any. For instance, an approach based on semantic

service matching is provided in [11].

3 AXML activation and optimization prob-
lems

Having introduced AXML, we now chart several inter-
esting problems which arise in this setting, show how they
relate to each other, and pinpoint the specific optimization
problem addressed in this work.

3.1 AXML activation

Given an AXML document d, we denote by SC(d) the
set of service calls in the document. Observe that SC(d)
may grow with time, as results (including sc elements) are
added to the document. In principle, SC(d) may grow to
be infinite, e.g. consider a call to a service f@p that returns
exactly one call to f@p. We consider the practical setting
when the size of SC(d) is bounded.
Cost of an activation Let d@p0 be an AXML document
and sc ∈ SC(d) be a call to f@p. The cost of activating sc
is defined as:

c(sc) = α × cf + β × (sp/bwp0→p + sf/bwp→p0)

where: α and β are some numerical weights; cf is the cost
associated to the computation of f at the peer p; bwp→p0

and bwp0→p, respectively, are the bandwidths from p to p0,
respectively from p0 to p; sp is the size of the parameters of
the calls to f@p; sf is the size of the results produced by
the calls to f@p.

We focus on activations with a finite cost, which requires
that cf , sp and sf be finite; the latter implies that f returns
a finite number of answers. (A simple extensions to infinite
streams would consider the cost per tree in the stream.) If p
is any, then c(sc) is set to an upper bound constant max.

We define the cost of an activation schedule as the sum
of the activation cost of all the calls in the schedule. While
a schedule describes very precisely a given AXML compu-
tation, we would like to consider activation costs indepen-
dently of the particular moment when each call is activated.
To that effect, we introduce the following definition.
Equivalent schedules Let d be an AXML document and
T1, T2 be two schedules over two sets of services S1, S2 ⊆
SC(d). We say the schedules are equivalent, denoted T1 ≡
T2, iff applying T1, resp. T2 on the document leads to doc-
uments that are equal.

Note that S1 and S2 may or may not coincide, as shown
in the following example.
Empty-result call Let T1 a schedule over S1 ⊆ SC(d).
Assume that for some sc ∈ S1, it is known that activating
sc does not bring results other than eof . Let S2 = S1 \
{sc} and T2 the restriction of T1 to S2, then T1 and T2 are



equivalent (modulo eof , which we ignore by a mild abuse
of terminology).
Valid schedule equivalence Let d be an AXML document
and S ⊆ SC(d) be a set of service calls from d. All valid
schedules for S are equivalent and have the same cost.

Intuitively, valid schedules are equivalent due to the dis-
tributive, deterministic services which, called with the same
parameters, produce the same results, even if some streams
are created at different moments and progress at different
rates in different schedules. They have the same cost be-
cause our cost model focuses on the total work, which does
not change with time.
Set activation Let d be an AXML document and S ⊆
SC(d). We term set activation of S on d the execution of
any valid schedule for S. The cost of the activation is the
cost of any valid schedule for S.

We term one-stage activation of d the set activation of
all calls in SC(d). If a call in SC(d) returns another call
sc′, the latter is not activated in this stage.

We now consider the process of activating all calls in
an AXML document until the document reaches a station-
ary state. Under the assumptions made here (the number
of service calls in d is bounded, and services return finite
streams), the fixed point state is finite, which entails that
after a while, no new calls are returned by running service
calls.
Full schedule Let d be an AXML document and SC0 be
the initial set of service calls in d. Let SC1 be the service
calls returned by the set activation of SC0, and similarly, for
i = 2, . . . , k, let SCi+1 be the set of service calls returned
by the set activation of SCi. (We chose k so that SCk �= ∅
and SCk+1 = ∅). A full schedule for d is a schedule for all
the calls in

⋃
0≤i≤k SCi, such that:

• The restriction of the schedule to SCi, for any 0 ≤ i ≤
k, is valid.

• Whenever a call sci returned a call scj , sci appears
before scj in the schedule.

Observe that in a full schedule, calls need not appear in
the order in which they appeared in d: a call from SC0 may
be activated after a call from SC5.

As before, all full schedules of d are equivalent and have
the same cost. We define the full activation of d as the exe-
cution of any full schedule of d. If all services return plain
XML data, full and one-stage activation coincide.

3.2 AXML optimization

We now consider the problem of AXML optimization, fo-
cusing first on one-stage.
One-stage optimization Let d be an AXML document and
S ⊆ SC(d) a subset of the calls in d. The process of one-

stage optimization for d consist of finding a document d′

such that:

• one-stage activation of d and d′ produce identical doc-
uments (up to terminated service calls);

• the cost of the set activation of d′ is smaller than, or
equal to that of d.

Observe that optimization is a static process, which does
not involve call activations. Optimization is exhaustive if it
produces a document d with the minimum cost among all
documents equivalent to d.

Let us now consider the integration of optimization in a
full evaluation process, where we have to activate the calls
in d, then the possible calls in their results etc. The choice
of when and how often to invoke the optimizer impacts the
rewritings it may find, thus the full activation cost. The
main reason is that the optimizer decides to rewrite the doc-
ument based on the service calls it contains at optimization
time, and the latter change as activation proceeds. To char-
acterize the goal of optimization, we define:
Document equivalence Let d@p, d′@p be two documents
at the same peer. We say d and d′ are equivalent, denoted
d ≡ d′, if the result of full activation on d and d′ coincide
(up to some terminated service calls).

This notion of equivalence characterizes documents that
are eventually equal after their full activation. The docu-
ments may go through different states during the process,
may call services from different peers etc. From the per-
spective of the user requiring the full activation result of
d@p, the result of d′@p is the same. From the system per-
spective, given a document d and a set R of rewriting rules,
optimization can be seen as repeatedly applying R rules to
obtain new documents equivalent to d, and keeping the one
with the lowest evaluation cost.
Full optimization Let d be a document and R a set of rules.
The full optimization problem for d and R consists of find-
ing a sequence of steps chosen among:

• pick a service call currently in d which can be activated
according to the ordering constraints of d, and activate
it

• apply a rewriting rule from R, rewriting d into d′

until all services calls in d have been activated, such that the
total activation cost (including the past and possibly future
service call activations) plus the total cost of optimization is
the smallest among all possible such sequences of steps.

In the above, we also took into account the cost of op-
timization, which can be approximated by some constant
co. Observe that the problem is more complex than just in-
serting optimization steps in some places into a given full
schedule, because optimization may remove or add service
calls, leading to re-scheduling.



〈a〉
〈sc service=”f@p1” 〉...〈/sc〉

〈/a〉
⇓

〈a〉〈sc service=”receive@p0” id=”1”〉
〈from〉#2〈/from〉〈/sc〉

〈sc service=”newnode@p2”〉
〈sc service=”send@p2” id=”2”〉
〈what〉〈sc service=”f@p1”〉...〈/sc〉〈/what〉
〈where〉#1〈/where〉〈/sc〉

〈/sc〉
〈/a〉

Figure 4. Delegation rule.

If all service calls return plain XML results, then invok-
ing the optimizer only once, prior to any activation, is a
solution to the full optimization problem.

If service calls are allowed to return any AXML trees
with service calls, the problem is undecidable. The intuition
for this is the following. Optimizing too rarely may lead to
poor activation decisions, which could have been avoided if
we had chosen to invoke the optimizer more often. Optimiz-
ing too often, on the other hand, may also be suboptimal.
For instance, the optimizer may rewrite a subtree t of d into
t′, instead of waiting for some more activations which may
have produced, say, a subtree t′′ of d, such that considering
t and t′′ together enables a big cost-saving rewriting, which
cannot be applied based on t′ and t′′. Thus, one can exhibit
a document when optimizing before each call activation,
even assuming co = 0, is suboptimal. Moreover, in reality,
co �= 0, thus very frequent optimization is impractical.

Based on this analysis, we have built an optimizer for
one-stage optimization, whose details are described in the
remainder of the paper. In the full evaluation setting, we
recommend invoking the optimizer once on SC0, then on
SC1, then on SC2 and so forth, a heuristic which we find a
reasonable compromise.

4 Optimax

In this section, we describe the actual optimizer we im-
plemented for AXML.

4.1 Search space: optimization rules

The complete search space is the set of distinct docu-
ments obtained by repeatedly applying a set of rewriting
rules which we describe next. They all preserve AXML
equivalence as defined in Section 3.2.

The delegation rule (Figure 4) concerns distributing
computations. The rule depicts a document before (upper)

〈a〉. . .
〈b id=”1”〉e1〈/b〉
〈c id=”2”〉e2〈/c〉

. . .〈/a〉
⇓

〈a〉. . .
〈b id=”1”〉e1〈/b〉
〈sc service=”send@p0” id=”3”〉

〈what〉#1〈/what〉〈where〉#4〈/where〉
〈/sc〉
〈c id=”2”〉〈sc service=”receive@p0” id=”4”〉

〈from〉#3〈/from〉〈/sc〉〈/c〉
. . .〈/a〉

Figure 5. Factorization rule.

〈sc service=”f@any”〉. . .〈/sc〉
⇓

〈sc service=”f@p”〉. . .〈/sc〉

Figure 6. Instantiation rule.

and after (lower) applying a delegation rule. We assume the
document resides at peer p0. The rule introduces three new
service calls to send, receive and newnode. The effect
is to install at p2 an AXML document (via newnode), such
that the call to f@p1 will be performed from that document,
i.e. from p2, not from p0. As soon as f results start accumu-
lating at p2, the send call will transmit them to the receive
call at the original peer p0, bringing thus the results in the
original document. The delegation rule may reduce costs
by cutting down data transfers. For instance, assume that
p1 = p2 and the call to f had as parameter a call to g@p1.
In this case, activating the upper document would transit the
results of g@p1 from p1 to p0 and then back from p0 to p1.
The lower plan eliminates these needless transfers.

The factorization rule (Figure 5) eliminates redundant
computations. In this rule, e1 and e2 are two sets of AXML
trees, such that each tree in e1 is equivalent (as defined in
Section 3.2) to some tree in e2 and viceversa. The rule re-
places e2 with a pair of calls to send and receive, which
copy e1 as children of c, effectively in replacement of e2. If
e2 contained service calls, the rewritten document reduces
the actual activated calls and (if the services were on re-
mote peers) also reduces inter-peer transfers. The rewritten
document requires a local copy of data from the b to the c
element, but such transfers are likely less costly (and our
cost formula ignores them).

The instantiation rule (Figure 6) turns an abstract ser-
vice call to f@any into a concrete call to f@p, where p
is one of the peers providing f . Given that activations of



〈sc service=”query@p”〉
〈query〉q〈/query〉〈input〉t〈/input〉

〈/sc〉
�

〈sc service=”query@p”〉
〈query〉q1〈/query〉
〈input〉〈sc service=”query@p”〉

〈query〉q2〈/query〉〈input〉t〈/input〉
〈/sc〉

〈/input〉〈/sc〉

Figure 7. Query (de)composition rule.

calls at any have maximum cost (Section 3.1), this rule al-
ways reduces cost. Moreover, when several peers provide f ,
different cost reductions can be obtained. Documents with
calls to services @any give more options to the optimizer.
When services are queries (Section 2.1), plans produced by
instantiation resemble distributed strategies in mediator sys-
tems [21].

The query composition/decomposition rule (Figure 7)
applies to calls to services defined by queries. In this rule,
q, q1 and q2 are XML queries such that q ≡ q1(q2), i.e. for
any XML input t, q(t) = q1(q2(t)). The upper document
calls the query q, while the lower document nests the call to
q2 as a parameter of the call to q1. In this rule, p can also
be any. Query composition (going from the lower part to
the upper part in Figure 7) reduces costs by cutting the over-
head of one activation. Query decomposition (going from
the upper part to the lower part) may reduce costs if the
sub-queries q1, q2 can be handled very efficiently by some
processor unable to handle the full query q. For example,
q1 may be an XPath query which may be answered using an
index [4], and q2 is an XML construction query applying on
the results of q1. This rule applies more generally for any
queries q, q1, . . . , qn such that q ≡ q1(q2, . . . , qk). The rule
de facto integrates XML query optimization into the larger
problem of AXML optimization.

The useless call rule eliminates calls with anticipated
empty results (recall the example for the empty result call
in Section 3.1).

Search space size Let d be a document such that all calls
in SC(d) refer to specific peers (not any) and assume dele-
gation is the only rule. Let P be a set of peers known to the
optimizer. Each call can be delegated to each p ∈ P , lead-
ing to a search space of size |SC(d)||P |. On the contrary,
assume now that all calls in SC(d) refer to any and enable
instantiation: the size grows to |SC(d)|2|P |. The impact of
the other rules described above is more difficult to quantify
since it depends heavily on the document. In any case, ex-
haustive search may be quite costly, and we are interested
in efficient, non-exhaustive optimization.

4.2 Search strategies and heuristics

The applications we consider for AXML have very var-
ied profiles. One class of applications focuses on sub-
scriptions [7], where factorization is crucial (to avoid du-
plicate data transfers) and query composition may also ap-
ply (to efficiently filter out subscriptions). Other applica-
tions consider distributed data management workflows [18],
where instantiation and delegation are central. As another
example, our current WebContent project [25] focuses on
XQuery processing in a structured P2P network, based on
a distributed XML index; the main rule is query decompo-
sition isolating the largest subquery the index may handle.
The total time budget given to the optimizer also varies with
the application.

To accommodate such a variety of settings, we have de-
vised a simple XML dialect for specifying the optimizer’s
search strategy. Each strategy is a sequence of steps. Each
step applies a given search algorithm (which can be: depth-
first or breadth-first, and possibly attempt to rewrite the
cheapest plan first), using a given rule set, and with an up-
per bound on the number of plans developed. For instance,
the first step may develop 100 plans in a breadth-first, cost-
driven manner, then the second step may apply depth-first,
cost-driven search producing 20 more plans, then the best
plan found so far is chosen. The default strategy runs a
single step, using the depth-first, cost-driven strategy, and
develops 100 plans using all rules. In our experience, this
simple strategy lead to useful rewritings.

4.3 Implementation issues

OptimAX is implemented in Java and integrated with the
recent v.2 of the AXML engine [10]. This version relies
on an XQuery-compliant database (eXist [24]) to store and
update AXML documents, enabling it to scale up; the pre-
vious AXML engine was limited by its in-memory, DOM-
based document management. Axis2 is used for Web ser-
vice messaging. The activation order constraints described
in Section 2.2, and continuous query services as described
in Section 2.1 were specified and implemented in AXML
v2 as part of the optimizer integration effort. We discuss
here some notable engineering issues.

For speed, the optimizer must run in memory, however,
handling many rewritings of large XML documents may
lead to memory problems. Thus, the optimizer creates, from
an AXML document, an active plan, i.e. a copy omitting
XML nodes without sc descendant (which our rules do not
need). An optimized plan is assembled back with its plain
XML subtrees in the eXist repository by the AXML engine.
To preserve the correctness of plan equality tests, omitted
data trees are replaced by compact hash codes in the plans.

Applying the factorization rule (Figure 5) requires effi-



cient equivalence checking, which we implement by testing
the equality of plans modulo terminated calls (this check is
exact for one-stage optimization). To avoid comparing all
node pairs from a plan, a hash function h≡ is efficiently
computed on plans, and we only compare pairs of nodes
with the same h≡ results.

Implementing the rewriting rules required special cau-
tion to preserve AXML plan coherence. Consider the fac-
torization rule replacing expression e2 with some send-
receive calls copying the same data from another node
(Figure 5). Assume that a descendant of e2 is a call to send,
and the corresponding receive is outside e2: erasing e2

would leave the receive without a send, thus factorization
is not possible. On the contrary, assume that e2 contains a
call to receive: then the send call corresponding to this call
to receive must be deleted, too. This analysis may follow
recursively connections between send and receive calls.
The performance remains acceptable, because the plans are
quite compact.

5 Experimental analysis

In this section, we illustrate OptimAX usage on two
examples derived from the WebContent project. We then
study its efficiency, on a set of synthetic documents.

5.1 Case studies

A first simple scenario of OptimAX in WebContent con-
cerns a document processing flow of the form:
annotate@any(translate@any(store@any(crawl@p)))
where the services are those described in Section 1, and the
nesting of calls encodes their data dependencies, ensured by
the AXML default activation order. Moreover, OptimAX is
able to instantiate the peers providing annotation, transla-
tion, resp. storage services for the documents returned by
the crawling service at peer p, based on a load catalog de-
scribing the available peers and services. The translation
and annotation services update their input documents di-
rectly in the warehouse. OptimAX may use delegation to
ship the computations somewhere close to p, as to reduce
data transfers.

In a more complex query scenario, OptimAX is invoked
on documents including a single call to the pre-defined ab-
stract service WebContentQuery. As parameter of the call,
a single XQuery query is given. The WebContentQuery ser-
vice is abstract, i.e., it is implemented only by a combi-
nation of other services available in the WebContent dis-
tributed warehouse.

A WebContent-specific OptimAX rule rewrites calls to
WebContentQuery(q) into expressions of the form:

gqs@local(join, kadop@any(tpq1),
kadop@any(tpq2), . . .
kadop@any(tpqn))

In the above, tpq1, tpq2, . . . , tpqn are conjunctive tree
pattern queries (think of XPath queries allowed to return
several nodes), and join is an XQuery query, such that:

q ≡ join(tpq1, tpq2, . . . , tpqn)

In other words, tpq1, tpq2, . . . , tpqn are conjunctive tree
pattern queries extracted from q, and join is a recomposi-
tion query specifying how to put together the results of q
based on the results of the tree pattern queries. The decom-
position is provided by the TGV XQuery algebraic com-
piler [20], which is embedded (for the WebContent appli-
cation) into OptimAX. The decomposition is useful, be-
cause in WebContent, tree pattern queries can be efficiently
executed over a distributed set of XML storage providers,
once they agree to maintain, together, a distributed full-text
XML index. The sub-system responsible of building and
exploiting this index, built in a previous project, is called
KadoP [4]. In our setting, each KadoP site provides a ser-
vice kadop whose parameter is a tree pattern query. Upon
invocation, the site coordinates execution, retrieves the re-
sults, and returns them in streaming fashion (the kadop ser-
vice is continuous).

Without delving into details, we mention that the execu-
tion of each tree pattern query can be assimilated to a dis-
tributed join, combining posting lists from the distributed
KadoP index. Each join entails some data transfers, which
tend to become the bottleneck in query evaluation. Opti-
mAX uses the freedom degrees provided by @any to place
the joins (i.e. to chose the sites providing the kadop ser-
vices) in such a way as to minimize the data transfers.

To conclude this section, we observe that OptimAX’
modular rule set enables it to blend context-specific rewrit-
ings (e.g. decomposing calls to WebContentQuery) with
generic rewritings (e.g. finding the sites which evaluate
calls to kadop@any). Moreover, given that OptimAX is an
“external” optimizer, i.e. it works outside a database core, it
can be extended easily to include specialized rule engines,
such as the XQuery-specific engine TGV.

In both of the above cases, the optimizer is very fast (tens
of a second). We have deployed the WebContent platform
(including OptimAX) on four machines in our lab intranet,
where the actual impact of optimization was not very visi-
ble. Large-scale deployment of the distributed WebContent
platform is scheduled for the summer of 2008.

5.2 Efficiency

We now study the efficiency of plan finding in OptimAX.
The AXML activation cost reductions due to delegation and
instantiation have been shown to reach several orders of



Figure 8. Optimization time for deep and flat
documents.

magnitude [17, 18]. Clearly, other rules can improve that
factor. Experiments ran at a computer with Intel Xeon CPU
5120 @ 1.86GHz, 3GB of Ram and Mandriva Linux 10.

We consider three sets of synthetic parametric docu-
ments, consisting exclusively of service calls (except the
root). Document deep-n.xml consists of n service calls or-
ganized in a linear tree of fanout 1. Document flat-n.xml
consists of a root node and n service call children. Finally,
document tree-n.xml is an arbitrary tree of n service call
nodes where the maximum fanout is fmax = 6. Each doc-
ument is characterized by nd, the number of distinct ser-
vices called. Services assigned randomly (uniform distribu-
tion over a set of nd) to each tree node. Each optimization
problem is further characterized by np, the number of peers
which to which computations may be delegated. In these
experiments we consider delegation and factorization.

The graphs in Figure 8 and 9 depict the time for exhaus-
tive optimization, resp. to obtain a plan with the best cost
(as determined by of the exhaustive process).

In the top graph of Figure 8, we study the documents

Figure 9. Optimization time for tree docu-
ments.

deep-n.xml, maximizing opportunities for delegation due to
the deep nesting of calls. Total optimization time grows
exponentially with n, which agrees with the lower bound
for the search space size (Section 4.1). The bottom graph
considers the document flat-20.xml while varying nd; here,
factorization applies more and more as nd lowers.

In Figure 9, we use the documents tree-n.xml, varying n,
with np = 2 (upper) and np = 3 (lower). We set nd to
n, resp. 2n. Since the services are chosen independently
for each node, for both values of nd, some calls are likely
to refer to the same service, and some factorization occurs
(more for nd = n). The graphs show that the total optimiza-
tion time grows exponentially with n, and generally grows
as nd decreases, since this often means more factorization
opportunities. Moreover, the total time grows from a few
seconds, to a few hundred seconds as np moves from 2 to
3, also as predicted by the lower bound on the search space
size from Section 4.1. For applications running for a long
time, it may make sense to spend some minutes optimizing,
but for others, exhaustive optimization is prohibitive.



Figure 10. Time and cost trade-offs for deep-
n.xml with non-exhaustive strategies.

The good news shared by all graphs in Figure 8 and 9
is that the time to the best solution is very moderate, of the
order of 0.1-0.5 seconds. This is due to our depth-first then
cost-based search strategy we apply (to rewrite a plan, we
consider the most rewritten ones, and among them, we pick
the cheapest one).

Our last experiment demonstrates the interest of non-
exhaustive strategies. For the two graphs in Figure 10 at
the top, our strategy ran a depth-first, greedy search limited
at 200 delegations and/or factorizations. For small n values,
this strategy is complete, and the running time (a few ms) is
almost identical to that of the full exploration. For larger n
values, limiting the search to 200 rewritings marginally in-
creases the cost of the best solution, but decreases the search
time by an order of magnitude! At the bottom of Figure 10,
we used the same plans as at the bottom graph of Figure 9,
with the following strategy: explore 55 factorizations, then
55 delegations. This strategy finds plans within a factor of 2
of the optimum, but may decrease running time by 3 orders
of magnitude!

In conclusion, that while the AXML search space is
huge, efficient exhaustive strategies typically find an opti-
mal plan fast. For larger problems, non-exhaustive “smart”
strategies critically cut optimization time, while producing
near-optimal plans. This demonstrates the practical appli-
cability of our optimizer.

6 Related works and conclusion

The starting point of this work is the AXML lan-
guage [2], which we extended with the send, receive and
newnode services and with a flexible yet simple way to
control call activation order (Section 2.2). This brings im-
portant benefits to users, which may combine continuous
and non-continuous services at will. It is also crucial for

the efficiency of optimized plans. Consider e.g. the plan
send@p1(f@px, p2.d1.#1). Depending on whether px is
p1, p2 or another peer, we may wish to activate send first
(thus, push the computation to px) or f first (thus, call f
from p1). Our previous algebraic proposal [5] was unable to
express both - a shortcoming we detected while implement-
ing OptimAX. We defined valid schedules and formalized
the optimization problem accordingly.

A language for AXML replication and some XPath exe-
cution strategies were introduced in [3], which does not ad-
dress optimization. The full optimization problem is solved
in [1] in the particular case when the only rule is useless call
elimination (Section 4). Delegation and instantiation have
first been proposed in [18] in isolation and in an ad-hoc way
which could not be generalized. In [5] we proposed an ab-
stract algebra (with the shortcomings mentioned above) but
did not discuss how it can be mapped into an implementable
language. Finding which calls to activate to bring a docu-
ment to a given type is shown to be sometimes undecidable
in [8, 16] which do not consider optimization. Continuous
services are used in [7] to specify monitoring programs,
but algebraic optimization is not considered. XCraft [17]
is an optimizer for non-continuous AXML. It uses a work-
flow model for AXML documents, which are split in pieces
of fixed size optimized independently. In contrast, Opti-
mAX, based on tree rewritings, is intimately connected with
the AXML model, which allows it to include many more
rules, e.g. factorization, query composition/decomposition
etc., giving it more generality. Moreover, we explore many
strategies, and we show that a greedy-based depth-first can
quickly identify efficient plans, more reliably than a fixed-
size divide and conquer approach.

Web service orchestration in workflow style, e.g. via
BPEL4WS, is a very active area [9]. While AXML with
ordering constraints has some workflow flavor, it trades
many BPEL aspects (complex processes, exception han-
dling etc.) for a data-centric character that enables spe-
cific data-oriented efficient optimizations. More generally,
one can use either AXML or BPEL4WS to specify rela-
tively simple workflows; we have experimented with a sim-
ple translation tool from one to the other. OptimAX func-
tions in the realm of AXML documents, which we found
more convenient to handle via rewriting than process spec-
ifications.

The work presented here follows previous works on dis-
tributed query processing [15, 21], and in particular in the
context of mediator systems [14].

Our ongoing and future work in this area concerns the
integration of Optimax with an algebraic XQuery optimizer,
within the WebContent project [25].



Acknowledgments

This work has been partly funded by the French Govern-
ment grant RNTL WebContent.

References

[1] S. Abiteboul, O. Benjelloun, B. Cautis, I. Manolescu,
T. Milo, and N. Preda. Lazy query evaluation for Active
XML. In SIGMOD, 2004.

[2] S. Abiteboul, O. Benjelloun, I. Manolescu, T. Milo, and
R. Weber. Active XML: Peer-to-peer data and web services
integration. In VLDB (demo), 2002.

[3] S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and
T. Milo. Dynamic XML documents with distribution and
replication. In SIGMOD, 2003.

[4] S. Abiteboul, I. Manolescu, N. Polyzotis, N. Preda, and
C. Sun. XML processing in DHT networks. In ICDE, 2008.

[5] S. Abiteboul, I. Manolescu, and E. Taropa. A framework for
distributed XML data management. In EDBT, 2006.

[6] S. Abiteboul, I. Manolescu, and S. Zoupanos. OptimAX:
Efficient Support for Data-Intensive Mash-Ups (demo). In
ICDE, 2008.

[7] S. Abiteboul and B. Marinoiu. Distributed monitoring of
peer-to-peer systems. In WIDM, 2007.

[8] S. Abiteboul, T. Milo, and O. Benjelloun. Regular rewriting
of active XML and unambiguity. In PODS, 2005.

[9] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices - Concepts, Architectures and Applications. Springer,
2004.

[10] ActiveXML home page. Available at
http://www.activexml.net.

[11] S. Benbernou, X. He, and M. Said-Hacid. Implicit service
calls in ActiveXML through OWL-S. In ICSOC, 2005.

[12] Business process execution language for web services.
www.ibm.com/developerworks/library/ws-bpel.

[13] D. Chappell. Enterprise Service Bus. O’Reilly, 2004.
[14] L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimiz-

ing queries across diverse data sources. In VLDB, 1997.
[15] D. Kossmann. The state of the art in distributed query pro-

cessing. ACM Computing Surveys, 32(4), 2000.
[16] A. Muscholl, T. Schwentick, and L. Segoufin. Active

context-free games. In STACS, 2004.
[17] G. Ruberg and M. Mattoso. XCraft: Boosting the perfor-

mance of Active XML materialization. In EDBT, 2008.
[18] N. Ruberg, G. Ruberg, and I. Manolescu. Towards cost-

based optimizations for data-intensive web service compu-
tations. In SBBD, 2004.

[19] SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/.

[20] N. Travers, T. Dang-Ngoc, and T. Liu. TGV: A tree graph
view for modeling untyped XQuery. In DASFAA, pages
1001–1006, 2007.

[21] P. Valduriez and T. Ozsu. Principles of Distributed Database
Systems. Prentice Hall, 1999.

[22] W3C. WSDL: Web Services Definition Language 1.1.
[23] W3C. Soap version 1.2 part 1: Messaging framework (sec-

ond edition), 2007.

[24] Open source native XML database. exist.sourceforge.net.
[25] WebContent, the Semantic Web platform (rntl project).

www.webcontent.fr.


