
Acta Informatica
DOI 10.1007/s00236-008-0083-2

ORIGINAL ARTICLE

Semi-synchronous transductions

Vince Bárány

Received: 31 July 2007 / Revised: 2 October 2008 / Accepted: 14 October 2008
© Springer-Verlag 2008

Abstract Semi-synchronously rational relations generalise synchronised rational relations
in a natural way. We discuss here some of their basic properties, among them a “Cobham–
Semenov-like” dichotomy theorem. Our main result is a characterisation of bijective semi-
synchronously rational transductions as those bijections mapping regular relations to regular
ones and non-regular relations to non-regular ones.

1 Introduction

A relation on words is semi-synchronously rational if it is accepted by an asynchronous multi-
tape finite automaton processing each tape at a prescribed pace. Semi-synchronously rational
relations thus constitute a natural generalisation of the synchronised rational relations studied
in [9]. The notion is briefly mentioned in [17] but only to raise a very natural question, which
was subsequently answered independently in [1,7]. This result showing that, except in trivial
cases, the relative speed of reading individual tapes is uniquely determined, is presented here
in Theorem 1.

In the context of symbolic dynamics semi-synchronous (sequential) transductions [on
(bi-)infinite words] are natural devices in transforming dynamical systems [3]. Our initial
interest stems from the world of automatic presentations, where our main result, Theorem 2,
spells out that bijective semi-synchronous transductions (on finite words) are the natural
model of translations among equivalent automatic presentations of infinite structures [1].

In [11] Mauer and Nivat studied bijective rational transductions. They have shown that
there is a rational bijection between two regular languages if and only if these have the same
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asymptotic growth: either both are exponentially growing or both grow at a polynomial rate
of the same degree or both of them are finite and of the same size.

Recently, Béal et al. [2] proved that there is always a letter-to-letter rational bijection
between any two regular languages having exactly the same number of elements of every
length.

While growth arguments do play a key role in our analysis, we present here a charac-
terisation of semi-synchronously rational bijections primarily in terms of preservation of
regularity of relations. This is an essential distinction from works on regularity-preserving
[14] or continuous transductions [15] that are concerned with mappings of words preserving
the regularity of languages, i.e. unary relations, under taking images or pre-images.

In the course of our investigation we make two further observations along these lines.
Proposition 4 and Theorem 3 assert that every bijective transduction that maps every regular
binary relation to a regular one is in fact semi-synchronously rational, provided that it is
length-preserving (in which case it is synchronised rational), respectively, that its domain is
a regular language of exponential density.

2 Semi-synchronously rational relations

Let � be a finite alphabet. The length of a word w ∈ �∗ is denoted by |w|, the empty
word by ε, and for each 0 < i ≤ |w| the i th symbol of w is written as w[i]. We consider
relations on words, i.e. subsets R of (�∗)n for some n > 0. Asynchronous n-tape automata
accept precisely the rational relations, i.e. rational subsets of the product monoid (�∗)n .
Finite transducers are asynchronous 2-tape automata and the relations they recognise are
commonly referred to as rational transductions [4]. A relation R ⊆ (�∗)n is synchronised
rational [9], or simply regular, if it is accepted by a synchronous n-tape automaton. We
introduce the following generalisation.

Definition 1 (Semi-synchronously rational relations) Let � be a special end-marker sym-
bol, � �∈ �, and �� = � ∪ {�}. Further let α = (a1, . . . , an) be a vector of positive
integers and consider a relation R ⊆ (�∗)n . The α-convolution of R is the set �αR =
{(w1�m1 , . . . , wn�mn ) | (w1, . . . , wn) ∈ R and the mi are minimal such that there is a
k with kai = |wi | + mi for every i}. This allows us to identify �αR with a subset of the
monoid ((��)a1 × · · · × (��)an )∗. If �αR thus corresponds to a regular set, then we say
that R is α-synchronously rational, or just α-synchronous. Finally, R is semi-synchronous if
it is α-synchronous for some α.

Intuitively, our definition expresses that although R requires an asynchronous automaton
to accept it, synchronicity can be regained when processing words in blocks, the size of which
are component-wise fixed by α. As a special case, for α = 1, we obtain the regular relations.

Example 1 Consider R = {(an, a2n+1) | n ∈ N}. While R is not synchronised rational,
�(1,2)R = (a, aa)∗(�, a�) is. Hence, R is (1, 2)-synchronous.

Also note that for every α = (a1, . . . , an) the convolution �α ((�
∗)n) is the regular subset

of ((��)a1 × · · · × (��)an )∗ of all words whose end markers are lined up at the end of each
component consistently with Definition 1.

Recall that a relation R ⊆ (�∗)n is recognisable if it is saturated by a congruence (of the
product monoid (�∗)n) of finite index, equivalently, if it is a finite union of direct products
of regular languages [9]. We denote by Rat, SRat, SαRat, Reg, Rec the classes of rational,
semi-synchronous, α-synchronous, regular, and recognisable relations, respectively.
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It is a straightforward consequence of the definition that for any fixed α the class of
α-synchronously rational relations has all the convenient properties of synchronised rational
relations.

Proposition 1 SαRat is an effective boolean algebra for each α. The projection of every
αβ-synchronous relation onto the first |α| many components, is α-synchronous.

Proof One applies the classical automata constructions for taking products, determinising
and complementing finite automata over the alphabet (��)a1 × · · · × (��)an . For sound
treatment of the end-markers complements have to be taken relative to the regular domain
�α ((�

∗)n) of those words actually representing the convolution of some tuple. ��
Proposition 2 For every vector α of non-negative integers, SαRat is closed under taking
images (hence also inverse images) via semi-synchronous transductions.

Proof Let T be a (p, q)-synchronous transduction, R an α-synchronous n-ary relation with
α = (a1, . . . , an). Then T (R) = {v | ∃u ∈ R, ∀i ≤ n : (ui , vi ) ∈ T } is the projec-
tion of the (qa1, . . . , qan, pa1, . . . , pan)-synchronous relation {(v,u) | u ∈ R, ∀i ≤ n :
(ui , vi ) ∈ T }. Therefore, by Proposition 1, T (R) is (qa1, . . . , qan)-synchronously ratio-
nal, hence also α-synchronously rational (cf. Theorem 1(i) below). Closure under taking
inverse images follows from the fact that the inverse of a (p, q)-synchronous transduction is
(q, p)-synchronous. ��

Observe that the composition of a (p, q)-synchronous and an (r, s)-synchronous trans-
duction is (pr, qs)-synchronous, thus, the class of semi-synchronous transductions is closed
under composition.

Next we show that for (p, q)-synchronously rational transductions, with the exception of
recognisable transductions, the ratio p/q is uniquely determined. This is a crucial property
that can be helpful in showing that certain relations are not semi-synchronous.

To this end let us say that α and β are dependent if k · α = l · β for some k, l ∈ N,
where multiplication is meant component-wise. Then, comparing classes SαRat and SβRat
we observe the following “Cobham–Semenov-like” relationship. Theorem 1 provides solu-
tion to [17, Probléme 6.3] and has been independently proved by the author [1] and by
Carton [7].

Theorem 1 Let n, p, q ∈ N and α, β ∈ N
n.

(i) If α and β are dependent, then SαRat = SβRat.
(ii) If (p, q) and (r, s) are independent, then S(p,q)Rat

⋂
S(r,s)Rat = Rec.

Proof (i) Clearly, a relation R is α-synchronous if and only if it is (k · α)-synchronous
for any k ≥ 1. The claim follows.

(ii) Recognisable relations are trivially α-synchronous for any α, therefore we only care
for the other inclusion.

Let R ∈ S(p,q)Rat
⋂

S(r,s)Rat. We need to show that R is a finite union of Cartesian
products Ai × Bi of regular languages. Consider the following equivalence relation on words
in the domain of R:

x ∼ x ′ def⇐⇒ ∀y : R(x, y) ↔ R(x ′, y)

By Proposition 1 this is a regular relation. Each equivalence class [x] is therefore a regular
language. Similarly, for every x the set x R = {y | (x, y) ∈ R} is regular. Hence, R is of
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the (irreducible) form
⋃r

i=1 Ai × Bi if and only if there are precisely r equivalence classes
[x1], . . . , [xr ] modulo ∼, in which case Ai = [xi ] and Bi = xi R for 1 ≤ i ≤ r .

According to (i), R is both (pr, qr)- and (pr, ps)-synchronous, and by assumption ps �=
qr , wlog. ps < qr . Let us further assume for simplicity and wlog. that pr = 1 and let k = ps
and l = qr . Consider some FDA’s A and A′ recognising �(1, k)R and �(1, l)R, respectively.
As transducers, A is thus “slower” then A′ in reading the second tape. Let C = |A|2+1, where
|A| is the number of states of A. The following observation is confirmed by a straightforward
pumping argument:

x �∼ x ′ ⇒ ∃y : |y| < k(max(|x |, |x ′|)+ C) ∧ R(x, y) ↔ ¬R(x ′, y) (∗)
The syntactic congruence of A′ induces an equivalence of finite index on pairs of words

(u, z) ∈ (� ∪ {�} × (� ∪ {�})l)∗, i.e. (u, z) ≈A′ (u′, z′) iff their actions on the states of
A′ are identical. Let K be the length of the longest word v such that (v,�l|v|) is the shortest
such representant of its ≈A′ -class.

Consider now any x long enough such that �(|x |+C) k
l �+K < |x |. During the run of A′ on

input (x, y) for any y shorter than k(|x |+C), y will be completely read leaving a suffix v of x ,
v longer than K , unread. By replacing v with a shorter v′ such that (v,�l|v|) ≈A′ (v′,�l|v′|)
in x we obtain an x ′ shorter than x , such that, by (*), x ∼ x ′. Thus we have shown that each
∼-class has a representant of bounded size, i.e. that there are finitely many such classes as
required. ��

In [9, Theorem 5.1] it has been established that Rec � Reg � DRat � Rat, where DRat
refers to the class of deterministic rational relations. All regular relations are easily seen to be
deterministic rational [9, Prop. 5.2] and this naturally extends to semi-synchronously rational
relations. By definition, for every R ∈ SαRat its α-convolution �αR is a regular language,
which can thus be accepted by a DFA. It is then straightforward to transform this DFA into
a deterministic transducer accepting R. Hence we have that Reg ⊂ SRat ⊂ DRat. In fact,
both inclusions are strict: the relation {(an, a2n) | n ∈ N} is evidently (1, 2)-synchronous
but not (1, 1)-synchronously rational, and we have the following corollary of Theorem 1.

Corollary 1 The relation {(an, a2n), (bn, b3n) | n ∈ N} is deterministic rational but not
semi-synchronous. Hence SRat � DRat and SRat is not closed under union.

Proof Let Ra = {(an, a2n) | n ∈ N} and Rb = {(bn, b3n) | n ∈ N}. These are (1, 2)-
synchronously rational and (1, 3)-synchronously rational, respectively, and their union R
is obviously deterministic rational. Assuming R to be (p, q)-synchronous both Ra = R ∩
a∗ × a∗ and Rb = R ∩ b∗ × b∗ would also have to be (p, q)-synchronous by Proposition 1.
However, since neither Ra nor Rb is recognisable, according to Theorem 1 we would have
1/2 = p/q = 1/3, which is impossible. ��

The problem of whether a given rational relation is synchronised rational is known to
be undecidable [4,9]. Simple reductions show that the same holds true for the question of
semi-synchronicity.

Proposition 3 For any given p, q ∈ N the following problems are undecidable.

(i) Given a rational transduction R ∈ Rat is R ∈ S(p,q)Rat?
(ii) Given a rational transduction R ∈ Rat is R ∈ SRat?

Proof Problem (i) is equivalent to the problem of deciding regularity of rational relations
over the alphabet (� p

� ×�
q
�) that is known to be undecidable [4,9].
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To prove (ii) consider the following reduction.1 Given a rational transduction R ⊆ (�∗)2
let R′ = R � R−1 where R−1 is understood to be over a disjoint copy of �. Clearly,
if R is regular, then so is R′. Conversely, if R′ is (p, q)-synchronously rational then, by
Proposition 1, both R = R′ ∩ (�∗ × �∗) and, similarly, R−1 are (p, q)-synchronously
rational. However, the latter implies that R is also (q, p)-synchronously rational. Then,
according to Theorem 1, either p = q or R is recognisable. In either case, R is regular.
Therefore a decision procedure for (ii) would yield an algorithm for regularity, which is
undecidable. ��

3 Bijective semi-synchronous transductions

The objects of study in this section are translations.

Definition 2 (Translations) A translation is a bijection t : D → C between regular sets
of words D ⊆ �∗ and C ⊆ �∗. A translation t preserves regularity (non-regularity) if the
image of every regular relation under t (respectively, under t−1) is again regular. Finally, t is
weakly regular if it preserves both regularity and non-regularity.

Although every bijective rational transduction qualifies as a translation, in fact one pre-
serving regularity of sets, it is not necessarily regularity preserving.

Example 2

– The homomorphism w �→ w with domain {a, b}∗ and a = b and b = a is a translation
that is regularity preserving and is its own inverse.

– The homomorphism dupl mapping a �→ aa for every a ∈ � is a (1, 2)-synchronous
transduction, thus, by Proposition 2, it is weakly regular.

– Consider the mapping bin : an �→ [n]2, where [n]2 is the binary numeral representing n
in the least-significant digit first manner. It is well known that such binary representation
[R]2 = {([n1]2, . . . , [nr ]2) | (n1, . . . , nr ) ∈ R} of every Presburger-definable relation
R ⊆ N

r is synchronised rational [6], and that regularity over unary numerals implies
Presburger definability.2 It follows that bin is a regularity preserving translation. However,
the pre-image bin−1({[2n]2 | n ∈ N}) is clearly not a regular subset of a∗.

– The homomorphism τ mapping a �→ aa and b �→ b is a rational translation that is not
regularity preserving, e.g. τ({(an, bn) | n ∈ N}) is not regular.

– rev : w �→ wrev mapping each word to its reversal is a translation which preserves
regularity of sets, i.e. unary relations, in both directions but the image of the prefix
relation under reversal is not a regular relation as the reader can check.

– The injection w �→ ww with domain {a, b}∗ is not a translation because its range is not
regular.

Regular translations, whose graphs are synchronised rational relations, are easily seen to
be weakly regular. More generally, like dupl above, all semi-synchronous transductions are
weakly regular as we have already established in Proposition 2.

1 I thank the anonymous referee suggesting a similar reduction.
2 The following stronger statement is a classical one (see, e.g. [13]). The unary representation of a relation
R ⊆ N

r is synchronised rational iff R is first-order definable in the structure (N, 0, <,+1, {≡ mod (m)}m>1),
in which case it is even quantifier-free definable.

123



V. Bárány

Corollary 2 Every semi-synchronously rational translation is weakly regular.

As our main result, in Theorem 2 we prove the converse of this statement. The proof
relies on a careful analysis of growth rates and on the regularity of (pre)images of certain
distinguished relations. We divide the proof into several steps with the aid of equivalent
transformations. By this we mean the following. Given a translation f : D → C and a
weakly regular translation T : C → C ′ we “replace” f with g = T ◦ f : D → C ′. We
will say that two translations f : D → C and g : D → C ′ over the same domain are
equivalent ( f ∼ g) if one can be obtained from the other by a transformation as above, that
is, if g ◦ f −1 is weakly regular. As far as preserving regularity of relations is concerned
this is a perfectly legitimate transformation, because for each relation R over D, f (R)
is regular if and only if g(R) is regular; and, equivalently, for each relation R over C ′,
f −1(T −1(R)) is regular if and only if g−1(R) is regular. In particular, whenever f ∼ g
then f preserves regularity, or non-regularity, or is weakly regular if and only if g does/is,
respectively.

3.1 Growth

To each translation f : D → C we associate its growth function G f : N → N defined as

G f (n) = max ({| f (u)| : u ∈ D, |u| ≤ n} ∪ {0}) for each n.

We define the following growth-related properties of a translation f :

– f is length-preserving if | f (x)| = |x | for every word x ;
– f is length-monotonic if |x | ≤ |y| implies | f (x)| ≤ | f (y)| for every x and y;
– f has bounded delay3 if there exists a constant δ

such that |x | + δ < |y| implies | f (x)| < | f (y)| for every x and y.

We recall some basic combinatorial facts concerning regular sets and relations. The first
one is a straightforward consequence of the well-known “pumping lemma” of automata
theory. A relation R of arity n + m is locally finite if for every (x1, . . . , xn) there are only
finitely many (y1, . . . , ym) such that R(x, y) holds.

Fact 1 ([8]) Let R ⊆ (�∗)n+m be a regular and locally finite relation. Then there is a
constant k such that max j |y j | ≤ maxi |xi | + k holds for every (x, y) ∈ R. In particular, if
f : (�∗)n → �∗ is a regular function, then there is a constant k such that for every x in its
domain we have | f (x)| ≤ maxi |xi | + k.

For a regular set D ⊆ �∗ let D=n = D ∩ �n and D≤n = D ∩ �≤n denote the set of
members of D of length precisely n and at most n, respectively. Further let Pref(D) be the
(regular) set of prefixes of words in D.

Fact 2 ([10, Lemma 3.12]) Let D ⊆ �∗ be a regular set. Then

(i) |Pref(D)=n | = O(|D≤n |) and
(ii) for every fixed C ∈ N : |D≤(n+C)| = O(|D≤n |)
The density function d of a regular language D maps each natural n to the number |D≤n | of
elements of D of length at most n. Concerning the density functions of regular languages we
recall the following facts.

3 Different from [9]’s notion of rational transducers having bounded delay.
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Fact 3 ([18,19]) Let D be an infinite regular language and d(n) its density function. Then
either

(i) D is the finite union of languages Di = ui,1v
∗
i,1ui,2 . . . ui,ni v

∗
i,ni

ui,ni +1 and d(n) is a
polynomial of degree maxi ni , or

(ii) there are α > 1 and r ∈ N and constants 0 < c1 ≤ c2, such that c1 nrαn ≤ d(n) ≤
c2 nrαn for all sufficiently large n.

Proof The first assertion is a well-known characterisation of regular languages with polyno-
mial density, cf., e.g. [19]. We outline a proof of (ii) based on classical results of [18].

Consider the sequence ( |Pref(D)=n | )n . Because Pref(D) is prefix closed, i.e. all states
of its minimal DFA are accepting, the sequence ( |Pref(D)=n | )n is a D0L sequence, and, as
such, it has a definite asymptotic behaviour. Indeed, for every D0L sequence s not ultimately
zero there are α ≥ 1 and r ∈ N, such that s has growth order nrαn , i.e. s(n) = �(nrαn).
[18, Section III.7.]. In our case now α > 1. Moreover, the sequence

( |Pref(D)≤n | )n , which
is the summation of the former, is itself a D0L sequence of the same growth order, because
nrαn ≤ ∑n

i=0 irαi ≤ nr ∑n
i=0 α

i < α
α−1 nrαn . To conclude we note that by Fact 2 there is

a constant C > 0 such that C · |Pref(D)=n | ≤ |D≤n | and obviously |D≤n | ≤ |Pref(D)≤n |.
Therefore also d(n) = �(nrαn) as claimed. ��

The relation L = {(x, y) | |y| ≤ |x |} will play a central role in our analysis. We leave the
domain of L intentionally unspecified and rather overload the symbol L to allow it to refer
to {(x, y) ∈ D2 | |y| ≤ |x |} for any regular language D relevant in the particular context.

Our first lemma establishes a connection between regularity of the pre-image of L under
a translation and its property of having bounded delay.

Lemma 1 Let f : D → C be a translation such that f −1(L) is regular. Then f has bounded
delay.

Proof By assumption f −1(L) is regular and it is locally finite because L = {(u, v) ∈ C2 |
|v| ≤ |u|} is. Hence, by Fact 1, there is a constant δ such that | f −1(v)| ≤ | f −1(u)| + δ

whenever |v| ≤ |u|. By negating both sides and substituting u = f (x) and v = f (y) we
arrive at the equivalent statement that |y| > |x | + δ implies that | f (y)| > | f (x)|, which is
to say that f has bounded delay with bound δ. ��

The following lemma gives a handy example of an equivalent transformation that will
also be the first step in our construction.

Lemma 2 To every translation f : D → C for which f (L) is regular one can construct an
equivalent translation g = π ◦ f , such that π is regular, Gg = G f , g is length-monotonic,
moreover g has bounded delay iff f has bounded delay.

Proof The relation L = {(x, y) ∈ D2 | |y| ≤ |x |} is locally finite and regular, so is its image
f (L). Therefore, by Fact 1, there is a constant K such that |y| ≤ |x | → | f (y)| ≤ | f (x)|+ K
for every x, y ∈ D. By the choice of K , we have G f (|x |) ≤ | f (x)| + K for all x ∈ D. We
may thus partition D into subsets

Ds = {x ∈ D | G f (|x |)− | f (x)| = s} with 0 ≤ s ≤ K .

We claim that the sets Cs = f (Ds) constitute a regular partitioning of C . Indeed, consider
the sets

Fs = {u ∈ C | ∀v ∈ C : (u, v) ∈ f (L) → |v| ≤ |u| + s}
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for all 0 ≤ s ≤ K . These are regular, being first-order definable from f (L), which is by
assumption regular, and from the relation |v| ≤ |u| + s, which is trivially regular for any
fixed s. Then C0 = F0 and Cs+1 = Fs+1\Fs for all 0 ≤ s < K , therefore Cs is regular for
each s as claimed. This observation allows us to define g by padding the f -image of each
word according to its partition:

g(x) = f (x)@G f (|x |)−| f (x)| (∀x ∈ D)

Thus, g(D) = C ′ = ⋃k
s=1 Cs · @s and g = π ◦ f , where π is the padding function defined

as π = {(v,w) ∈ C × C ′ | ∨
s≤K (v ∈ Cs ∧ w = v@s)}. Given automata recognising

each Cs it is again easy to construct a synchronised rational transducer recognising π , which
is thus (weakly) regular. This means that g is equivalent to f as required. Moreover, g is
length-monotonic by construction, because |g(x)| = G f (|x |) = Gg(|x |) holds for every
word x , and the growth function G f is by definition always monotonic.

To check our last claim assume first that f has bounded delay, say bounded by δ. Thus,
|x | + δ < |y| �⇒ | f (x)| < | f (y)| for every x and y, and therefore |g(x)| = G f (|x |) <
| f (y)| ≤ |g(y)| whenever |x | + δ < |y|, i.e. g has bounded delay. Conversely, assume that
g has bounded delay, say bounded by 
. We shall assume that D is infinite, otherwise the
claims of this lemma are rendered trivial. We may then choose M such that for every n there
is a word z ∈ D of length n ≤ |z| < n + M . Let x, y ∈ D be arbitrary words such that
|x | + K (
 + M) < |y|. Then, by the choice of M we have for each i ≤ K some word
xi ∈ D with x0 = x and |xi | +
 < |xi+1| ≤ |xi | + (
+ M) for all i < K and |xK | < |y|.
Thus |g(x)| < |g(x1)| < · · · < |g(xK )| ≤ |g(y)|, so |g(x)| + K < |g(y)|, in other terms
|G f (x)| + K < |G f (y)|. Therefore | f (x)| + K ≤ |G f (x)| + K < |G f (y)| ≤ | f (y)| + K ,
i.e. | f (x)| < | f (y)|. Since the choice of x and y was arbitrary, this proves that f has bounded
delay, with δ = K (
+ M) as a bound. ��

The next observation further highlights the significance of preserving regularity of L and
of the bounded delay property. The following crucial fact will be key to our proof of the main
theorem.

Lemma 3 Let f : D → C be a translation of bounded delay for which f (L) is regular.
Then the infinite sequence of increments ∂G f = 〈G f (1)− G f (0),G f (2)− G f (1), . . .〉 of
the growth function of f is ultimately periodic.

Proof Relying on Lemma 2 we assume henceforth that f is length-monotonic. We know that
f has bounded delay, say with bound δ. Then G f is a non-decreasing sequence of naturals
in which each number can occur at most δ times.

Let ≤llex denote the length-lexicographical ordering, and let E = {(x, y) ∈ D2 | |x | =
|y|}. Both ≤llex and f (E) are regular relations. The latter so, because (x, y) ∈ E ↔
(x, y), (y, x) ∈ L and f (L) is regular by assumption. We define the language

L = { f (x) | x ∈ D, ∀y ∈ D |x | = |y| → f (x) ≤llex f (y)}
= {u ∈ C | ∀v ∈ C (u, v) ∈ f (E) → u ≤llex v}

which is thus also regular. Let l0 < l1 < · · · be the sequence of all those naturals l for which
there is a word in D of length l. Then L = {u0, u1, . . .}, where ui denotes, for each i ∈ N,
the length-lexicographically least element of f (D=li ). Because f is length-monotonic, we
have |ui | = G f (li ) and |ui | ≤ |ui+1| for each i ∈ N. Furthermore, by the choice of δ, also
|ui | < |ui+δ| holds for each i ∈ N. In other words, there are at most δ many words in L of
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each length. One says that L is δ-thin [16]. We can thus write L as a disjoint union of the
regular languages

Lk = {u ∈ L | ∃=kv ∈ L : |u| = |v|} (1 ≤ k ≤ δ)

Let ψ : C → a∗ be the homomorphism sending every letter to a. It is a length-preserving
projection mapping L to the set of unary numerals corresponding to the pruned sequence
obtained from G f by omitting the repetitions, i.e.ψ(L) is the unary representation of G f (N).
Similarly, for each 1 ≤ k ≤ δ, ψ(Lk) is the unary representation of the set of those values n
that are repeated exactly k times in G f , i.e. such that |G−1

f (n)| = k.
As homomorphic images of regular languages these projections are regular unary lan-

guages. As such, each ψ(Lk) is the unary representation of a semi-linear set of naturals
Nk = {nk,0 < nk,1 < nk,2 < · · · }, which is to say that the sequences (nk,i+1 − nk,i )i are
ultimately periodic. In particular they are bounded, say by B. One way to conclude is by
building a finite sequential transducer T which on input aω outputs ∂G f . We can construct
T from a direct product of automata recognising ψ(L1), . . . , ψ(Lδ) and a counter counting
modulo B + 1. The counter value is initially 0 and is incremented upon reading each a while
the component automata are simulated. Whenever one of the automata enters an accepting
state, the counter value is output and reset to 0. If it was the k + 1-st automaton, then addi-
tionally k zeros are appended to the output. By definition, ∂G f is the output of the infinite
run on input aω. Equivalently, ∂G f is the homomorphic image of the ultimately periodic
sequence of states along this run. The claim follows. ��
Corollary 3 If f is a translation such that both f (L) and f −1(L) are regular then ∂G f is
ultimately periodic.

In our last lemma of this subsection we show how the fact that the growth function of a
translation increases in periodic increments can be exploited to transform it into an equivalent
length-preserving translation.

Lemma 4 Let g : D → C be a length-monotonic regularity-preserving translation of
bounded delay. Then one can construct an equivalent length-preserving translation h = τ ◦g
with τ a semi-synchronous transduction.

Proof Under the assumptions on g Lemma 3 shows that ∂Gg is ultimately periodic. For
simplicity we assume wlog. that Gg(0) = 0, i.e. that if ε ∈ D then g(ε) = ε. (This can be
ensured by modifying g, when needed, on a finite number of words, which always yields
an equivalent translation with the same asymptotic properties.) This allows us to construct a
length-preserving translation h equivalent to g by subdividing words in the image of g into
blocks according to ∂Gg .

To this end let c = maxn∂Gg[n] and consider a new alphabet � = �≤c = {w ∈ �∗ :
|w| ≤ c}. Let β : �∗ → �∗ be the homomorphism mapping each element of � to the
corresponding word over �. Consider then some word x ∈ D of length n and its image
v = g(x) ∈ C . Since g is length-monotonic |v| = Gg(|x |) = Gg(n) and we can factorise v
as v1v2 · · · vn where |vi | = ∂Gg[i] for each i ≤ n.

We define the mapping τ : C → �∗ by setting for each v ∈ C with factorisation
v = v1v2 · · · vn as above τ(v) = v1 · v2 · · · · · vn when considered as a word of length n
over�. In particular, β ◦ τ is the identity map on C . Finally, we set h = τ ◦ g. Thus, h is by
definition length-preserving.

It remains to show that τ is a semi-synchronously rational transduction. Lemma 3 tells
us that the sequence of increments, ∂Gg , is ultimately periodic, say from threshold N and
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with period p. Let q = Gg(N + p) − Gg(N ) be the total length of any p consecutive
blocks (increments) with sufficiently high indices. This means that after reading the first
Gg(N ) input symbols and the first N output symbols a transducer accepting τ can proceed
by reading blocks of q input symbols over � and p output symbols over � in each step,
which implies that τ is in fact a (q, p)-synchronous transductions. ��
3.2 Main result

In this subsection we prove that every weakly regular translation is a semi-synchronous
transduction, thus establishing the converse of Corollary 2. As a first step towards our main
theorem let us consider the special case of length-preserving translations. The next result
shows that in this case the condition of weak regularity can be dramatically weakened to
preserving regularity of only binary relations in just one direction.

Proposition 4 Let f : D → C be a length-preserving translation. If f preserves regularity
of all binary relations on D then (the graph of ) f is regular.4

Proof Let � be the alphabet of D. For each z ∈ �∗ we define the regular relation Sz =
(� ×�)∗({ε} × z�∗)∩ D2. By assumption, their images under f are regular relations over
C . In fact, since only the length of the first component plays a role in these relations, and it
is preserved by f , the following “variants” over D × C are also regular.

Rz = {(y, f (x)) ∈ D × C | ∃y′ ∈ �∗ |y′| = |y| ∧ y′z �prefix x} (z ∈ �∗)

Indeed, an automaton for Rz needs only to guess v ∈ C of length |v| = |y| and check that
(v, f (x)) ∈ f (Sz).

Since the claim is trivially true if D is finite, we may assume that D is infinite. Then there
is a M such that for every n ∈ N there is a word y ∈ D of length n ≤ |y| < n + M . Observe
that thus every x ∈ D is completely determined by the set of pairs (|y|, z) with |z| ≤ M and
such that Sz(y, x) holds. We can therefore describe f using relations Rz with |z| ≤ M as
follows.

graph( f ) = {(x, u) ∈ D × C | |x | = |u| ∧ ∀y ∈ D
∧

z∈�≤M

Sz(y, x) → Rz(y, u)}

This shows that the graph of f is indeed regular, i.e. that f is a synchronised rational
transduction. ��

In the general case the lemmata of the previous subsection allow us to successively weaken
the condition of weak regularity, each in turn equivalent to semi-synchronicity.

Theorem 2 For every translation f : D → C the following are equivalent:

(1) f is weakly regular;
(2) f is regularity preserving and f −1(L) is regular;
(3) f (R) is regular for every binary regular relation R and f has bounded delay;
(4) f can be decomposed as f = ρ ◦ h, where h is a length-preserving synchronised ratio-

nal translation, f ∼ h and ρ is a semi-synchronously rational transduction witnessing
this equivalence;

(5) f is a semi-synchronously rational transduction.

4 Cf. [8, Corollary 6.6] (also [9]) stating that length-preserving rational transductions are synchronised rational.
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Proof Assuming (4), f is the composition of semi-synchronously rational transductions.
Therefore, as noted on page 3, f is itself semi-synchronous. This proves (4) �⇒ (5). The
implication (5) �⇒ (1) is just a restatement of Corollary 2 established in Proposition 2. By
definition we have that (1) �⇒ (2) and by Lemma 1 also (2) �⇒ (3) holds.

It remains to prove (3) �⇒ (4). We achieve this by constructing in two steps of equivalent
transformations a length-preserving translation h equivalent to f . It follows then that, like f ,
h preserves the regularity of all binary relations. Hence by Proposition 4 it is synchronised
rational as required.

As a first step we apply Lemma 2 to transform f into the equivalent length-monotonic
translation g = π ◦ f . In Lemma 2 we have pointed out that π is indeed synchronised rational
and also that g has bounded delay, because f does. The next transformation step producing
a length-preserving translation h = τ ◦ g equivalent to g and with τ a semi-synchronously
rational translation is facilitated by Lemma 4.

Putting the pieces together we have the following chain of equivalent transformations:
f ∼ g = π ◦ f ∼ h = τ ◦ g amounting to the decomposition of f as

f = π−1 ◦ τ−1 ◦ h

where π applies the padding, τ the cutting of words into blocks, and where h is length-
preserving, hence, according to Proposition 4, also regular. Setting ρ = π−1 ◦ τ−1 this
concludes the proof of (3) �⇒ (4) thus closing the loop of implications and completing the
proof of Theorem 2.

As a final note, observe that both π−1 of Lemma 2 and τ−1 = β of Lemma 4 are
homomorphisms, hence ρ is a homomorphism as well. ��

We have seen how the fact that certain selected relations are mapped onto regular relations
by a translation, and/or its inverse, ensures that the translation is weakly regular. We close
our discussion with an observation on how the growth rate of the density of the domain of
the translation can help to further reduce these requirements.

Theorem 3 Let D be an infinite regular language.

(i) If D is of exponential density then every translation f with domain D that maps every
binary regular relation R over D to a regular relation is in fact weakly regular.

(ii) If, on the other hand, D has polynomial density then there is a translation f with domain
D that is regularity preserving but not weakly regular. In fact, there are infinitely many
pair-wise inequivalent regularity-preserving translations: f p : D → C p, one for each
prime p.

Before giving the proof we state an important special case of item (i).

Corollary 4 Consider a non-unary alphabet � and a translation f : �∗ → C. If f pre-
serves regularity of all binary relations over �∗ then f is weakly regular, and hence semi-
synchronous.

Proof of Theorem 3 (i) In light of Lemma 2 we may assume that f is length-monotonic and
according to Theorem 2 item (3) we only need to show that f has bounded delay.

Consider the regular relation S = {(x, y) ∈ D2 | |x | + 1 ≥ |y|}. By assumption f (S) is
regular, and because it is locally finite we find a constant K such that | f (y)| ≤ | f (x)| + K
for all x and y with |x | + 1 ≥ |y|. Thus, G f (n) ≤ G f (n − 1)+ K for every n.
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Let d be the density function of D mapping each n to d(n) = |D≤n |. By Fact 3 there is
an α > 1, r ∈ N and c1, c2 > 0 and N ∈ N such that c1 nrαn ≤ d(n) ≤ c2 nrαn for all
n ≥ N . Now suppose that for some n > N and t > 0 we find the following situation.

G f (n − 1) < G f (n) = G f (n + 1) = · · · = G f (n + t − 1) < G f (n + t)

By the choice of K we have that C≤G f (n) ⊆ C≤G f (n−1)+K . From Fact 2 we know that
|C≤n+K | ∈ O(|C≤n |), thus, there is a constant B independent of n (and certainly B ≥ 1)
such that |C≤G f (n)| ≤ |C≤G f (n−1)+K | ≤ B · |C≤G f (n−1)|. Because f is length-monotonic
we have |C≤G f (n−1)| = d(n −1) and |C≤G f (n)| = |C≤G f (n+t−1)| = d(n + t −1) since these
sets contain precisely the images of words of length at most n −1 and n + t −1, respectively.
Our estimates on d(n) yield that

c1

c2
αt ≤ c1 (n + t)r

c2 nr
αt ≤ d(n + t − 1)

d(n − 1)
≤ B

therefore t ≤ logα
(
B c2

c1

)
. It follows that f has bounded delay, with bound equal to the

maximum of logα
(
B c2

c1

)
and the largest t such that G f (n) = G f (n + t −1) for some n ≤ N .

(ii) As noted in Fact 3 regular sets of polynomial growth are characterised as those being
a finite (wlog. disjoint) union of the form D = ⋃N

i=1 ui,1v
∗
i,1ui,2 · · · ui,ni v

∗
i,ni

ui,ni +1. Let
n = maxi≤N ni + 1. The idea is to first represent each

w = ui,1v
r1
i,1 · ui,2v

r2
i,2 · · · · · ui,ni v

rni
i,ni

· ui,ni +1

by the (n + 1)-tuple of naturals

t (w) =
(

i, |ui,1v
r1
i,1|, |ui,1v

r1
i,1ui,2v

r2
i,2|, . . . , |ui,1v

r1
i,1 · · · ui,ni v

rni
i,ni

|, |w|, . . . , |w|
)
.

This is an injective mapping t : D → N
n+1. In order make our case we further define a kind

of unary encoding of each tuple t (w) = (i,m1,m2, . . . ,mn) as

h(w) = i al1
1 al2

2 · · · a
lni
ni a

lni +1

ni +1

where l1 = m1 and l j+1 = m j+1 − m j for each j ≤ ni . That is, l j = |ui, jv
r j
i, j | =

|ui, j | + r j |vi, j | for each j ≤ ni and lni +1 = |ui,ni +1|.

Claim The mapping h : D → ⋃N
i=1 ia∗

1 a∗
2 · · · a∗

ni
is a synchronised rational translation.

Proof Clearly, h is injective, and it is easily seen to be computable by a transducer, which,
after reading and storing the initial symbol i of the second tape, proceeds in a letter-by-letter

fashion. The transducer simply matches, for j = 1, . . . , ni + 1, each maximal factor a
l j
j of

the second tape with a factor ui, jv
r j
i, j in the corresponding position and of the same length

on the first tape. ��
Claim The function t : D → N

n+1 maps every regular R ⊆ Dr to a Presburger-definable
subset of N

(n+1)r .

Proof Notice that if one identifies each letter a j with � j−11n− j ∈ {1,�}n then for each word

w ∈ D with t (w) = (i,m1, . . . ,mn) ∈ N
n+1 the sequence al1

1 al2
2 · · · a

lni +1

ni +1 of h(w) without
the initial i corresponds exactly to the letter-by-letter convolution of the unary numerals
1m1 , . . . , 1mn representing the tuple t (w) without the i . This means that h(R) is essentially
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identical, modulo the encoding of i , to the unary representation [t (R)]1 of t (R) for every
relation R over D. From the previous claim we know that R is regular iff h(R) is regular,
which is, by the above, equivalent to [t (R)]1 being regular, which in turn implies that t (R)
is Presburger definable (cf. footnote 2). ��

Let [n]p denote the p-ary representation of n in least-significant digit first manner. For
each prime p we define f p to map each word w ∈ D with t (w) = (i,m1,m2, . . . ,mn) to
the letter-by-letter convolution

f p(w) = �1
([i]p, [m1]p, [m2]p, . . . , [mn]p

)
.

Thus, the image f p(R) of a relation R ⊆ Dr is essentially identical with the natural base-p
representation [t (R)]p of t (R) ⊆ N

r(n+1). According to the previous claim, t (R) is Presbur-
ger definable whenever R is regular. As already mentioned in connection with Example 2,
all Presburger-definable relations are regularly represented in the binary, or, for that matter,
in any natural base-p numeration system [6]. This means that each f p is indeed a regularity-
preserving translation with domain D.

To conclude we observe that by the Cobham–Semenov Theorem (cf., e.g. [6,5,12]) the f p’s
are pair-wise inequivalent. Alternatively, this can be established using Theorem 2 together
with Theorem 1 showing that if D is infinite and p and q are distinct primes then the translation
fq ◦ f −1

p is not semi-synchronously rational. ��

Acknowledgments I thank the anonymous referee for his or her uncompromising critique, scrutiny, and
valuable suggestions, in particular, for the idea of a simplified proof of Proposition 3.
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