
The Tulip 3 Framework: A Scalable Software Library for Information
Visualization Applications Based on Relational Data

D. Auber, D. Archambault, R. Bourqui, A. Lambert, M. Mathiaut, P. Mary, M. Delest, J. Dubois and G. Melançon

Fig. 1. Tulip is a framework that enables visualization researchers and application designers to operate on an algorithm, tech-
nique/interaction, and visual encoding level. (Left) Results of a number of graph drawing algorithms and metrics. (Centre) Several
views of the same data set with custom interactions. (Right) Systrip perspective that implements a visualization pipeline supporting
exploratory analysis of Trypanosome metabolism.

Abstract— Tulip is an information visualization framework dedicated to the analysis and visualization of relational data. Based on a
decade of research and development of this framework, we present the architecture, consisting of a suite of tools and techniques, that
can be used to address a large variety of domain-specific problems. With Tulip, we aim to provide the developer with a complete library,
supporting the design of interactive information visualization applications for relational data that can be tailored to the problems he
or she is addressing. The current framework enables the development of algorithms, visual encodings, interaction techniques, data
models, and domain-specific visualizations. The software model facilitates the reuse of components and allows the developers to
focus on programming their application. This development pipeline makes the framework efficient for research prototyping as well as
the development of end-user applications.

Index Terms—Information visualization, graph visualization, graph drawing, hierarchy visualization

1 INTRODUCTION

Although this paper presents a system and discusses its design, its
content goes much further. In a sense, this paper is a position pa-
per following ten years of lessons learned working in graph visualiza-
tion, developing new visualization techniques, and building systems
for users. The strategy we have adopted is to develop, maintain, and
improve the Tulip framework1 aiming for an architecture with opti-
mal data structure management from which target applications can be
easily derived. The benefits of our strategy have paid off on several
fronts. We have used the framework to demonstrate the Reproducibil-
ity of work published by others, allowing us to experiment with and
validate our work. The architecture has promoted Extensibility and
Reusability of our results and those of other researchers as discussed
in detail in forthcoming sections. Tulip has facilitated scientific collab-

• D. Auber, R. Bourqui, A. Lambert, M. Mathiaut, P. Mary, M. Delest, J.
Dubois and G. Melançon, are with CNRS UMR 5800 LaBRI and INRIA
Bordeaux - Sud-Ouest, E-mail: {auber, bourqui, lamabert, mathiaut,
mary, maylis, melancon}@labri.fr.

• Daniel Archambault is with INRIA Bordeaux Sud-Ouest, GRAVITÉ and
UCD Dublin, Clique Strategic Research Cluster, E-mail:
daniel.archambault@ucd.ie.

Manuscript received 31 March 2010; accepted 1 August 2010; posted online
24 October 2010; mailed on 16 October 2010.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

1See http://www.tulip-software.org

oration and technology adoption. The framework serves as a tool to
demonstrate our expertise and know-how when interacting with scien-
tific collaborators or end-users. As we shall argue, the evolution path
of our framework brings it into full coherence with Munzner’s nested
model [37], and serves all facets of InfoVis guiding the creation and
analysis of visualization systems.

Tulip is one of the very few systems that offer the possibility to ef-
ficiently define and navigate graph hierarchies or cluster trees (nested
subgraphs). This technique has been a central visual paradigm in our
group, as it often provides answers to data analysts. The reason is
quite simple: large graphs must be clustered to reduce visual com-
plexity, turning the data exploration process into one involving a hi-
erarchy built by a clustering algorithm. Hence, Tulip’s low level data
structure was designed since its birth to support the creation of nested
and/or overlapping subgraphs, integrating at the heart of the system a
property heritage mechanism that both provides coherence and opti-
mal space usage.

Tulip started after David Auber decided to enter the huge graph
visualization arena [9, 10, 12]. The library was designed to deal with
graphs (relational data), focusing on graph topology as the main ingre-
dient for visual encodings and mainly exploiting node-link diagrams
(points and straight lines) as a central visual metaphor. The frame-
work was primarily designed to challenge scalability; its core architec-
ture and low level data structures were optimized to reach ambitious
goals in terms of graph size (nodes and edges) that could be handled
and visualized. After these initial efforts, Tulip found a place within
our research group and soon became an everyday experimental tool.



Because data analysis and combinatorial mathematics are companion
fields to graphs visualization, Tulip included a rather exhaustive list
of node and edge metrics that could then be mapped to color or size.
Obviously, Tulip initially served as an experimental framework from
which the design of drawing algorithms and visualization techniques
were developed, tested, and validated. From this point of view, Tulip
can certainly claim to be part of the champion’s club of state-of-the-art
graph visualization libraries and software.

The growth of our community helped us gained visibility, and we
were soon asked to cooperate with end users to build visualization ap-
plications: navigating protein interaction networks [32], producing au-
tomated drawing for secondary RNA structures [14], visualizing soft-
ware reverse engineering graphs [25], social networks [13] or air pas-
senger traffic [42]. The graph hierarchy paradigm residing deep within
Tulip was later fully exploited by the work of Archambault, Munzner
and Auber [4, 6, 5, 7, 8]. We also became aware of the use of Tulip by
others (see [40, 21] for instance2).

Graph Visualization is often a possible avenue for data analysis as
seen from these numerous collaborations. However, once the graph
has been established, the visualization process often needs to be sup-
ported by techniques in graphical statistics or visual data mining. Tulip
has been extended to offer visual encodings for relational as well as
non-relational data. The libraries have matured from their algorithmic-
centered viewpoint towards a data analysis dashboard combining dif-
ferent visualization techniques and support for visual analytics.

The Tulip architecture has been designed to promote extensibil-
ity and reusability of results. As such, from a software engineering
perspective, it heavily relies on object composition rather than inheri-
tance. Even if object composition is often more complex for the pro-
grammer, it considerably reduces code duplication and dependencies
between modules. We are constantly improving and refactoring our
library to minimize the code duplication and re-implementation, to
ease the addition of future research results, and to preserve architec-
ture scalability.

Tulip offers a software library is in coherence with Munzner’s
nested model and has software support for validation at any level of
this model. Our paper is thus structured to illustrate this property. Sec-
tion 2 describes previous and related software systems that inspired the
design of many parts of Tulip. Section 3 describes the architecture of
the Tulip libraries and software. In this section, we describe elements
that support each level of validation in Munzner’s nested model: algo-
rithm plug-ins (section 3.1.2) provide support for validating algorithm
design, views and interactors (section 3.3.1 and section 3.3.2) provide
support for validating encoding/interaction technique design, and per-
spectives (section 3.3.3) provide support for validating data/operation
abstraction design and domain problem characterization. Section 4
presents applications, two to support information visualization group
needs and one to support a domain-specific application, where Tulip
was found to be helpful. Finally, section 5 presents some conclusions
and future work.

2 BACKGROUND AND RELATED WORK

Developing a framework over an extended period often means being
compared to or challenged by competitor systems and libraries. This
section presents a representative subset of the libraries that are closest
in spirit to our work. We briefly discuss the philosophy or underlying
principles of each, contrasting them to Tulip. Many of these competi-
tors3 have been benchmarked against Tulip in terms of scalability, one
of Tulip’s strong points.

2.1 Libraries
LEDA/AGD/OGDF [35, 39, 24] : The LEDA/AGD/OGDF series of
graph drawing libraries were built to provide a collection of efficient

2We should also mention that Tulip is actually distributed in several Linux
releases.

3Our group together with collaborators maintains a compara-
tive list of existing graph visualization software. See the URL
http://gvsr.polytech.univ-nantes.fr/GVSR/

graph drawing algorithms. These libraries include some of the most
powerful, sophisticated, and complex algorithms to produce graph
drawings. However, the aim of these libraries is to draw graphs – that
is, to decide the positions of nodes in the plane. This library tends not
to focus on a fully integrated information visualization library. Fur-
thermore, these libraries tend to focus on graph connectivity. Extra
information linked to the nodes and edges of the graph are difficult to
integrate into the visualization process. That said, LEDA/AGD have
inspired our work (see section 3.1.2).

GraphVis [26]: This library is similar to OGDF and has support ex-
trinsic data in its graph drawing algorithms (for instance, labels, size,
orientation of graph elements are all supported). GraphVis has been
successful from both an end-user and InfoVis community member per-
spective. It offers one of the best solutions for drawing hierarchical
(directed acyclic) graphs which is state-of-the-art in hierarchical graph
drawing. However, the library does not focus on fully integrating its
algorithms into a fully functional information visualization system.

VTK/Titan [43, 47]: VTK is the standard library for producing ap-
plications supporting scientific visualization techniques. Recent de-
velopments of this library extend its scope to information visualiza-
tion. With the integration of VTK and Boost 4, the latest versions
support many information visualization techniques, even though VTK
was not originally designed to support the visualization of abstract
(non-geometric) data. The original strength of the library was its
efficient rendering of meshes in three dimensions and optimizations
can be made under the assumption that most information visualization
techniques are focused on rendering information in two dimensions.
However, information visualization often focuses on user interaction
and visual data manipulation requiring efficient methods for tracking
changes to the data needs to be supported, and this library does not
appear to directly support this functionality. We compare the perfor-
mance of the library to the Tulip one in section 3.2.

2.2 Toolkits
Toolkits offer users an environment for the development of InfoVis
applications. They offer an off-the-shelf data import/storage solution
and often include a variety of widely used graph layouts and node/edge
metrics. The two toolkits we comment on here primarily support the
design, development, and validation of new interactive visualization
techniques, rather than offering sophisticated support for graph draw-
ing algorithms.

Prefuse [31]: This framework provides a comprehensive set of in-
teractive information visualization techniques. Its clever design and
management of interaction make this toolkit one of the most widely
used for information visualization applications. On the other hand, the
toolkit supports only a few graph drawing algorithms and node/edge
metrics. The latest “pure” Prefuse release goes back to 2007, but re-
cently Prefuse/Flare targeted the toolkit towards web-based InfoVis.
In term of scalability, efforts have been made by the authors to provide
an efficient JAVA based implementation. However, Tulip can handle
larger data sets. For instance, a graph of 300,000 nodes and 600,000
edges take 1.2Gb in Prefuse when it takes only 170Mb in Tulip. Fur-
thermore, interaction with such a graph is almost impossible in Prefuse
where it still reasonable with Tulip.

InfoVis Toolkit [28]: The Infovis Toolkit shares similarities with
Prefuse and offers a comprehensive set of information visualization
techniques. For instance, node link diagrams, tree maps or matrix
views. As such, it has many of the advantages and disadvantages of
Prefuse. The toolkit supports few but relevant graph drawing algo-
rithms and metrics. The last release of this toolkit was in 2006. The
concept of multi-views implemented in this framework have inspired
a similar design in Tulip.

2.3 Software
ASK-GraphView/CGV [1, 46]: This software system shares an im-
portant feature with Tulip as it relies on the computation of subgraph
hierarchies and implements multi-scale graph drawing techniques to

4www.boost.org



explore large data sets that do not necessarily fit into main memory.
ASK-Graph view is part of the few scalable graph visualization frame-
works. However, it essentially offers a single visualization technique
relying on multi-scale graph drawing as a central visual paradigm.

GUESS [2]: GUESS uses a scripting language to perform basic
tasks (searching and filtering, etc.). This scripting language is very
useful and powerful users with programming experience in Python.
However, direct manipulation of the data through interactive tech-
niques may be preferable for some users, which is the focus of Tulip.
Through the plug-in architecture of Tulip, it would be possible to im-
plement a scripting language such as this one, but as of yet, we have
not implemented such a feature. Also of concern is the scalability of
an interpreted scripting language on very large data set sizes.

Pajek [19]: The Pajek software focuses on the analysis of large
graphs, providing several powerful tools such as k-core computation,
eccentricity and others. In earlier versions, Tulip shared many sim-
ilar ideas with this software. However, few visualization techniques
outside graph are supported. Also, the software is not open source,
making it difficult to use for information visualization research.

Cytoscape [44]: Cytoscape is dedicated software for visualization
of networks in Biology. In many ways, it shares many ideas with the
Tulip Framework. However, it is primarily focused on biological net-
works and can have scalability problems. For instance, loading and
displaying a grid graph having 10000 nodes and 20000 edges requires
1.5 Gb in Cytoscape where it only requires 98Mb with Tulip.

2.4 Software Engineering Background

Designing a comprehensive set of information visualization tech-
niques for relational data that is always evolving requires a robust
software engineering methodology. In the case of Tulip, we use the
agile software method [34]. The first principle of this method is to
provide the continuous delivery of valuable software to end user. In
order to achieve this goal, the client and developer must work closely
together. In our case, the first client is our information visualization
research team and our collaborators.

A pair of principles taken from the extreme programming
method [20] is simplicity and the courage. Simplicity mandates that
complex behavior should only be implemented when it is needed,
and courage requires one to rewrite code from scratch, if necessary.
Of course, complete re-implementation is an extreme case, and by
correctly applying design patterns limits the application of necessary
changes, in most cases, to code refactoring [29].

Tulip has been developed and maintained with these principles in
mind. Over time, we have integrated all necessary tools to support
all the research and projects completed to date. At the end of this
development process, we have software of a reasonable code length,
using almost all of the well known design patterns.

Design patterns can be viewed as building blocks for software
projects. Different design patterns are used for different purposes,
and a good software architecture must use good patterns when needed
needed. Design patterns can be classified into three main groups. Cre-
ational patterns abstract away the instantiation of objects. We fre-
quently use this design pattern in the Tulip meta-model and for the
plug-in mechanism. Structural patterns model the relationship be-
tween entities. We use this design pattern for efficient data storage, to
implement the flexible rendering engine. Behavioral patterns model
the communication between entities. We use them for the design of in-
teraction, synchronization, and to model specific user tasks. Through-
out the paper, we use design pattern terminology to describe the Tulip
architecture with a short summary of the pattern to provide intuition
about how it is used. A reader who is interested further could look at
one of the textbooks on the subject [30] for further details.

3 ARCHITECTURE OVERVIEW

The Tulip framework consists of four packages. The first package,
the core of the Tulip library, provides an efficient data structure de-
signed for abstract data visualization. The second package is a com-

plete OpenGl 5 rendering engine tailored for information visualization
techniques. The third package is a library of GUI components created
using the Qt-Nokia 6 library. Finally, Tulip software is an applica-
tion where one can embed their algorithm, visualization technique, or
complete information visualization system. Figure 2 summarized the
connections between these different libraries. In the following we de-
tail the first three packages of our architecture.

Fig. 2. Tulip architecture overview. The Tulip framework consists of
four packages. Tulip core provides an efficient data structures for re-
lational data. Tulip graphics is a complete OpenGl rendering engine.
Tulip-GUI is a collection of widgets built on top of Qt-Nokia library for
the purpose of information visualization. Finally, Tulip software is an ap-
plication for embedding algorithms, visualization techniques/interaction,
and complete information visualization systems. All theses packages
can be dynamically extended through the plug-in architecture of Tulip.

3.1 Tulip Core
The Tulip Core library was created for the purpose of visualizing data
sets consisting of entities and the relationships between them. It en-
ables to store into memory in an efficient way these entities/relations
as well as attributes attached to them. Furthermore, it provides the
necessary functions to access to these data and standard useful algo-
rithms. For instance, it includes function to test whether or not a graph
is planar or to compute a uniform quantification of a set of values.

The Tulip core library also integrates a generic plug-in mecha-
nism [17]. It is used many times in our library to enable easy ex-
tensions of our framework. The principle of that plug-in mechanism
is to enable each plug-in to specify their input/output requirements as
well as their dependency with other plug-ins. Similar to what is done
with Java Beans, we are able to call these plug in directly in a program
or to use them directly through an automatically generated user inter-
face. Furthermore, since plug-ins are dynamically loaded, dependency
mechanism enables us to check the coherence of a set of plug-in.

In the following we describe the Tulip meta model that is from our
point of view, the part that differentiate the most Tulip from all other
Information Visualization system or libraries. For more details on the
basic data structure or functions (matrix, convex hulls etc...) provided
by Tulip the reader could have a look to the developer manual.

3.1.1 Meta-model III
Based of the previous Tulip version [12], the Tulip meta-model III
focuses on minimizing the amount of memory used while providing
efficient operations on the data set. The original idea behind the data
structure was to manage high-level operations used in the visual anal-
ysis process in the data structure. Integration of all these operations
provides a global optimization during the interactive exploration of
abstract data.

As shown in figure 3, the Tulip meta-model user only has access the
class called Graph. In terms of design pattern terminology, the class

5www.opengl.org
6qt.nokia.com



is a facade. This facade provides simplified and centralized access to
a set of complexly interacting classes. The programmer does not need
to understand the behavior of the objects they manipulate through the
facade. Furthermore, it eases the implementation of data storage opti-
mizations to the library as external modules are not directly accessed.
One should note that this facade can be used even when working on
non-relational data. This property is due to the fact that a graph data
structure with an unbounded set of attributes is extremely versatile and
allows to store a wide variety of data (relational, multi-dimensional,
geospatial, etc...). In the following section, we present some of the
operations provided by this facade.

Fig. 3. Overview of the meta-model class diagram. Instead of providing
a complex set of classes to programmers to use, The Tulip philosophy
is to provide centralized access to the data structure through the Graph
interface. This approach the implementation of an optimized and exten-
sible data structure.

Subgraph hierarchy: One of the first requirements was to pro-
vide efficient managements of subgraphs. As a subgraph generalizes
the notion of a sub set to relational data, it is often used in graph vi-
sualization systems that follow the ”overview first, zoom and filter,
detail on demand” Shneiderman mantra [45]. In figure 3, we see that
the facade currently uses two classes. GraphImpl is responsible of
storing the entities and relations while GraphView is responsible of
storing subgraphs by using a filtering mechanism on a Graph. This
approach is efficient in terms of memory, because, in most cases, stor-
age needed for entities and relations in a filter can be done in a single
bit (worst cases appear when fragmentation of these indexes are max-
imal). Furthermore, when a subgraph structure is implemented with
filtering, entities and relations used are exactly the same. Thus, no
overhead is required for correspondence between entities and relations
and their subgraphs. To guarantee the coherence in the subgraph hier-
archy, all modification operations on a subgraph apply recursively to
sub-subgraphs or its super graphs when necessary. Using this imple-
mentation allows the tulip framework to a large number of subgraphs.
Using the current implementation, a graph having 1,000,000 nodes
and 5,000,000 edges with 200,000 subgraphs requires 825 Mb on a
64-bit architecture. If one is only interested in graph partitions, where
elements must be strictly contained in a subgraph and all its ances-
tors to the root, this data structure can be optimized. Tulip does not
support this optimization as it would limit visualization techniques for
overlapping sub-graphs and clusters. HGV [41] does implement this
efficient data structure, and an interested reader could get more details
there.

Property sharing: Our second requirement was to support storing
an unbounded number of properties, or attributes, on graph elements.
In the case of properties, the philosophy of Tulip is to not store them
inside the entities and relations, but to have a single object for each
property. Even if this data structure is slightly less intuitive for a pro-
grammer, this choice is necessary to enable global optimization and
increase cache hits during iteration of entities (especially during ren-
dering). This idea is also used in the IVTK [28] framework. In order to
enable sharing of properties between subgraphs, we provide an inher-
itance mechanism for properties. As shown in figure 4, each subgraph
inherits its super graph properties and can also redefine or create is
own properties, similar to the inheritance mechanism in object ori-

ented languages. Finally, the model integrates a widget similar to the
virtual tables function to optimize access to properties when dealing
with a deep hierarchy of subgraphs. In all the visualization technique
and system we have developed, this property sharing mechanism has
been key in providing overview+detail implementations and for syn-
chronization.

Fig. 4. Graph Hierarchy: Tulip provides management of a hierarchy of
subgraphs through an efficient filtering mechanism of graphs. For exam-
ple, a graph with 1,000,000 nodes and 5,000,000 edges and 200,000
subgraphs requires 825 Mb on a 64-bit architecture. Furthermore,
through an inheritance mechanism of properties of graph through that
hierarchy, it maximizes the number of properties shared between sub-
graphs. For instance, the subgraph1.2 inherits the layout of the root
graph. The inheritance mechanism is also able to redefine properties
in subgraphs like one would do in an object oriented programming lan-
guage. The subgraph2, for example, has redefined its layout but inherits
the colors/sizes and shapes of its parent.

Aggregation: The third key feature is to enable hierarchical aggre-
gation [27] of entities/relations, and the Tulip meta-model III has been
extended and optimized for this purpose. As presented in [16], the sub-
graph hierarchy presented above can support the efficient aggregation
of subgraphs. However, after applying this technique to several multi-
scale problems [8, 7, 22], we have integrated into the facade acces-
sors to meta-information graph elements that are stored in the memory
(GraphImpl). This solution memory overhead when compared to [16]
but enables independence from the meta-graph construction order and
helps support de-aggregation operations. We also introduce aggrega-
tion functions in order to be able to modify the way aggregated values
are computed.

Observable data structure: Interactive visualization often re-
quires the modification of graph topology (graph structure), decom-
position (subgraph or aggregation), and attributes (properties). To pre-
vent static links between the Tulip data structure and the external al-
gorithm or system, we provide an observer mechanism that listens for
all modifications and applies them to the data structure.

State management: The most substantial improvement in the new
meta model is to add to the facade the ability to save the current state
of the data structure. Like the OpenGl matrix stack, we provide two
functions: push and pop. These two functions can save or restore the
current state of the data structure through a stack. A naive implemen-
tation of this feature would be sub-optimal when dealing with a large
number of graph elements and their properties. In Tulip, this mech-
anism has been designed with the proxy design pattern. This pattern
allows objects to behave like other objects, hiding direct manipulation
of the data structure from the user and allowing data sharing to be
globally optimized. Using that stack of state, we were able to imple-
ment efficient implementation of the command design pattern and



thus, we provide efficient undo/redo operations on large data sets. For
instance, a graph with 40000 nodes and 80000 edges under the follow-
ing modifications: ”change all the size”, ”change the layout”, ”change
all the colors”, requires less than 115Mb (including Tulip-GUI, 3D
rendering engine, and plug-ins memory usage), enabling immediate
undo/redo on a 64bit Intel Q9300 processor.

3.1.2 Algorithms

Several kinds of algorithms are used in information visualization sys-
tems but can be clearly separated from the technique. In Tulip, based
on our plug-in mechanism, we provide a way to add such new fea-
ture. To be independent from visualization techniques, these plug-ins
are only authorized to modify the meta-model described above. Fur-
thermore, we do provide a call back mechanism inside our algorithm
allowing for interactive use in visualization techniques or information
visualization systems.

For all the algorithms, we do not limit the input parameters, and
thus, by using our dynamic parameters declaration mechanism, a pro-
grammer can write a large variety of algorithms. However, in order
to categorize major classes of algorithms and ease automatic connec-
tion with the user interface, we provide interfaces for algorithms that
modify a single Tulip property. For instance, standard graph draw-
ing algorithms only need to modify the positions of nodes and the
positions and number of bends in an edge which can be store in a Lay-
out Property. Based on this idea, we provide plug-ins for hierarchical
graph drawing, radial trees, force-directed approaches, spectral meth-
ods, planar graph drawing, space filling curves, edge bundling, and bin
packing. The measure algorithm is based on this same idea and pro-
duces real values on entities/relations. It provides, algorithms, such as
the computation of k-cores, eccentricity, betweenness centrality, page
rank, (bi/tri)connected component, strength metric or Strahler num-
ber. Furthermore, we also provide a general algorithm type that can
modify any element of the data structure if necessary. We use it for
clustering algorithms, and it enable us to provide implementations
for many approaches including: agglomerative clustering methods, di-
visive clustering methods and metric-based approaches. We also pro-
vide a adapter (ie. wrapper) to directly use the algorithms provided in
the open graph drawing framework OGDF library.

3.1.3 Data Import and Export

The efficient import and export of a variety of data formats are key for
building a generic information visualization libraries. However, sup-
porting these formats in a generalizable way is not obvious. A basic
version of Tulip is able to import CSV (comma separated value) files,
GML, and dot formats for graphs and their attributes. We also in-
vented our own format (tlp), that allows meta-information to be saved
to disk and for custom configuration of graph appearance. Import al-
gorithms are also available for randomly generating graphs, importing
web graphs, or importing a file system.

An important feature of the import/export architecture present in
Tulip is that it also forms part of the plug-in architecture. Therefore,
programmers can extend the import and export capabilities of Tulip by
designing their own plug-ins for custom file formats.

3.2 Tulip Graphics

Efficient rendering of large amounts of geometric information is a bot-
tleneck in most information visualization systems. In the Tulip Graph-
ics library, we provide an OpenGl-based, multi-layer rendering engine
that includes the necessary functions for implementing information vi-
sualization techniques.

In our multi-layer rendering engine, three dimensional information
can be displayed on different layers. For instance, using layers and
transparency enables the graphics library to render: textured quads be-
hind the scene, transparent convex hulls on top of graph elements, or
displaying legends (2D rendering on top of the scene) for visualiza-
tions. Through the OpenGL stencil buffer, we are able to force the
visibility of elements on layers. This functionality implements guar-
anteed visibility [38] for rendered elements. For example, in our visu-

alization techniques, we use this capability to guarantee that selected
elements are always visible.

To ease the implementations of new techniques, we provide func-
tions to: manipulate the camera, select elements, render aggregated
elements, render basic geometric entities, and facilitate the use of ver-
tex/pixel/geometric shaders. Special attention has been paid to render
these operations usable on huge data sets. For instance, computing and
rendering curves, such as Bézier, Splines, and B-Splines, is done on
the GPU, allowing Tulip to render more than 10,000 with more than
100 bends in real time without storing any precomputed geometry. In
this example, we save the storage and transfer of 2,000,000 triangles
required to render this set of curves.

When implementing a new visual metaphor (see section 3.3.1), this
graphics library. Using standard C++ inheritance, the programmer
can extend this library. However, to be able to extend existing visual
metaphors without modification, we provide a plug-in mechanism to
add new visual objects. These geometric plug-ins can be used to cre-
ate Glyphs. For example, a programmer can create new plug-ins for
rendering pie charts according to specific attribute values. After in-
stalling the plug-in, all views (node link diagram, scatter plots etc...)
can render graph elements using the new representation.

Using an external rendering engine could have been possible. Two
main reasons required that we design our own rendering engine. First,
external rendering engines can generate memory overhead unable to
handle graph of over 500,000 elements in less than 256Mb of mem-
ory. Secondly, when the Tulip project began in 2000, 3D rendering
engines was not readily available. However, designing an OpenGl ci-
tation rendering engine for the purpose of abstract data visualization
allows us to optimize and tune the rendering engine according to the
visualization techniques we have implemented. As an example, in ear-
lier versions of Tulip, the skeletons of graphs were computed using the
Strahler numbers to incrementally render graph nodes and edges [11].

In software engineering terminology, a composite design pattern
is used to model the hierarchy of visual objects to be rendered. A
naive implementation of this pattern requires the instantiation of a
large number of objects, and therefore does not scale to large data
sets because of memory constraints. To solve this problem, the Tulip
Graphics library accesses this composite using a visitor pattern. First,
the visitor pattern adds new functionality to the composite without any
modification to its data. For instance, the visitor can compute bound-
ing boxes needed for level-of-detail used during rendering. Secondly,
the visitor pattern can simulate a hierarchy of objects without building
it. For example, when using a GraphComposite, the visitor traverses
a dynamically created hierarchy of objects instead of creating this hi-
erarchy beforehand. Objects are generated and reused on the fly in a
way that is similar to the flyweight design pattern during rendering.
This pattern avoids data duplication in the data model and graphics li-
brary, allowing the system to scale to larger data sets and synchronize
rendering with the model.

The philosophy behind the Tulip graphics library is the efficient,
direct rendering of data stored in the Tulip data structure without du-
plication. However, as the amount of available memory has increased
significantly, we have integrated into the last version of Tulip opti-
mizations that are more memory intensive. For example, we use oc-
trees to optimize selecting elements or computing level-of-detail, and
we use texture based rendering to accelerate the rendering of aggre-
gated elements during zoom and pan.

Comparing the performance of Tulip to that of VTK/Titan in terms
of speed and memory efficiency, we found that loading and rendering
a grid of 1,000,000 nodes 2,000,000 edges from scratch takes 20s and
320MB in Tulip and 50s and 1.3GB with VTK/Titan. After this initial
rendering, VTK/Titan is 5 times faster than Tulip for subsequent ren-
derings under simple zoom and pan navigation, without modification
of graph structure or selection of elements. However, if the selection
is modified, selection of elements on this grid is immediate with Tulip
and it takes more than 60 seconds with VTK/Titan. These results il-
lustrate the trade-offs Tulip has made between rendering performance
and memory usage for the implementation of information visualiza-
tion techniques.



3.3 Tulip GUI

According to Munzner [37], deciding on the proper visual encoding
to use should be decided after problems from real-world users have
been characterized. Now, it’s not that each problem each time calls for
a unique and completely new visualization techniques. The problem
often turns into selecting the proper techniques to assemble and imple-
ment together with the proper operations. Some techniques now have
been used and studied long enough so that their usability perimeter
has more or less been established. Because Tulip aims at to be used
for implementing end user visualization system, it has to implement
a wide palette of existing techniques. Thus, a choice has been made
to implement pairs of visual encoding and operations based on their
usefulness and scope as assessed by the InfoVis community.

Tulip progressively started adding new features that allowed users
to go back and forth between a node-link diagram where metrics were
mapped as color or size and histograms that helped understand how a
metric was able to capture a key property in the data. These data analy-
sis features have grown and now include a set of well established data
visualization techniques (see section 3.3.1). Tulip has evolved from
essentially offering a unique visual encoding (node-link diagrams) to
a variety of data analysis techniques that can moreover be astutely
combined and synchronized. All these new features were carefully
and coherently integrated into the framework using agile development
methodology (see section 2.4).

We obtained an architecture based on the Model-View-Controller
(MVC) architectural pattern. The model view controller approach is
a well known approach for designing interactive systems. The pattern
splits the software architecture in three independent components. The
model component has the responsibility to store the information, the
view component gives a representation for the information, and the
controller manages communication between one or more views and
the model. This architecture disassociates the data structure (Model)
from the representation (View) and the system behavior (Controller).
In the following we describe three main components of the Tulip GUI
library.

3.3.1 Views

Views can be defined as visual representations of data. Node link di-
agrams, parallel coordinates, and scatter plots are are just a few ex-
amples of views that can be used to gain insight into a data set. Tulip
uses the above described meta-model to create multiple views of the
same data set. The idea is to use the same data independent of the
current view. For example, nodes in the node-link view of a graph
may have several attributes, and these attributes could be placed in a
2D scatter plot. Having all views share the same data model helps
maintain system coherency and enables working with several views
simultaneously. Structuring data manipulation in this way allows the
information in one view to be easily analyzed in all other views, hope-
fully providing more insight. Figure 5, shows three different views,
in each view one can see that shapes, colors and relative size are pre-
served. This makes a fundamental, although simple, user interaction
quite powerful. As an example, when selecting nodes in a histogram,
to focus on high value nodes for instance, the user instantly see where
these nodes spread in the node-link view.

Fig. 5. A centralized meta model maintains coherence between views.
(Left) Histogram view. (Middle) node link diagram. (Right) Scatter plot
views. All three views share the same visual attributes enabling the user
to switch between views easily.

For optimization purposes or in order to implement specific types
of views, the programmer occasionally needs a custom data structure.
For these cases, views can observe any change to the meta-model (see
section 3.1.1 for details), synchronizing all views to it. As an exam-
ple, consider the scatter plot matrix view (see figure 6) implemented in
Tulip. This view generates a buffer of textures for efficient navigation
through the matrix. The data model, in this case, is used to generate
the scatter plot representation for each pair of dimensions and the view
stores these results as images. During interactive navigation, the ren-
dering engine displays only the textured quads. If data set is modified
by other views or interactors, the set of textures needs to be rendered
again. The observer mechanism of Tulip notifies the appropriate views
and modifies the data only when necessary.

Views are implemented as Tulip plug-ins. Currently, all views are
implemented using the Tulip rendering engine, but programmers are
not limited to this engine. Integrating rendering engines such as VTK,
other engines, or even multiple engines simultaneously inside a sin-
gle view can be supported. However, the programmer would need to
synchronize all views manually. An example of a foreign rendering
engine used in conjunction with the Tulip rendering engine inside a
single view is the Google Map mash-up, where Google Map API ren-
ders a map in one layer while the Tulip rendering engine renders the
remaining layers on top of this map. Figures 6, 7, 8, and 9 present an
overview of the major views implemented in the current Tulip release.

Fig. 6. (Left) The node-link diagram view renders glyphs for nodes and
curves for edges. The view provides navigation such as zoom and pan,
bring and go [36], fish eyes views, and a magnifying glass. Direct editing
of the graph elements and data, such as adding or removing nodes and
edges or translating rotating or scaling elements, are also supported.
Other operations on this view include graph splatting, meta-node/graph
hierarchy exploration, and texture-based animation. (Right) The Scat-
ter plot 2D view renders attribute values to depict possible correlations
between properties and the matrix allows efficient navigation between
dimensions. The view provides similar interaction to the node link view
and implements an interactor to search for correlation in an interactively
defined subsets of elements. Splatting is also available in this view.

3.3.2 Interactors
Interaction is essential for most information visualization techniques.
However, generalizing interaction in an extendable way raises a sig-
nificant challenge as a wide range of methods require support. Some
selections require transparent rectangles to be drawn on top of selected
elements. Opening a metanode requires a single click, a small amount
of zooming and panning, and modifying graph structure locally at the
metanode. The bring-and-go technique [36] changes the layout of the
graph and requires both zoom and pan of the camera along a well de-
fined trajectory. Furthermore, programmers should be able to combine
all these interactive techniques in the final visualization. As an exam-
ple configuration, the mouse wheel could handle both zoom and pan,
a left click could modify element selection, and a right click could
display a context menu.

To support a range of interaction methods, we implemented the
chain of responsibility design pattern. This pattern models the trans-
mission of a message through a chain of linked objects. During the



Fig. 7. (Left) The Parallel Coordinates view depicts multivariate data,
using the the traditional parallel coordinates representation as well
as a circular representation. In both views, lines can be rendered
with smooth Bézier curves. Interaction with the view is supported
through zoom and pan, axis edition/permutation/shifting, and multi-
criteria/statistical selection. (Right) The Histogram view provides a view
of element frequency. A matrix of histograms allows for the visual com-
parison of several statistical properties of a set of dimensions. This view
has a standard set of navigation and statistical interactors. Additionally,
an interactor enables the user to build non-linear mapping functions to
any of the graph attributes such as size, colors, glyphs, etc..

Fig. 8. (Left) The Google Map view implements a mash-up of the
Google map API. With this API, geospatial positions for the layout of
graph elements can be specified. When working with data in geogra-
phy, graphs can be displayed on top of the map. This view supports
standard zoom and pan as well as the selection of elements. (Right)
The Pixel Oriented view uses space filling curves to display large num-
ber of entities and relations on a screen. This view supports Hilbert
curves, Z-order curves, and spiral curves. The Pixel Oriented view is
based on our previous data cube [18] visualization and supports zoom
and pan/selection interaction as well as focus+context techniques.

transmission, the message can stop or continue along its path accord-
ing to the object it passes through. In Tulip, we call an Interactor an
entire chain and an InteractorComponent an object in the chain.

An InteractorComponent implements an interaction method and
can: handle all GUI events on a view, modify the Tulip data structure,
modify the view, and to render objects on top of the view. In the model
view controller paradigm, this component can be seen as a micro con-
troller. To encourage reuse, InteractorComponent are programmed to
be as small as possible. For instance, the zoom & pan, fish-eye lens,
magnifying glass, zoom box, and box selection interactors are often
reused and implemented in five individual interactors.

An Interactor is an ordered set of InteractorComponents. The in-
teractor receives all events from the view and implements the chain of
responsibility which asks each interactor component whether or not it
can handle an event. The Qt-Nokia library is used as much as pos-
sible achieve these operations. The interactor is also responsible for
providing configuration widgets, documentation, and an icon for dis-
play in toolbars. Furthermore, interactors report the views with which
they are compatible. In order to reuse the interactor without modifica-
tion of source code, the set of views that an interactor supports can be
dynamically extended.

Fig. 9. (Left) The Self Organizing View implements Kohonen self-
organizing maps [33]. Several kinds topology/connectivity for the gen-
erated maps are supported as well as navigation and selection inter-
actors. (Right) The Matrix view implements a matrix view of the graph.
This view has been built to support graphs with a large number of nodes
and edges. Zooming and selection interactors are available for this view.

Interactors also implement the plug-in interface. Thus, program-
mers can create their own interactors by combining interactor compo-
nents or developing new ones. As a result, interactors can be reused
across views and the programmer can extend the different types of in-
teractions supported by Tulip. For example, GPU-based graph splat-
ting can be implemented as an interactor.

3.3.3 Perspectives

As each application requires considerable programming effort which
we hope to reuse, Tulip recently added domain-specific or user-
centered perspectives. Following Munzner [37], real-world problems
should be first characterized and abstracted into good operations and
data types. There are good reasons to believe that Tulip contains sev-
eral of the basic ingredients needed to properly combine and/or de-
velop these operations and data types using Tulip’s plug-in based ar-
chitecture.

After applying the Tulip framework in a variety of domains, in-
cluding biology, social network analysis, and geography, we realized
that many aspects of a visualization system can not be generalized and
must be left to the developer to specify. However, in order to reduce re-
implementation, we tried to contain all domain-specific elements in-
side perspective7 plug-ins, allowing general system components and
interaction to be re-used across applications.

A Tulip perspective specifies the visualization techniques (algo-
rithms, views, and interactors) to assemble and how to load them.
These plug-ins can use domain-specific widgets, menus, and libraries.
Perspectives are very different from the generic perspective that come
with the open source release 4.1. They are designed through user inter-
views and problem characterizations and are customized using Tulip
libraries and plug-ins.

As our meta-model is generic, we hypothesized that one could keep
the same data representation and switch between user interfaces de-
pending on task. The development of the Tulip perspective was in-
spired by this requirement. In the MVC model, controllers are respon-
sible for managing connections between models and views. Thus, by
changing the controller, also known as a mediator pattern in the design
pattern terminology, one can change system behavior.

We have had some experience using Tulip in such a context. In
order to properly assess the effectiveness of Tulip in visual analytics
solutions, more work is needed. However, what is clear is the gain we
experience, as visualization designers and experts. Tulip is a toolbox
we use when demonstrating the potential use of visual encodings to
define paths to follow with end-users.

7We borrow this terminology from Eclipse project



3.4 Tulip run time environment
As described above, the philosophy of the Tulip framework is to fa-
cilitate the re-use of plug-ins over many contexts. The advantage of
this approach is that it allows easier framework extension. However,
a disadvantage of this approach is programming an application that
exploits a collection of plug-ins is more difficult to implement. This
added complexity is, more generally, a disadvantage of plug-in based
systems. Tulip Software aims at providing this needed organization
to these plug-ins so that they can be more easily used. Section 3.3.3
shows that it is not the Tulip Software that creates a visualization sys-
tem, but a perspective plug-in launched by the Tulip software.

The design of Tulip Software was inspired by all the stand alone ap-
plications that we have implemented with the Tulip libraries [13, 15,
14, 32, 23]. Using agile method, refactorization aims to place all du-
plicated code inside this software. The primary difficulty of designing
Tulip Software is to determine the maximum set common functions
between perspectives. In our experience, we found these functions
either necessary or general enough to be used by all designed systems:

Model Management: All the perspectives store data inside the
Tulip data model. Thus, Tulip Software supports this model. The soft-
ware provides import, export, open, close, and checks the data struc-
ture for modifications. As the model can be analyzed with different
perspectives, Tulip Software is also responsible for changing/choosing
the perspective used and managing the multi-document interface with
tab widgets.

Plug-in Management: Since perspectives are plug-ins, they cannot
be used until they are loaded. Thus, the software initializes all the
libraries and plug-ins. The software automatically checks for plug-
ins dependencies and can update or download plug-ins using the Tulip
plug-in web service. When creating a desktop application, as opposed
to a web application, this functionality is necessary to involve the end
user in the development. Frequent installation of new releases is one
of the most important problems for end users.

Cross platform support: Supporting multiple platforms is very
time consuming when designing new applications. In Tulip, we aim to
provide a platform independent execution environment. The program-
mer can thus focus on the implementation of their. Tulip is available
for Linux, Windows, and Mac OS operating systems. Through the
plug-in web service, access to plug-ins compiled for all three plat-
forms.

4 CASE STUDIES

The Tulip framework consists of a set of libraries and an application
for managing plug-ins using these libraries. In a way, without plug-ins
Tulip is not able to visualize data. However, it provides the necessary
functions and data structures to build a system tailored to the task of
the user. In this section, we describe some visualization systems we
have built using Tulip.

4.1 Generic Tulip Perspective
The Tool Box system (known as the Tulip Graph Visualization Soft-
ware) provides a generic software interface for the purpose of infor-
mation visualization research. We identified the following tasks as the
most important for our research.

Reproducibility: The most important task is the reproducibility of
results published in our community. Such a system should be able
to integrate many different types of techniques and algorithms. In
early versions of Tulip, the focus was on graph visualization and there-
fore, our requirements consisted of graph metrics, graph drawing algo-
rithms, and graph clustering algorithms. In later version, we furthered
this idea to include visualization techniques and user interaction ap-
proaches.

Rapid Prototyping: we would like to quickly prototype new algo-
rithms or visualization techniques and analyze them in a general vi-
sualization context. For example, we could see how a new clustering
algorithm or graph drawing algorithm eases understanding of a data
set.

Pipeline Exploration: We would like to interactively combine exist-
ing algorithms, techniques, and interaction methods easily to construct

domain-specific visualizations. This feature is helpful for interviews
with end users as a combination of existing features can often be used
as a starting point for user feedback, delaying implementation of cus-
tom visualization methods to later stages in the project. For instance,
when working with biologist, we prototyped the analysis pipeline us-
ing the generic perspective (see section 4.2) before further implemen-
tation.

We have implemented this generic Tulip perspective that supports:
editing graph element properties, exploration of the subgraph hierar-
chy, and access to built-in functions of the Tulip Core libraries. Sam-
ple operations that are available include: undo/redo, aggregation, sub-
graph creation, planarity testing, and cut/paste. Moreover, this system
automatically constructs menu items and tool bars, allowing access to
all installed algorithms, view, and interactors.

The connection statistics for our plug-in web service, a service that
checks for updates to perspectives when they are launched, indicates
that the perspective is frequently used for direct data analysis. Every
day more than 100 people use this perspective and and the number of
hits to its web site 8 is about 8000 in March of 2010.

Fig. 10. The Tulip generic perspective provides an automatically gen-
erated user interface depending on available plug-ins. It also provides
tools for manual configuration of both views and interactors.

4.2 Systrip Perspective
The Systrip perspective was constructed in order to help biologists
understand the metabolism of the tsetse fly parasite that causes sleep-
ing sickness. During initial user interviews, we found they seem to
follow an analytic process which involves getting an overview of the
data first and then focusing on a few relevant sub-networks. Using
the generic perspective 4.1, we tested various interaction methods via
manual selection of elements and the sub-graph hierarchy. In a sense,
this stage experimented with many different visualization pipelines for
exploratory analysis with little implementation.

After this initial stage, we implemented biology-specific algorithms
to extract these subgraphs using a Tulip clustering plug-in. A custom
import plug-in allowed Tulip to directly load their dedicated data for-
mat. By using this generic perspective, we were able to run a second
round of interviews to determine if we were on the right track. Fig-
ure 11 shows two pipelines identified to be useful for their tasks.

After the preliminary prototypes, we implemented a custom per-
spective (see figure 1) that integrates these two pipelines. This per-
spective limits access to only the Tulip functionality that relevant for
their task and and uses domain-specific terminology in the user inter-
face. As an example, graph terminology is ineffective with this audi-
ence and the terms network and sub network need to be used.

With this prototype, the user community experimented with the per-
spective without our assistance, allowing them to suggest improve-
ments. For instance, data is generated over time during experiments
and the user users required animation capabilities showing the changes
induced by biological events. We were able to manually simulate this

8www.tulip-software.org



Fig. 11. The Systrip pipeline was created to help biologists understand
the metabolism of the tsetse fly parasite that causes sleeping sickness.
First, through the generic perspective of Tulip and then through a cus-
tom Systrip perspective, we began to understand the task requirements,
providing a visualization pipeline customized to the task of the biologist.

behaviour using the generic perspective for feedback. Subsequently,
the functionality was implemented as an interactor for the node-link
diagram view. The final perspective integrates other domain-specific
capabilities such as connections appropriate databases and the three-
dimensional rendering of molecules.

4.3 Grouse, GrouseFlocks, and TugGraph Perspective

Sometimes, when the number of nodes and edges in a graph becomes
large, rendering all of them directly can be an obstacle to graph read-
ability. Also, computing a full drawing of the graph can be expensive
in terms of running time. As a new approach for dealing with these
problems, members of our team applied Tulip to research new tech-
niques for graph visualization. The perspective for this system was
originally an application that used the Tulip and QT libraries. Sub-
sequently, the application was converted into Tulip perspective when
support became available in version 3.

In this approach, the contents of metanodes, either derived from
topological structures or attribute information, were constructed
and/or drawn on demand as the user explores the data. Grouse [5]
took a large graph and hierarchy as input and was able to draw parts of
it on demand as users opened metanodes. Appropriate graph drawing
algorithms were used to draw the subgraphs based on their topolog-
ical structure. For example, if the node contains a tree, a tree draw-
ing algorithm will be used. GrouseFlocks [7] was created to construct
graph hierarchies based on attribute data and progressively draw them.
Search strings selected or categorized nodes and computed induced
subgraphs based on attribute values that were placed inside connected
metanodes. These metanodes could be drawn on demand with Grouse.
However, often parts of a graph are near certain nodes and metanodes
are of interest and certain metanodes can be too large to draw on de-
mand. TugGraph [8] was created for these situations when topology
near a node or metanode is interesting. Also, it can summarize specific
sets of paths in the graph.

Efficient implementation of these three software techniques bene-
fited greatly from Tulip’s metanode/metagraph structure, its ability to
handle the large numbers of subgraphs generated by the systems, and
its animation functions to animate graph elements on the screen. One
of the biggest advantages of using Tulip for developing this software
was the number of graph drawing algorithms it supports. In fact, all
three systems were made to be configurable so that new graph draw-
ing algorithms could inserted into the system at compile time at Tulip
made plug-ins for new graph drawing algorithms became available.
Images of TugGraph and GrouseFlocks are shown in Figure 12.

Fig. 12. Images produced by GrouseFlocks and TugGraph. (a) Two per-
spectives of a movie graph, nodes are movies and edges link movies
that share an actor, indicating genre lock. In both the action and docu-
mentary genres we get a large metanode of non-genre (yellow) movies
and a large metanode of in genre movies (pink). (b) TugGraph explores
the structure of the Internet around UBC. In this case, ubci9 is tugged
on the left image revealing its direction connections in saturated blue on
the right. In many cases, these direct adjacencies fragment the graph
into multiple connected components shown in light blue.

5 CONCLUSION AND FUTURE WORK

We have presented the Tulip 3 framework which is based on ten years
of of our research. We have explained the architecture choices we have
made to create a stable and maintainable platform for information vi-
sualization research. The framework allows us to test all levels of the
Munzner nested model: from the algorithm, to technique/interaction,
to encoding, and finally to validating a complete system taking end
users into account. Through technical details and a few experiments,
we have demonstrated that our framework can scale to large data sets.
Furthermore, we provide this framework to the information visualiza-
tion community for reproducibility of our research under the LGPL
license. Tulip is available under Windows, Linux, and Mac OS.

A future challenge for Tulip will include integrating our initial ex-
periences working with dynamic graphs [3] into this model and opti-
mizing data storage for dynamic data. Furthermore, integrating this
concept directly into our facade will provide a unified set of visualiza-
tion techniques using relational data as a basis.

REFERENCES

[1] J. Abello, F. van Ham, and N. Krishnan. ASK-graphview: A large scale
graph visualization system. IEEE Trans. on Visualization and Computer
Graphics, 12(5):669–676, 2006.

[2] E. Adar. GUESS: A language and interface for graph exploration.
In In CHI 06: Proceedings of the SIGCHI conference on Human
Factors in Computing Systems, pages 791–800, 2006. http://
graphexploration.cond.org/.

[3] D. Archambault. Structural differences between two graphs through hi-
erarchies. In Proc. of Graphics Interface, pages 87–94, 2009.

[4] D. Archambault, T. Munzner, and D. Auber. Smashing peacocks further:
Drawing quasi-trees from biconnected components. IEEE Trans. on Vi-
sualization and Computer Graphics (Proc. Vis/InfoVis 2006), 12(5):813–
820, Sept.-Oct. 2006.

[5] D. Archambault, T. Munzner, and D. Auber. Grouse: Feature-based,
steerable graph hierarchy exploration. In Proc. of Eurographics/IEEE
VGTC Symp. on Visualization (EuroVis ’07), pages 67–74, 2007.

[6] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel
graph layout by topological features. IEEE Trans. on Visualization and
Computer Graphics, 13(2):305–317, March/April 2007.

[7] D. Archambault, T. Munzner, and D. Auber. GrouseFlocks: Steerable
exploration of graph hierarchy space. IEEE Trans. on Visualization and
Computer Graphics, 14(4):900–913, 2008.

[8] D. Archambault, T. Munzner, and D. Auber. TugGraph: Path-preserving
hierarchies for browsing proximity and paths in graphs. In Proc. of the
2nd IEEE Pacific Visualization Symposium, pages 113–121, 2009.

[9] D. Auber. Tulip. In P. Mutzel, M. Jnger, and S. Leipert, editors, 9th
International Symposium on Graph Drawing, GD 2001, volume 2265
of Lecture Notes in Computer Science, pages 335–337, Vienna, Austria,
2001. Springer-Verlag.

[10] D. Auber. Outils de visualisation de larges structures de donnes. Phd,
University Bordeaux I, 2002.



[11] D. Auber. Using Strahler numbers for real time visual exploration of huge
graphs. In Using Strahler numbers for real time visual exploration of
huge graphs International Conference on Computer Vision and Graphics,
volume 1-3, pages 56–69, 2002.

[12] D. Auber. Tulip : A huge graph visualization framework. In P. Mutzel
and M. Jünger, editors, Graph Drawing Software, Mathematics and Vi-
sualization, pages 105–126. Springer-Verlag, 2003.

[13] D. Auber, Y. Chiricota, F. Jourdan, and G. Melanon. Multiscale naviga-
tion of small world networks. In IEEE Symposium on Information Visual-
isation, pages 75–81, Seattle, GA, USA, 2003. IEEE Computer Science
Press.

[14] D. Auber, M. Delest, J.-P. Domenger, and S. Dulucq. Efficient drawing of
rna secondary structure. Journal of Graph Algorithms and Applications,
10(2):329–351, 2006.

[15] D. Auber, M. Delest, J.-P. Domenger, P. Ferraro, and R. Strandh. EVAT:
Environment for Visualization and Analysis of Trees. In EVAT: Envi-
ronment for Visualization and Analysis of Trees Proceedings of the IEEE
Symposium on Information Visualization, pages 124–125, 10 2003.

[16] D. Auber and F. Jourdan. Interactive refinement of multi-scale network
clusterings. In IV ’05: Proceedings of the Ninth International Conference
on Information Visualisation, pages 703–709, Washington, DC, USA,
2005. IEEE Computer Society.

[17] D. Auber and P. Mary. Mise en place dun mécanisme de plugins en c++.
Programmation sous Linux, 1(5):74–79, 2006.

[18] D. Auber, N. Novelli, and G. Melançon. Visually mining the datacube
using a pixel-oriented technique. In IV, pages 3–10, 2007.

[19] V. Batagelj and A. Mrvar. Pajek - analysis and visualization of large net-
works. In Graph Drawing Software, volume 2265, pages 77–103, 2003.

[20] K. Beck and C. Andres. Extreme Programming Explained : Embrace
Change (2nd Edition). Addison-Wesley Professional, November 2004.

[21] R. Boulet, B. Jouve, F. Rossi, and N. Villa. Batch kernel som and
related laplacian methods for social network analysis. NeuroCom-
puting Special Issue on Progress in Modeling, Theory, and Applica-
tion of Computational Intelligenc - 15th European Symposium on Ar-
tificial Neural Networks 2007, 71(7-9):12571273, 2008. See also
http://www.nature.com/news/2008/080519/full/news.2008.839.html.

[22] R. Bourqui and D. Auber. Large quasi-tree drawing: A neighborhood
based approach. In IV ’09: Proceedings of the 13 International Con-
ference on Information Visualisation (IV’09), pages –, Washington, DC,
USA, 2009. IEEE Computer Society.

[23] R. Bourqui, V. Lacroix, L. Cottret, D. Auber, P. Mary, M.-F. Sagot, and
F. Jourdan. Metabolic network visualization eliminating node redundance
and preserving metabolic pathways. BMC Systems Biology, 1(29), 2007.

[24] M. Chimani, C. Gutwenger, M. Jünger, K. Klein, P. Mutzel, and
M. Schulz. The open graph drawing framework. In Posters of
the 15th International Symp. on Graph Drawing (GD’07), 2007.
http://www.ogdf.net/ogdf.php/ogdf:publications
(visited 18/03/2010).

[25] Y. Chiricota, F. Jourdan, and G. Melanon. Software components capture
using graph clustering. In 11th IEEE International Workshop on Program
Comprehension, pages 217–226, Portland, Oregon, 2003. IEEE / ACM.

[26] J. Ellson, E. R. Gansner, E. Koutsofios, S. North, and G. Woodhull.
Graphviz - open source graph drawing tools. In The 9th International
Symp. on Graph Drawing (GD’01), volume 2265 of LNCS, pages 483–
484, 2002.

[27] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE Trans-
actions on Visualization and Computer Graphics, 16:439–454, 2010.

[28] J.-D. Fekete. The infovis toolkit. In The 10th IEEE Symp. on In-
formation Visualization (InfoVis ’04.), pages 167–174, 2004. http:
//ivtk.sourceforge.net/.

[29] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley Professional, 1
edition, July 1999.

[30] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, illustrated edition edition, November 1994.

[31] J. Heer, S. K. Card, and J. A. Landay. Prefuse: a toolkit for interactive
information visualization. In In CHI 05: Proceedings of the SIGCHI
conference on Human Factors in Computing Systems, pages 421–430,
2005. http://prefuse.org/.

[32] F. Iragne, M. Nikolski, B. Mathieu, D. Auber, and D. J. Sherman.
Proviz: protein interaction visualization and exploration. Bioinformat-

ics, 21(2):272–274, 2005.
[33] T. Kohonen. Self-organized formation of topologically correct feature

maps. Biological Cybernetics, 43:59–69, 1982.
[34] R. C. Martin. Agile Software Development, Principles, Patterns, and

Practices. Prentice Hall, 1st edition, October 2002.
[35] K. Mehlhorn and S. Näher. LEDA: a platform for combinatorial and

geometric computing. Comm. of the ACM, 38(1):96–102, 1995.
[36] T. Moscovich, F. Chevalier, N. Henry, E. Pietriga, and J. D. Fekete.

Topology-aware navigation in large networks. In SIGCHI Conference on
Human Factors in Computing Systems (2009), pages 2319–2328, 2009.

[37] T. Munzner. A nested process model for visualization design and val-
idation. IEEE Transactions on Visualization and Computer Graphics,
15(6):921–928, 2009.

[38] T. Munzner, F. Guimbretiére, S. Tasiran, L. Zhang, and Y. Zhou. Tree-
Juxtaposer: Scalable tree comparison using focus+context with guaran-
teed visibility. Proc. SIGGRAPH 2003, ACM Transactions on Graphics,
22(3):453–462, 2003.

[39] P. Mutzel, C. Gutwenger, R. Brockenauer, S. Fialko, G. Klau, M. Krüger,
T. Ziegler, S. Näher, D. Alberts, D. Ambras, G. Koch, M. Jünger,
C. Buchheim, and S. Leipert. A library of algorithms for graph draw-
ing. In The 6th International Symp. on Graph Drawing (GD’98), volume
1547 of LNCS, pages 456–457, 1998.

[40] U. A. Perego. The power of dna: Discovering lost and hidden relation-
ships. how dna analysis techniques are assisting in the great search for
our ancestors. In World Library and Information Congress: 71th IFLA
General Conference and Council, pages 1–19, Oslo, Norway, 2005.

[41] M. Raitner. Hgv: A library for hierarchies, graphs, and views. In 10th
International Symposium on Graph Drawing, GD 2002, pages 236–243,
2002.

[42] C. Rozenblat, G. Melanon, M. Amiel, D. Auber, C. Discazeaux,
A. LHostis, P. Langlois, and S. Larribe. Worldwide multi-level networks
of cities emerging from air traffic (2000). In International Geographical
Union IGU 2006 Cities of Tomorrow, Santiago de Compostela, Spain,
2006.

[43] W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit
An Object-Oriented Approach To 3D Graphics. Kitware, Inc., 4 edition,
2006.

[44] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ram-
age, N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: a software
environment for integrated models of biomolecular interaction networks.
Genome research, 13(11):2498–504, 2003.

[45] B. Shneiderman. The eyes have it: A task by data type taxonomy for
information visualizations. In VL’96: Proc. of the 1996 IEEE Symp. on
Visual Languages, pages 336–344, 1996.

[46] C. Tominskia, J. Abello, and H. Schumann. CGV – an interactive graph
visualization system. Computers & Graphics, 33(6):660–678, 2009.

[47] B. Wylie and J. Baumes. A unified toolkit for information and scientific
visualization. Visualization and Data Analysis 2009, 7243(1):72430H,
2009. http://titan.sandia.gov/ (visited 18/03/2010).


