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History : Confluence of 4 independent research directions,  now  intimately 

related : 

1. Polynomial  algorithms for NP-complete and other hard problems on particular 

classes of graphs, and especially hierarchically structured ones : series-parallel 

graphs, cographs, partial k-trees, graphs or hypergraphs of tree-width < k, graphs of 

clique-width < k. 

2. Excluded minors and related notions of forbidden configurations (matroid 

minors, « vertex-minors »). 

3. Decidability of Monadic Second-Order logic on classes of  finite  graphs, and on 

infinite graphs. 

4. Extension to graphs and hypergraphs of the main concepts of Formal 

Language Theory : grammars, recognizability, transductions, decidability questions. 
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Two  key  words : 
 

Graph  structure  (main notions) :   

 hierarchical decompositions (tree-decomposition, modular decomposition,…) 

 embedding on surfaces 

 exclusion of  minor,  vertex-minor  or  induced subgraph 

 existence  of  homomorphism  into a fixed graph  (generalized coloring) 

Logic : First-order, second-order, monadic second-order (MS)  

 for expressing graph properties (i.e., graph classes) and graph transformations, 

 and  structures  of  above  types 

 

The  good  combination  :  MS  logic  and  hierarchical  decompositions  related to 

tree-width  and  clique-width/rank-width. 

 



 4 

 An  overview  chart  

 

Graph                   "Context-free" 

operations             sets  of  graphs 

 

Fixed  parameter tractable 

algorithms            Language  theory 

              for  graphs  

              Recognizable 

                                 sets of graphs        

Monadic  2nd-order           Monadic  2nd -order  

logic              transductions 
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  Key  concepts of Language  Theory  and  their  extensions 
 

Languages Graphs 

Algebraic structure : 
monoid  (X*,*,ε)  

Algebras based on graph operations : ⊕, ⊗, // 
quantifier-free definable operations 

Algebras :  HR,  VR 
Context-free languages : 

Equational subsets of (X*,*,ε) 
Equational sets of the 

algebras   HR,  VR 
Regular languages : 
Finite  automata  ≡ 

Finite congruences   ≡ 
Regular expressions   ≡ 

Recognizable sets  
of the algebras HR, VR 

 
defined by finite congruences 

≡   Monadic Second-order 
definable sets of words or terms

∪ 
Monadic Second-order definable sets of graphs 

Rational and other types of 
transductions 

Monadic Second-order transductions 
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Summary 
Introduction  (finished)  

Extension to graphs of Language Theoretical  notions 

1.  Context-free  sets defined  by  equation  systems. 

2.  The graph algebras  VR  and  HR.  

3. Recognizability as  an algebraic notion. 

4. Monadic second-order logic defines  inductive  properties and functions  

5. Algorithmic  applications  

6. Monadic second-order  transductions. 

Links  with  logic  and  graph  theory  

7.  Graph classes on which  MS  logic is decidable 

Open questions 
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1.  Equational  (context-free) sets 

 
Equation systems = Context-Free (Graph) Grammars   

in an algebraic  setting 
 
 

In the case of  words,   the  set of context-free  rules  

S  → a S T ;    S  → b  ;  T  → c T T T ;   T  → a 
 

is equivalent to  the system  of  two set  equations: 

    S  =  a S T     ∪    { b }  

    T  =  c T T T      ∪        { a } 

 

where S  is the language generated  by   S      (idem for T and T). 



 8 

 
 

For  graphs  (or  other  objects)  we consider  systems of equations like: 

  S  =  f( k( S ), T  )      ∪  { b }  

  T  =  f( T , f( g(T ), m( T )))  ∪   { a } 

where : 

 f   is a binary operation,   

g, k, m   are unary operations on  graphs,   

a, b   denote  basic graphs  (up  to  isomorphism).  

 

An  equational set  is  a component  of the least  (unique)  solution  of such  

an  equation system. This  is  well-defined in any  algebra. 

 

Many poperties  are  valid  at  the  general  algebraic  level. 



 9 

2.  The  graph algebras   HR   and    VR 
 

HR operations : Origin :  Hyperedge Replacement hypergraph grammars ; associated complexity 
measure : tree-width 
 

Graphs have  distinguished vertices called sources,  pointed  to  by source labels from 

a finite set :    {a, b, c,  ..., h}. 

Binary operation(s)  :  Parallel  composition 

G // H     is  the  disjoint  union of  G  and  H and sources  with  same  label  are   fused.  

(If G  and  H are  not disjoint, one  first  makes  a  copy of  H disjoint from  G). 
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Unary operations   :    Forget   a  source  label  
       Forgeta(G)   is  G  without  a-source: the  source  is  no longer distinguished ;  

(it is  made  "internal"). 

       Source renaming : 
Rena     b(G)  exchanges  source  labels  a  and b     

(replaces  a  by  b   if  b is not the label of a  source) 
 

Nullary operations denote basic graphs : the connected graphs with at most one edge.  
 

For dealing with hypergraphs one takes more nullary symbols for denoting 

hyperedges. 
 

Each graph G has type τ(G) = the set of labels  of its sources. The type function has a 

homomorphic behaviour :  

     τ(G//H) = τ(G) U τ(G) ; τ(Forgeta(G)) = τ(G) - {a} ; τ(Rena     b(G)) = τ(G)[a/b, b/a]. 
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Tree-decompositions 
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Proposition:  A  graph  has  tree-width  ≤  k  if and only if  it  can  be  constructed   from  

basic  graphs  with   ≤  k+1  labels  by  using  the  operations    // , Rena     b  and  Forgeta.  
 

Example : Trees are of tree-width 1, constructed with two source labels, r  (root) and n  (new 

root):  Fusion of two trees at their roots  :  

 

Extension of a tree by parallel composition 

with a new edge,  forgetting the old root, 

making   the "new root" as current root :  

e  =  r  •_________•  n 

Renn      r  (Forgetr (G // e )) 
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From  an algebraic  expression  to  a   tree-decomposition 

Example : cd // Rena       c (ab // Forgetb(ab // bc)) (Constant  ab  denotes  an edge from  a   to  b) 

 

                                 The tree-decomposition associated  with this term. 
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VR    operations  
Origin : Vertex Replacement graph grammars  

Associated complexity measure: clique-width, has no  combinatorial  characterization  

but is defined in terms of  few very simple  graph operations  (giving easy  inductive proofs). 

Equivalent notion: rank-width (Oum and Seymour) with better structural and 

algorithmic properties. 
 

Graphs are simple, directed or not.   

k   labels  :  a , b , c,  ..., h.   Each vertex has one and only  one label ;  

a label  p  may label several vertices, called the   p-ports. 

 

One  binary operation:   disjoint  union    :   ⊕ 
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Unary  operations:  Edge addition denoted  by  Add-edga,b 
 

Add-edga,b(G)   is  G augmented with (un)directed edges  from every   a-port   to 

every  b-port. 

 

 

      H = Add-edga,b(G) ; only 5  new edges added  

The  number  of added edges  depends  on  the  argument graph. 
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Vertex  relabellings :  
Relaba       b(G)  is  G with every vertex  labelled by a   relabelled into b 

 

Basic graphs   are those with a single vertex. 

 

Definition: A  graph  G has  clique-width ≤ k ⇔ it can be constructed from basic 

graphs  with the  operations ⊕, Add-edga,b  and  Relaba      b  with  k labels. 

Its  clique-width  cwd(G)  is the   smallest  such  k. 

 

 The  type  (for the VR algebra) of  graph G  is  τ(G)  =  the set  of port labels  

having  an occurrence. Type  has a  homomorphic behaviour : 

τ(G ⊕ H)  = τ(G)Uτ(H) ; τ(Add-edga,b(G)) = τ(G) ; τ(Relaba       b(G) ) =τ(G)[b/a]. 
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Proposition : (1) If  a  set of  simple graphs  has  bounded  tree-width, it has  

bounded  clique-width, but  not  vice-versa. 
 

(2) Unlike tree-width, clique-width  is  sensible to edge directions: Cliques 

have clique-width  2, tournaments have unbounded clique-width. 
 

Classes   of  graphs  of  bounded  tree-width : 

Trees (1), Outerplanar graphs (2), Java structured programs (6), Graphs without P 

as a minor if P is planar. 
 

Classes of unbounded tree-width and bounded clique-width. 

Cliques (2), Complete bipartite graphs (2), Distance hereditary graphs (3),  

Graphs without P5 and 1⊗P4 (5), or 1⊕P4 and 1⊗P4 (16) as induced subgraphs. 
(many similar results for exclusion of induced  subgraphs  with 4 and 5 vertices).  
 

Classes of unbounded clique-width : 

Planar graphs of degree 3, Tournaments, Interval graphs, Without induced  P5. 
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Example : Cliques have clique-width 2.  

 
 

Kn  is   defined  by tn where  tn+1  =   Relabb      a( Add-edga,b(tn ⊕ b)) 
 

Another  example :  Cographs  are generated  by  ⊕  and  ⊗  defined by : 

G ⊗ H  =  Relabb      a( Add-edga,b (G ⊕ Relaba      b(H)) 

            = G ⊕ H  with  “all edges”  between  G  and  H. 
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  We  have  two  algebra  structures HR and VR  on graphs  hence, two  

notions  of  context-free sets, defined as the equational  sets  of the algebras  HR  

and VR,  and  two  notions  of recognizable  sets  (based  on congruences). 

 Why not a third algebra ? :  we  have  robustness results  (to come). 
 

 Which properties are  immediate (i.e., follow  from the  algebraic setting) ? 
  Answers : Closure  under  union, // and  ⊕ , the unary operations. 
   Emptiness and finiteness are decidable (finite  sets  are  computable) 
   Parikh's  Theorem 
   Derivation  trees, denotation of generated graphs by terms, 
   Upper bounds  to  tree-width and clique-width. 
 
 Which  do not hold as we could wish ? 
  Answers : The set of all (finite) graphs is not HR- or VR-equational. 
        Not even is the set of all square grids (planar graphs of degree 4) 
        Parsing is sometimes  NP-complete. 
 
 Equat(HR)  =  Equat(VR)  without  some fixed  Kn,n  as a subgraph. 
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3.   Recognizable  sets  : an algebraic   definition 
 

F :   a finite set of operations with (fixed) arity,  called a signature 

M = < M, (fM)f ∈ F >  :   an  F-algebra. 

 

Definition :  L  ⊆ M   is   (F-)recognizable  if  it is a union of equivalence classes 

for a finite congruence   ≈  on    M    (finite   means  that   M / ≈   is  finite). 

        Equivalently, L = h-1(D) for a homomorphism  h : M → A,  where A is a 

finite  F-algebra, D ⊆  A.  

  On terms,  h  is the run of a  finite  deterministic automaton. 

 

REC(M) = the recognizable subsets of M (with respect to  the algebra M) 
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For   the  algebras  HR  and  VR  that  have  infinite  signatures : 
 

we  require  that  the  congruence  ≈  is type preserving : 

G ≈ H  implies  τ(G) = τ(H)  

it  has  finitely  many classes  of each  type, 

L  is  the union of finitely many classes. 

 

We could also use many-sorted algebras, with  τ(G)  as sort  of G,  

because  the type function has  a  homomorphic  behaviour.  
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Two notions  of recognizable  sets  on the two  algebras  HR  and  VR.  

 

 Which properties of  recognizable sets follow  from the  algebraic setting ? 
 
  Answers : Closure  under  union, intersection and difference, 

inverse homomorphisms, inverse  unary derived operations. 
The  intersection  of an equational  set  and a recognizable one is  

                          equational  (with effective constructions) 
    

Which properties of  recognizable sets do not follow algebraically  ? 
 

Answers : Closure  under the operations  of the algebras : //, ⊕,  
the unary operations. (False  for  add-edg but true for some harmless  

restriction of the use of this operation). 
 Which  do not hold as we could wish or expect  ? 

Answers :  Emptiness is not decidable  (because  of infinite signatures). 
         REC  and  EQUAT  are  incomparable  
    Every  set  of square grids is HR- and VR-recognizable.  

Hence  uncountably many  recognizable  sets  and  
no finite automaton characterization. 
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Inductive  proofs  and  computations  
 

Example : Series-parallel graphs, defined  as graphs with sources 1 and 2,   

generated from  e   = 1             2    and the operations //  (parallel-composition)  and  

series-composition   defined  from other operations by : 

G • H =  Forget3(Ren2        3 (G) // Ren1      3 (H)) 

Example  :  

 

  1 •        G              •        H                            •  2 

        3 

 

   1   •                   • 2 
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Inductive  proofs :  
 

1)  G, H connected implies :  G//H   and   G • H   are  connected, (induction) 

e   is connected (basis) : 

⇒      All  series-parallel graphs are connected. 

 

 

2)     It is not true that : 

G  and  H  planar implies :  G//H is  planar  (K5 = H//e). 

 

A stronger property for induction :  

G has a planar embedding with the sources in the same “face”  

⇒      All  series-parallel graphs are planar.  
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Inductive  computation  :  Test  for 2-colorability  

Not all  series-parallel  graphs are  2-colorable  (see  K3)  
 

G, H  2-colorable does not imply that G//H is 2-colorable  (because  K3=P3//e). 
 

One can check 2-colorability  with 2 auxiliary  properties : 
 

    Same(G) =  G is 2-colorable with sources of the same color, 
Diff(G) =  G is 2-colorable with sources  of different colors 

by  using rules :  
    Diff(e) =  True  ;  Same(e) = False 
 

Same(G//H)  ⇔ Same(G) ∧ Same(H) 
Diff(G//H) ⇔  Diff(G) ∧  Diff(H) 
 

Same(G•H)  ⇔  (Same(G) ∧ Same (H)) ∨ (Diff(G) ∧ Diff(H)) 
Diff(G•H)  ⇔  (Same(G) ∧ Diff(H)) ∨ (Diff(G) ∧  Same(H)) 

 

 

We can compute for every SP-term t, by induction on the structure of  t the pair of 
Boolean values (Same(Val(t)) ,  Diff(Val(t)) ).   

 

 We  get  the answer  for  G = Val(t)  (the graph  that  is  the value  of t )  regarding 2-
colorability. 
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Recognizability  and  inductive  properties  
 

 

Definition : A finite  set  P  of  properties  on an F-algebra M is  F-inductive   
if  for  every  p ∈ P  and f ∈ F, there exists a (known)   Boolean formula  B  
such that  : 
 

p(fM(a,b) )  =  B[…,q(a),…,q'(b),….] for  all  a  and  b in M 
   

( q, q' ∈ P ,  q(a),…, q(b) ∈ {True, False} ) . 
 

 

Proposition :  A  subset  L of  M  is recognizable  iff  it is the set of 

elements  that satisfy a property belonging to a finite inductive set  P  of 

properties .  
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Proof :  
Let L = h-1(C)  for a homomorphism h : M → A , A  a finite F-algebra  and C a subset 

of  A (domain of A).   
 
For each a  in  A, let  â  be the property : â(m)= True  ⇔  h(m) = a.    
Let  p  be  such that  p(m) = True   ⇔  h(m) ∈ C  ⇔  m ∈ L.  
 
Properties  {p, â / a∈ A}  form an  F-inductive  set. 
 
If  P is an inductive set of k properties, one can define an F-algebra  structure on the 

set Bk of  k-tuples of Booleans, such that  the  mapping : 
 

h : m ⎜→ the k-tuple  of  Booleans   is   a homomorphism. 
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Inductive  properties and automata on terms 

The simultaneous computation of m inductive properties can be implemented 

by an  automaton  with 2m  states  working  on  terms  t.  

This  computation  takes  time  O( ⎜t ⎜).  
 

Membership  of  an element  m  of  M  in a recognizable set  L  can be  tested  

by such an automaton  on  any   term   t   in  T(F)  defining  m  (in some for an 

equational, i.e. context-free  set). 
 

An inductive set of properties can be effectively constructed (at least 

theoretically)  from every monadic-second order formula. 
 

This  result extends  to the computation of values  (integers)  defined  by 

monadic-second order formulas (number of  satisfying tuples, distance) 
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4.   Monadic Second-Order (MS) Logic  
A  logical  language  which specifies  inductive  properties  and functions  

 
=  First-order logic on power-set structures  
 
=  First-order logic extended with (quantified) variables  

denoting subsets  of the domains. 
 
MS properties :   transitive closure,  properties of paths, connectivity,  

 
planarity  (via Kuratowski, uses connectivity),   k-colorability. 
 
 

Examples  of formulas for   G =  ( VG , edgG(.,.) ), undirected 
 

Non connectivity : 
∃X ( ∃x ∈ X  ∧  ∃y ∉ X  ∧  ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∈ X)  ) 

 
2-colorability (i.e.,  G  is   bipartite) : 
∃X ( ∀u,v (u ∈ X  ∧  edg(u,v) ⇒ v ∉ X) ∧ ∀u,v (u ∉ X  ∧  edg(u,v) ⇒ v ∈ X) ) 
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Edge set  quantifications     
 

Incidence  graph  of G undirected,  Inc(G) = ( VG ∪ EG, incG(.,.).) 
 
incG(v,e)   ⇔   v is a vertex of edge  e. 
 
Monadic second-order  (MS2)  formulas  written  with  inc   can use 
quantifications   on sets of edges.  
 
Existence  of Hamiltonian circuit  is expressible  by an  MS2  formula, but not 
by an MS  formula. 
 
 

Definition :  A set  L  of words,  of trees,  of graphs or relational structures   
is  Monadic Second-Order  (MS)  definable  if it is the set of finite models 
of an MS  sentence  ϕ    (formula  without  free  variables).  
 

L  =  { S   /  S  finite,   S  ⎜=  ϕ  }  for an MS formula  ϕ 
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Theorem :  (1) A  language (set  of words or  finite  terms ) is  
recognizable (by congruence  or automaton)  ⇔   it  is  MS  definable  

 
(2) A set of finite graphs  is  VR-recognizable  if  it  is  MS-definable  
 
(3) A set of finite  graphs  is  HR-recognizable  if  it  is MS2-definable  
 
Proofs:  

(1) Doner, Thatcher, Wright,  (see W. Thomas, Handbook formal languages, vol.3) 

(2, 3)  There  are  two  possible proofs, one of them based on the Feferman-

Vaught paradigm, saying that the validity of an MS  formula in the disjoint union of 

two structures  can be deduced from those of formulas of no larger quantifier- 

height in each of the two structures.  This  is  inductivity/recognizability. 



 32

5. Algorithmic  applications 
 

Finite automata  constructed from  MS  formulas  process terms, not 

graphs.  We need   parsing  algorithms  building  terms  defining the  given  

graphs :  

1) one  can  construct tree-decompositions in linear time, whence 

terms  representing graphs  of twd  < given  k  (Bodlaender,  1996). 

  2) one  can  construct in cubic time (non-optimal)  terms for graphs  of  

clique-width  < given  k        (Oum and Hlineny, 2007). 
 

 

 These are  "theoretical  algorithms", not implementable.  Usable  algorithms  exist  for 

tree-width (Bodlaender  reports testing graphs with 50  vertices  of  tree-width 35). 
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Fixed-parameter  tractability  results  
Theorem (B.C.) :  

A)  For  graphs  of  clique-width  ≤  k , for each k : 

each monadic  second-order  property, (ex. 3-colorability), 

each monadic  second-order optimization function, (ex. distance), 

each monadic  second-order  counting  function, (ex. #  of paths) 

is  evaluable : 

in  linear  time  on graphs  given  by a term over VR, 

in time  O(n3)  otherwise. 
 

B) All  this  is  possible  in linear  time  on graphs  of tree-width ≤  k, for  

each  fixed  k. 
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Labelling  schemes  
 

For a property  P(x,y,Z,U) of vertices x,y  and sets of vertices  Z,U, for a class 

of graphs of C , one wants 2  algorithms, one that attaches to each vertex u of a 

graph G in C  a label L(u) and another one, independent of G, that decodes :  

 From  L(x), L(y), L(Z), L(U)  it tells whether P(x,y,Z,U)  holds  in G. 

 Labels  should  have  size  O(log(n))  or  O(log2(n)), n=number of vertices. 

Results  

 P : MS  property, C : graphs of bounded  twd  or  cwd  ( O(log(n))) 

 P : x and y  are  separated  by  Z ,  

C : graphs  of bounded  twd  or  cwd  ( O(log(n))) 

C : planar  graphs  (unbounded cwd, O(log(n))) 

 Distance of x  and  y  in G - Z ,C : graphs  of bounded twd or cwd (O(log2(n))) 

Applications : Networks  with  failure. 
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6.  Monadic  second-order  transductions 
 

STR(Σ):  finite  Σ-relational  structures  (or directed ranked Σ-hypergraphs). 
 

MS  transductions are  multivalued mappings  τ  : STR(Σ)  STR(Γ) 
 

               S   ⎜              T  =  τ (S)         
 

Basic case : T  is  defined  inside  S  by  MS  formulas,  in terms  of 
parameters: subsets  X1, …,Xp   of  the  domain  of  S 
 

Examples :  (G, {x})  ⎜            the connected  component containing x. 
 
 

(G,X,Y)  ⎜            the minor of G  resulting from  contraction of the  
edges in X and  deletion of edges and vertices  in Y. 

 
Remark  :   For  each tuple of parameters X1, …,Xp   satisfying  an MS  property,  
T is uniquely defined.   τ  is multivalued  by  the  different choices of parameters. 
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General case : T  is  defined  in this  way  but  inside  
S ⊕ S ⊕ ... ⊕ S :   disjoint  copies of  S  with  "marked"   

  equalities of copied  elements  
 
      1,2      2,3 
   *   *   * 
 
   *   *   * 
 
   *   *   * 
 
 
   *   *   * 
 
     S ⊕ S ⊕ S 
  
Proposition  :  The  composition  of  two   MS  transductions  is  an  MS  

transduction. 
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Example  of  an  MS  transduction   (without parameters) : The  square  mapping  
δ  on  words:  u  ⎜→   uu 
 
For    u  =    aac, we  have     S  •  →  • → •    
                  a      a      c      
     
  S ⊕ S    •  →  • → •              •  →  • → •      (marking edges omitted) 

     a       a     c             a        a     c  
     p1     p1    p1           p2      p2    p2 

 
  δ(S)   •  →  • → •  →  • → • →  •  

     a        a      c        a      a        c  
 
 In δ(S) we  redefine Suc (i.e., →  ) as  follows : 
 
Suc(x,y) :  ⇔   p1 (x) ∧ p1 (y) ∧ Suc(x,y)   v p2 (x) ∧ p2 (y) ∧ Suc(x,y) 
    v p1 (x) ∧ p2 (y) ∧ "x has no  successor"  ∧   "y has no  predecessor" 

 
 We also  remove  the  "marker" predicates p1, p2. 
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The fundamental property of MS  transductions :  

 
     S   ⎜             τ (S) 
 

     τ #(ψ)             ⎜  ψ 
 

Every  MS  formula  ψ  has  an effectively  computable   
backwards  translation  τ #(ψ), an MS formula, such that : 

 

S   ⎜=  τ #(ψ)    if   and  only  if    τ (S)   ⎜=  ψ 
 

 The verification of ψ  in  the object structure τ(S)  reduces  to  the  
verification  of  τ #(ψ)   in  the  given structure S.(because  S  contain all 
information to describe  τ(S) ;  the MS properties of τ(S) are expressible by MS 
formulas in S  
 

Consequence : If L ⊆ STR(Σ)  has a decidable  MS satisfiability problem,  
so has  its image  under  an MS  transduction.  



 39

Robustness  results : Preservation  and  generation 
 

Words : Rational  transductions       (= inverse  ones) 
 

 
REC   

 

 
Dyck lang.     Context-free     

              (trees)  
Inverse  MS  transductions 

 
Direct  MS  transductions  

 
 

MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

 
MS-def. ⊂ QF-recog. 
                               (1) 

 
Trees         QF-equational 

 
  VR-equational    ⇒  bounded clique-width. 
 

  (1) : A. Blumensath -B.C.        (2) : J. Engelfriet. 
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Robustness  results : Preservation  and  generation (2)  
 

Inverse  MS  transductions 
 

Direct  MS  transductions  
 

 
MS-def. ⊂ VR-recog. 
                               (1) 

 
Trees         VR-equational 

               ∪    (2)     
                 Cwd( < k) 

Inverse  MS2  transductions 
 

Direct MS2  transductions  
 

 
MS2-def. ⊂ HR-recog. 
                               (1) 

 

 
Trees         HR-equational 

               ∪    (3)     
                 Twd( < k)    

VR-equational    ⇒  bounded clique-width. 
HR-equational    ⇒  bounded tree-width. 
 

 (1) : A. Blumensath -B.C.        (2) : J. Engelfriet.         (3) : B.C.-J. Engelfriet 
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Recognizability  is  preserved  under  inverse  monadic second-order  
transductions.   (A.Blumensath, B.C., 2004)  
 
QF-recognizability of sets of relational structures is preserved  

(QF= disjoint union and unary quantifier free operations) 
 
Proof sketch :  Every MS transduction is the composition of  MS   transductions  
of 3 types :  - Copyk 

      - Parameterless  noncopying 
      - Guessing   unary  relations 

 

1) Copyk  :  
 

S     ⎜    S ⊕ S ⊕  …   S   (k times) 
 

Disjoint union  with binary  relations  Yi,j   for 1 ≤ i < j ≤ k    defined  as   
 

{(x,y)  /  x is the i-copy, y is the j-copy of some u in DS} 
 

Facts :  a) Copyk(S ⊕ T) = Copyk(S) ⊕ Copyk(T) 
 

b) For f quantifier-free, there is a quantifier-free op. g such that Copyk(f(S)) = g(Copyk(S)) 
 

Copyk is “almost” a homomorphism, REC is preserved under  inverse  homo's. 
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2) Forgetting  unary relations : 
 

We let fgtΠ  : STR(Σ ∪ Π)  STR(Σ)  forget Π, a finite  set of unary relations.   
 

Its inverse consists  in guessing  the relations  in Π, this can be done by means  of 
parameters  of an MS transduction. 
 
Lemma  : If L ∈ REC,  then  fgtΠ(L) ∈ REC. 
 

Proof : From  a congruence  ≡  for L,  we  define the  equivalence :  
 

S  ≅ T     iff      { [U] ≡  /  fgtΠ(U) = S } = { [U] ≡  /  fgtΠ(U) = T } 
 

 It  is  finite, saturates fgtΠ(L). It is a  congruence : we use  the fact that  
 

S ⊕ T = fgtΠ(W)     iff     there exist S’, T’ such that   W = S’⊕ T’, 
S = fgtΠ(S’), and  T = fgtΠ(T’), 

 
and a similar observation for  unary  operations. 
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3)  Parameterless  noncopying  MS transductions. 
 

We let L ∈ REC(Γ)  and  τ  be a  parameterless  noncopying  MS transduction : 
STR(Σ)  STR(Γ) of quantifier-height k 
 

We  prove that  τ -1(L) ∈ REC(Σ) 
 

From  a congruence  ≡  for L,  we  define, on each set STR(Δ),   the  equivalence :  
 

S ≅ T   iff    tpk(S) = tpk(T) and  
for every  parameterless  noncopying  MS transduction  
µ : STR(Δ)  STR(Γ) of quantifier-height at most k,  we have  µ(S) ≡ µ(T).  

 

 
(tpk(S) is the MS theory of S of  quantifier height at most k.) 

 
It  is  finite, saturates τ -1(L) (because  τ  is  one of   the considered   transductions µ).  
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7.  Logic and combinatorics: Graph classes with decidable monadic 

second-order theories  (or  satisfiability  problems) 
 

Theorem (Seese 1991): If a set of graphs has a decidable MS2 satisfiability 

problem, it has  bounded tree-width. 
 

Theorem (B.C., Oum 2004): If a set of graphs has a decidable C2MS 

satisfiability problem, it has  bounded clique-width. 
 

Answering a question by Seese : If a set of graphs has a decidable MS 

satisfiability problem, is it the  image of a set of trees under an MS  transduction, 

equivalently, has it bounded clique-width ? 
 

MS2 = MS logic  with  edge  quantifications ; C2MS = MS logic with even cardinality set 
predicates. A set C  has  a  decidable L-satisfiability  problem  if one can decide whether 
any  give  formula  in L  is  satisfied  by some graph in C 
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Proof  of  Seese’s  Theorem : 
 

A) If  a  set  of  graphs  C  has unbounded  tree-width, the set of its  minors  includes  

all k x k-grids  (Robertson, Seymour) 
 

B) If  a  set  of  graphs   contains  all  kxk-grids,  its MS2 satisfiability  problem is 

undecidable  
 

C) If C has  decidable MS2 satisfiability  problem, so has Minors(C), 

                because   C            Minors(C)  is an  MS2 transduction. 
  

Hence, if   C  has unbounded  tree-width and a decidable MS2 satisfiability  

problem, we have a contradiction  for the decidability of the  MS2 satisfiability  problem 

of Minors(C). 
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       Proof  of  Courcelle-Oum’s  Theorem : 
 

D) Equivalence  between  the cases  of all  (directed and undirected) graphs  and 

bipartite  undirected graphs. 
 

A’)  If a  set  of  bipartite graphs  C  has unbounded  clique-width, the set of its  vertex-

minors  contains  all  “Sk“  graphs  
 

C’)  If C has  decidable C2MS satisfiability  problem, so has Vertex-Minors(C), 

because  C                  Vertex-Minors(C)  is a   C2MS transduction. 
 

E)  An   MS transduction  transforms  Sk  into the kxk-grid.  
 

Hence  A' + B + C' + E   gives the result for bipartite undirected graphs.  

The  general result  follows with the encoding  D). 
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Definitions  and  facts   
 

Local  complementation  of  G  at vertex  v  

G * v   =  G  with edge complementation of  G[nG(v)], 

         the subgraph induced  by the neighbours of v 
 

Local equivalence  ( ≈ loc )  = transitive closure of local  complementation  

(at  all  vertices) 
 

Vertex-minor  relation : 

H  <VM  G  : ⇔  H  is an induced  subgraph  of  some G’ ≈ loc G. 
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Proposition (Courcelle and Oum 2004) :  The  mapping  that  associates   

with  G  its locally  equivalent  graphs  is  a   C2MS  transduction.  

 

Why is  the  even cardinality  set predicate  necessary ? 
 

    u                               Consider G * X for X ⊆ Y : 

                    

                                    u  is  linked  to  v  in G * X 

    v                                     ⇔    Card(X)  is even 

       G      Y    

(G * X =  composition of local complementations at all vertices from X) 
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Definition of   Sk , bipartite : A = {1,…,(k+1)(k-1)} , B =  {1,…,k(k-1)}  
From Sk  to  Gridk x k   by an MS transduction  

                            S3                    (folded)  Grid3x4 

The orderings of A and B : x, y  are  consecutive   ⇔   Card(nG(x) Δ nG(y)) = 2 

One recognizes the edges from i  ∈ B  to  i   ∈ A, and from i ∈ B to i+k-1 ∈ A (thick 
edges on the left drawing) 

One creates edges (e.g. from  1 ∈ A to 2 ∈ A, from  2 ∈ A to 3 ∈ A etc…and similarly 
for B, and from  1 ∈ B to 4 ∈ A, etc…)  one deletes others (from 4 ∈ B to 6 ∈ A   etc…), 
and vertices like 7,8 in A, to get  a grid containing Gridkxk           
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8.   A  few   open  questions 
 

Question 1 : What  should be the clique-width/rank-width of hypergraphs 

(or relational structures) ?  
 

Question 2 (A. Blumensath, B.C., P. Weil,): Which operations, quantifier-

free definable or not, yield extensions  of the  signatures VR, HR, QF  that 

are equivalent i.e., define the same recognizable and equational sets ? 
 

Question 3 : Is  it  true  that  the decidability  of the MS (and not of the 

C2MS)  satisfiability  problem for a set of graphs implies bounded clique-

width, as conjectured by D. Seese ?    
 

More  important (IMHO) : 

Question 4 :   What  about  sets  of hypergraphs or  relational structures ?  
 


