
 Emmanuel Fleury 1

Verification by Abstraction Verification by Abstraction
Refinement TechniquesRefinement Techniques

Emmanuel Fleury
LaBRI, CNRS UMR 5800
<emmanuel.fleury@labri.fr>

 Emmanuel Fleury 2

Outline

● Motivations

● Model-checking

● Predicate Abstraction

● Lazy Abstraction

● Lazy Abstraction at Work

 Emmanuel Fleury 3

Motivations

 Emmanuel Fleury 4

Our Goal ?

 Emmanuel Fleury 5

 Emmanuel Fleury 6

Our Goal ?

Hunting
Program
BUGS !

 Emmanuel Fleury 7

Our Goal

We do not aim at having bug free softwares!

We want to ensure some behaviours
 of the software

System
Model Satisfaction

Relation

System
Properties

Software ╞ Specification

 Emmanuel Fleury 8

Our Goal ?

Software Certification
– Warranty error proneness of critical programs

– Requires precise and formal specifications

– Highly impact the development process

Software Quality
– Improve development process by catching

programmers mistakes

– Requires formal specification of common
annoying mistakes

– Automatically fill bug-reports for developpers

 Emmanuel Fleury 9

Verification Techniques

Static Analysis
Verify properties based on the source code of the software

Abstract Interpretation
Verify properties based on an “safe” abstraction of the
software (“safe” with respect to a Galois connection)

Theorem Proving
Verify properties on a mathematical representing the software
with the help of a Proof Assistant

Model-checking
Verify properties on a transition system representing the
software and through an exhaustive search through it

 Emmanuel Fleury 10

But...

Programming languages are Turing equivalent
Most of the interesting properties are undecidable in a
Turing-equivalent language (accessibility, liveness, ...)

Complexity of real programs is high
Size and complexity of the programs is growing
exponentially with the time

Verification techniques usually doesn't scale
Most of the techniques are used on hand-made abstract
models and cannot cope with real ones.

 Emmanuel Fleury 11

So... ?

Is there still hope ?

 Emmanuel Fleury 12

Model-Checking

 Emmanuel Fleury 13

Model-Checking Basics

Init Error

Iteration doesn't terminate ! (state explosion)

 Emmanuel Fleury 14

Model-Checking Basics

Init Error

Solutions:
– Acceleration (make several steps at once)

Iteration doesn't terminate ! (state explosion)

 Emmanuel Fleury 15

Model-Checking Basics

Init Error

Iteration doesn't terminate ! (state explosion)

Solutions:
– Acceleration (make several steps at once)

– Abstraction (remove unnecessary details)

 Emmanuel Fleury 16

Can We Do Better ?

State explosion problem ! (doesn't scale)
– Especially for complex C code programs
– Use Abstraction and Acceleration... How ?

Works only for finite transition systems
– Find a way to explore infinite systems
– Use Abstraction... How ?

Automatic Abstraction
– Automatically derive the abstraction
– Use Predicate Abstraction ?

 Emmanuel Fleury 17

Predicate Abstraction

 Emmanuel Fleury 18

Init Error

Predicate Abstraction

Predicates are boolean expressions:
P

i
 -> {true, false}, e.g. x=1, x>1, x<1 or z=y

Abstract States (boxes) are valuations:
{P

1
, P

2
, ..., P

n
} -> {true, false}n

∃
∀

 Emmanuel Fleury 19

Init Error

Predicate Abstraction

Predicates are boolean expressions:
P

i
 -> {true, false}, e.g. x=1, x>1, x<1 or z=y

Abstract States (boxes) are valuations:
{P

1
, P

2
, ..., P

n
} -> {true, false}n

 Emmanuel Fleury 20

Init Error

Predicate Abstraction

Abstraction too coarse !!!
Refinement is needed to avoid spurious error trace

Split boxes into smaller ones (add new predicates)

 Emmanuel Fleury 21

Init Error

Predicate Abstraction

No Error state reached.
The program is correct !

 Emmanuel Fleury 22

Can We Do Better ?

Abstract only where required
– Reachable state space is very sparse
– Construct the abstraction on-the-fly

 Refinement only when required
– Different precisions/abstractions for different regions
– Refine locally

Reuse work from earlier phases
– Batch-oriented (lose work from previous runs)
– Integrate the three phases

Exploit control flow structure

 Emmanuel Fleury 23

Lazy Abstraction

 Emmanuel Fleury 24

Init Error

Lazy Abstraction

Abstraction too coarse !!!
Refinement is needed to avoid spurious error trace

Split only the relevant boxes into smaller ones
(add new predicates)

 Emmanuel Fleury 25

Init Error

Lazy Abstraction

No Error state reached.
The program is correct !

 Emmanuel Fleury 26

The Algorithm

Refine
Abstraction

Explore
Abstraction Backtrack

Search
New

Predicates

OK ! Bad !

No Error
Found

Error
Found

Reach
Initial
State

Can't Reach
Initial State

Found
New Predicates

Explore with New
Set of Predicates

Not s
ure

 to
ter

minat
e !

 Emmanuel Fleury 27

Lazy Abstraction
at Work

 Emmanuel Fleury 28

[T] [T]

unlock()

Control Flow Automata

Example () {
1: if (*) {
7: do {
 got_lock = 0;
8: if (*) {
9: lock();
 got_lock ++;
 }
10: if (got_lock) {
11: unlock();
 }
12: } while (*) ;
 }
2: do {
 lock();
 old = new;
3: if (*) {
4: unlock();
 new ++;
 }
5: } while (new != old);
6: unlock ();
 return;
}

1

3

lock();

old = new

2 7

[T][T]

4

5

[T]

[T]

unlock()

new++

6

[new==old]

[new!=old]

retunlock()

8

got_lock=0

10

9

[T]

[T]

lock();

got_lock++

11

12

[got_lock == 0]

[got_lock != 0]

 Emmanuel Fleury 29

Observer
(Specification)

Q: Is Error Reachable ?

unlock() lock()

lock()

unlock()

Example () {
1: if (*) {
7: do {
 got_lock = 0;
8: if (*) {
9: lock();
 got_lock ++;
 }
10: if (got_lock) {
11: unlock();
 }
12: } while (*) ;
 }
2: do {
 lock();
 old = new;
3: if (*) {
4: unlock();
 new ++;
 }
5: } while (new != old);
6: unlock ();
 return;
}

 Emmanuel Fleury 30

Example of Observer

8

10

9

12

11

7

1

3

2

4

5

6

ret

unlock()
lock()

lock()

unlock()

Example () {
1: if (*) {
7: do {
 got_lock = 0;
8: if (*) {
9: lock();
 got_lock ++;
 }
10: if (got_lock) {
11: unlock();
 }
12: } while (*) ;
 }
2: do {
 lock();
 old = new;
3: if (*) {
4: unlock();
 new ++;
 }
5: } while (new != old);
6: unlock ();
 return;
}

Q: Is Error Reachable ?

 Emmanuel Fleury 31

Step 1: Forward Search

Set of predicates:

LOCK=0, LOCK=1

1 LOCK=0

2 LOCK=0

[T]

4 LOCK=1

[T]

6 LOCK=0

[new==old]

8

10

9

12

11

7

1

3

2

4

5

6

ret

unlock()

new++

5 LOCK=0

lock();

old = new

3 LOCK=1

unlock()

Err LOCK=0

Q: Is the error trace spurious ?

n Err
oops

 Emmanuel Fleury 32

Step 2: Counter Example
Analysis

1 LOCK=0

2 LOCK=0

3 LOCK=1

4 LOCK=1

5 LOCK=0

6 LOCK=0

Err LOCK=0 LOCK=0

LOCK=0

LOCK=0 ∧ new = old

LOCK=0 ∧ new+1 = new

LOCK=1 ∧ new+1 = old

LOCK=1 ∧ new +1 = old

8

10

9

12

11

7

1

3

2

4

5

6

ret

Track the predicate:

 new = old

unlock()

unlock();

new++

lock();

old = new

[new==old]

[T]

 Emmanuel Fleury 33

Craig’s Interpolation Theorem [Craig ’57]

Given formulas Ψ-, Ψ+ s.t. Ψ-ΛΨ+ is unsatisfiable

There exists an interpolant Φ to Ψ-, Ψ+ s.t.
● Ψ- implies Φ
● ΦΛΨ+ is unsatisfiable
● Φ has common symbols from Ψ- and Ψ+

[Krajicek'97][Pudlak'97]
(boolean) SAT-based Model Checking [McMillan'03]

Φ is computable from the proof of
unsatisfiability of Ψ-ΛΨ+

 Emmanuel Fleury 34

Finding the new
Predicate

1. Predicate implied by trace prefix

2. Predicate on common variables
common = current value

3. Predicate & suffix yields a contradiction

Require:

ψ-

ψ+

Interpolate Φ

1. ψ- implies Φ

2. Φ has symbols common to ψ-,ψ+

3. Φ ^ ψ+ is unsatisfiable

Interpolant:

pc1: x = ctr

pc2: ctr = ctr + 1

pc3: y = ctr

pc4: assume(x = i-1)

pc5: assume(y ≠ i)

Trace Trace Formula
x

1
 = ctr

0

 Λ ctr1 = ctr0 + 1

 Λ y1 = ctr1

 Λ x1 = i0 - 1

 Λ y1 ≠ i0

 Emmanuel Fleury 35

Step 3: Resume Search

1LOCK=0

2LOCK=0

4LOCK=1 ∧ new = old

[T]

[new!=old]
2

 LOCK =0

Set of predicates:

LOCK=0, LOCK=1

New predicate:

new = old,

unlock()

new++

5LOCK=0 ∧ : new = old

lock();

old = new3LOCK=1 ∧ new = old

6

[new!=old]

8

10

9

12

11

7

1

3

2

4

5

6

ret
[T]

5 LOCK=1 ∧ new=old

6

[new==old] [new!=old]

2

?unlock()

ret

LOCK=0∧ new=old

 Emmanuel Fleury 36

Step 4: Search the Right
Branch

1 LOCK=0

[T]

2LOCK=0 7 LOCK=0

[T]

Err

8

10

9

12

11

7

1

3

2

4

5

6

ret

Set of predicates:

LOCK=0, LOCK=1

New predicate: (from trace)

got_lock = 0

The program is correct...

 Emmanuel Fleury 37

Conclusion
● Used in several tools:

– Blast (Berkeley/UCLA)

– Slam (Microsoft)

● Method has been proven to work on real
code (device drivers, sendmail, ...).

● A lot of active research in this topic

● The key technology is to look for nice new
predicates

● Infinite states systems are still badly handled

● Still need some tuning

 Emmanuel Fleury 38

Further Work
(in our team)

● Check for more properties
(liveness, shape-analysis, ...)

● Combine with other methods
(theorem proving, satisfiable modulo theories,
acceleration techniques)

● Program new tools
● Challenge real softwares or projects
● Apply the method for industry

(CNES, AEDS, Airbus, CEA, ...)

● ... plenty of other tracks to follow ...

 Emmanuel Fleury 39

Questions ?

