
JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 1

GosperMap: Using a Gosper Curve for Laying
out Hierarchical Data

David Auber, Charles Huet, Antoine Lambert, Benjamin Renoust, Arnaud Sallaberry, Agnes Saulnier

Abstract—The emergence of very large taxonomies that result from the increase in available data raises many problems of visualization

and navigation through their corresponding hierarchies. On datasets of such scale, classical graph drawing methods do not take

advantage of certain human cognitive skills such as shape recognition. These cognitive skills could make it easier to remember the

global structure of the data. In this paper, we propose a method that is based on the use of nested irregular shapes. We name it

GosperMap as we rely on the use of a Gosper Curve to generate these shapes. By employing human perception mechanisms that

were developed by handling, for example, cartographic maps, this technique facilitates the visualization and navigation of a taxonomy.

An algorithm has been designed to preserve region containment according to the taxonomy and to set the leaves’ sizes proportionally

to a property, in such a way that the size of non-leaf regions corresponds to the sum of their children’s sizes. Moreover, the input

ordering of the hierarchy’s nodes is preserved, i.e., the areas that represent two consecutive children of a node in the hierarchy are

adjacent to one another. This property is especially useful because it guarantees some stability in our algorithm. We illustrate our

technique by providing visualization examples of the repartition of tax money in the U.S. over time. Furthermore, we validated the use

of the GosperMap in a professional documentation context. and show the stability and ease of memorization for this type of map.

Index Terms—Treemap, Gosper curve, Hierarchical data visualization.

✦

1 INTRODUCTION

The wealth of data that is available requires us to use ef-
ficient techniques to access the information that it holds.
The manner in which files are stored on a computer
is a prime example of how a good classification, in
this case, the folder hierarchy, helps one to locate what
one is looking for. Many other examples, such as the
Dewey decimal book classification, lead us to believe
that hierarchical data classification is the most efficient
and intuitive way to organize knowledge.

Many methods have already been proposed for visual-
izing hierarchies, the most prominent examples of which
are tree representations (see Treevis.net for an overview).
Reingold and Tilfort [1] presented the first approach
to visualizing through trees in a node link diagram,
positioning each node over its children, which can also
produce a dendrogram. Since then, more representations
have been proposed, such as a radial layout [2] or a
bubble tree algorithm [3]. Node link diagrams lack the
ability to easily map the nodes’ size and also have the
drawback of poorly filling the space between nodes.

Another visual metaphor is to visualize regions, either
with containment (i.e., children are enclosed by their

• D. Auber, A. Lambert and C. Huet are with the Université Bordeaux 1, the
CNRS UMR 5800 LaBRI and the INRIA Bordeaux Sud-Ouest, France, E-
mail: david.auber@labri.fr, antoine.lambert@labri.fr, charles.huet@labri.fr.

• Benjamin Renoust is with the Université Bordeaux 1, the CNRS UMR
5800 LaBRI, the INRIA Bordeaux Sud-Ouest and the Institut National
de l’Audiovisuel, France, E-mail: brenoust@ina.fr.

• Arnaud Sallaberry is with the University of California at Davis and Pikko,
USA, E-mail: asallaberry@ucdavis.edu.

• Agnes Saulnier is with the Institut National de l’Audiovisuel, France,
E-mail: asaulnier@ina.fr.

parents), such as Treemaps [4], or without containment,
including icicle plots [5]. Icicle plots have a similar
drawback to node link diagrams because they tend to
leave a large amount of unused space. Furthermore,
as demonstrated in [6] treemaps are not an intuitive
representation because the hierarchical structure is not as
clear as in a conventional tree drawing. Here, we propose
a novel visual metaphor that attempts to overcome these
shortcomings.

The cartographic map metaphor has been in use for
a while because it is a very intuitive way to represent
information. Many examples have been demonstrated to
use this metaphor, such as the temperance map designed
by W.M. Murrell [7] in 1846, the European Economic and
Social Committee map 1 and a recent XKCD cartoon 2 in
a lighter tone.

This background has led us to propose a method that
is based on the use of irregular shapes. Our approach is
motivated by Fabrikant and Skupin [8], [9], they claim
that such an approach would appeal to the cognitive
skills that have been developed by anyone who has
ever read a map. These skills include the recognition
of region containment (e.g., North America contains the
United States, which is divided into states that contain
counties; Europe contains Germany, which is composed
of 16 Länder) and the pattern recognition of regions
areas (e.g., a country that is shaped like a boot is easily
remembered). Such visualization also allows the use of
all the cartography semiotics [10]. Additionally , we

1. http://www.eesc.europa.eu/?i=portal.en.
self-and-co-regulation-cartography

2. http://xkcd.com/802/

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 2

want our visualization to explicitly make known some
properties of the tree. To achieve these goals, a region
must have an area that is proportional to the sum of the
area of its children. There is also a need to visualize the
evolution of taxonomies, and the stability of the layout
is a prevalent feature when visualizing dynamic trees.
Finally, a significant issue with respect to a visualization
is its aesthetic aspect. Indeed, studies in ergonomics
have underlined the interesting influence of aesthetics
on usability and adoption [11], [12], [13]; thus, specific
attention must be devoted to creating pleasant shapes
and attractive visualizations when addressing a large
audience or readership.

The contribution of this paper arises in three forms.
First we propose an algorithm for creating treemap-
like representations of trees that have irregular shapes.
This solution is rapid and can be compared to the first
treemap algorithm [4], although no space is devoted
to displaying labels. The second contribution of our
paper is to propose an improvement of the first al-
gorithm to separate the boundaries of nested regions.
This algorithm helps to visualize the hierarchy, and the
boundaries can be used to display labels. The last main
contribution of this paper is to propose an algorithm to
display labels in concave shapes.

2 BACKGROUND AND RELATED WORKS

We first focus on works that are related to the carto-
graphic map metaphor, and we demonstrate that the
existing methods do not fulfill all of the previously spec-
ified requirements. We then focus on the visualization of
trees as regions, and present their properties.

2.1 Cartographic Maps Metaphor

Geographical maps as an input: : Redrawing geo-
graphical maps with additional constraints has already
been well studied in the literature. For example, distor-
tion techniques have been used to highlight a focused
entity while preserving the context [14]. Cartograms rep-
resent geographic maps in which the sizes of the regions
depend on a given value, where regions are deformed to
the desired sizes and adjacency can be preserved [15],
[16], or regions are represented as rectangles [17], [18]
and adjacency is lost. These methods require pre-existing
spatial data, making them irrelevant to our problem.
Rooke et al. [19] proposed an example of abstract data
visualization based on real geographical maps. These
authors used a map of the world to visualize a hierarchy
of commands.

From Self-Organizing Maps to Voronoi Dia-
grams: : Self-organizing maps (SOM) [20] are based on an
unsupervised learning algorithm that produces a two-
dimensional map in which similar objects are close to
each other. Skupin [21] proposed a technique based on
SOMs, Voronoi diagrams, and clustering that produces
images that look like country maps from texts; in this
technique, how related the maps are is based on the

common concepts that they contain. We are unaware
of a method that could transform the input of our
method to the format that these methods use. Gansner et
al. [22] displayed graphs as geographic-like maps, using
a method based on graph drawing, Voronoi diagrams,
and clustering. Our data could be transformed to use
this method; however, this approach does not guarantee
that the regions will be connected.

Representing data as landscapes: : Another ap-
proach to generating geographic-like maps is to display
the data as landscapes. Themescapes [23] are abstract,
three-dimensional landscapes of information. Graph-
Splatting [24] is a related technique that transforms a
graph into a two-dimensional scalar field. The scalar
field is rendered by a color-coded map, a height dimen-
sion or a set of contours. While these methods produce
nice landscape-like maps, they cannot be adapted to
trees without creating disconnected regions.

Addressing fractals: : Generating virtual maps
based on fractal models is often used in movies and
computer games [25]. Keim et al.[26] first proposed a
method based on the use of recursive patterns in the
field of Information Visualization. In their work, the
elements to be visualized are mapped to small iden-
tical patterns that fill a plane. The first visualization
based on fractals was developed 10 years later, as a
result of the preliminary work of Wattenberg [27], in
which he indicated the idea of using space-filling curves.
Muelder and Ma [28] presented a method that is based
on this idea. These authors first hierarchically clustered
the nodes of a graph and then extracted an ordering of
the graph nodes according to a planar layout of the tree
of clusters. Finally, they placed the nodes according to
the ordering on a space-filling curve such that the gap
between two nodes corresponds to their proximity in the
hierarchy. Two consecutive nodes of the ordering will be
closer to each other if they belong to the same cluster.
Because this method is devoted to very large graph
layouts, the authors are not interested in revealing the
underlying clustering and are not interested in making
the visualization appear like a map.

2.2 Trees visualized as regions

The visualization of trees as regions has been thoroughly
discussed in the literature, and many variations on the
subject, all of which bring different highlights, exist.
For a detailed comparison, please refer to previous
work [29]. In this paper, we will consider two main
categories.

2.2.1 Adjacent regions

The earliest method of adjacent regions is the Icicle
plot [5], which is constructed by placing the children
next to the parent such that the depth and siblings are
mapped on the X- and Y-axis, respectively. Alternatively,
the nodes can have radial coordinates, whereby the
angle and depth are mapped on the siblings, on the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 3

distance, respectively. This method was introduced as
“information slices” [30]. Sunburst [31] is a variation of
this method that uses the whole circle and displays a
deeper hierarchy in a single image. However, a node’s
area is not proportional to the sum of the areas of its
children.

The benefits of these methods are that labels can be
placed inside each region without overlapping with the
children regions, and that the depths of the nodes are
easily identifiable.

2.2.2 Region containment

The most common form of region containment visualiza-
tion is treemaps, which recursively divide the plane by
walking the tree from the top to the bottom. A detailed
overview of treemaps by Ben Shneiderman, updated
by Catherine Plaisant, can be found here3. The first
treemap method, “slice and dice” [4] is constructed by
recursively dividing the plane alternatively horizontally
and vertically. As a result rectangles that have a high
aspect ratio (width/height) can exist. Some methods
have improved on the original treemaps, such as the
squarified treemap [32], which has an aspect ratio that
is very close to 1, but does not account for the order of
the children, which would make the layout more stable
over time. Strip layout [33] is a compromise between the
squarified and the slice and dice; the aspect ratio is not
as close to 1 as with the squarified treemap but the order
of the nodes is preserved. Quantum treemaps [33] uses
rectangle widths and heights that are multiples of the
same fixed number, which eases the size comparisons.
The mixed treemap [34] uses the slice and dice for the
upper level and the squarified treemaps for the lower
levels. Voronoi treemaps [35], [36], [37] recursively split
the space similar to the aforementioned methods and
use a Voronoi tessellation to create convex polygons
instead of rectangles. BubbleMaps also [38] produce non
rectangular shapes by positioning adjacent squares to
represent leaves having the same parent. The City layout
[39] uses a street map metaphor, in which leaves are
represented as buildings, located in districts, which are
contained in larger districts, up to the root of the tree.

Finally, two works address the problem of transform-
ing maps into Treemaps [40], [41]. Even if it is not
directly useful for our purposes, we think that this
approach is nevertheless related to tree visualizations
and cartographic maps.

2.2.3 Properties

While considering the many properties of layouts that
impact the visibility of a tree, we chose the layouts that
pertain to region-based maps : Region Containment, i.e.,
whether or not children are placed inside their parents;
Aspect Ratio of the smallest rectangle that encloses the
region, i.e., the width/height, where 1 is the ideal value,
to afford an easier area comparison; Area Correlation,

3. http://www.cs.umd.edu/hcil/treemap-history/index.shtml

Region Aspect Area Stab.
Contmt. Ratio Correl.

Icicle plots X X
Info. Slices X X
Sunburst X
City Layout X /
Slice & Dice TM X X X
Squarified TM X X X
Strip TM X / X /
Quantum TM X / X /
Mixed layt. TM X / X /
Voronoi TM X X X X

TABLE 1

Summary of the properties for the methods that aim to

visualize trees as regions. An X indcated that the

property is fully respected, a forward slash represents

that the property is partially respected, and an empty cell

implies the property is not respected. TM represents

treemap.

i.e., how correlated the area of the leaves is to a given
property, and the non-leaves are correlated to the sum of
the value of their children; and Stability, i.e., how much
a node moves on consecutive visualizations.

Table 1 sums up these properties for the aforemen-
tioned methods. This table is only given as an indication,
and according to the tasks to be performed, the optimal
design is not necessarily the design that maintains all of
these properties. Moreover, other useful properties have
not been mentioned. In this paper, our purpose is to
focus on the properties mentioned, and our technique
guarantees all of them.

As far as we know, no labeling technique can be
applied to the methods that are displayed in Table 1
without some loss of one of these properties. Our tech-
nique offers to at least partially fulfill these properties
and, in addition, to supply an efficient labeling method.

3 DRAWING A GOSPERMAP

Fractals are curves or shapes that have self-similar pat-
terns. Intuitively, they can be split into parts such that
each part has a pattern that is similar to the other parts
and to the first part. Thus, the parts can be used to visual-
ize categories, sub-categories and so on, while providing
boundaries that resemble regions that are found in car-
tographic maps (a part of the Brittany coast resembles
the whole Brittany coast [42]). The main purpose is to
find how we can fit the region containment constraint
into a fractal model. We propose a solution that is based
on 2D space-filling curves, which are often used to
generate fractals. Looking forward at the generation of
these curves shows us that the process is composed of
recursively subdividing a straight line segment.

To use a 2D space-filling curve, we must find an
order for our taxonomy’s leaves. This order must be
such that all of the nodes in a category are consecutive.
This structure allows us to represent internal nodes by

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 4

containment. This property has already been discussed
[43], [27]. The entire process is detailed in Figure 1.

(a) (b)

(c)

Fig. 1. Algorithm overview: (a) We find a a linear arrange-

ment on the leaves (a string of red nodes), using the struc-

ture of the tree. (b) We project this linear arrangement

with a 2D space-filling curve. (c) For each internal node,

we create a region that contains all of its descendants.

3.1 Curve selection

Our algorithm is closely tied to the curve because it must
produce a result that resembles a map of nested irregular
shapes while preserving the tree structure. The curve
must be simple (i.e., without crossings) for each region
to contain its children. To not restrict the amount of data
that we can handle as input, a 2D space-filling curve that
can expand indefinitely is required. The curve can be
defined in a more formal way as a function h : N → R2;
such that the Euclidean distance between h(i) and h(i+1)
is 1. According to this function, we can define the Worst-
Case Locality [44] value as follows:

WL = lim
k→∞

sup
i,j∈Nk

d(h(i), h(j))2

|i− j|
where Nk denotes the set of k-digit base-n numbers

and d(h(i), h(j)) is the Euclidean distance in R2. We
square this term because, if the maximal distance in
N is O(k2), then the maximal distance in R2 is O(k).
WL indicates how much the nodes that are close in 1D
space are close in 2D space. If this value is finite, then
this curve has the locality property that is defined by:
d(h(i), h(j)) < c|i− j|1/2 where c = WL1/2.

This property guarantees that children of a single node
will be close to one another. With a curve that does not
hold the locality property, two children of the same node
can be far apart from each other (e.g. in the case of a
spiral, up to its diameter).

We have analyzed many curves, and the curve that
appears to be the most suitable is Gosper’s flowsnake

curve, which is also known as the Gosper island [45].
Indeed, this approach divides the plane into hexagons.
Then, angles of the polygons that define the boundaries
of the regions are 2π/3 or 4π/3. Obtuse angles make
the boundaries smoother, which allows us to obtain
regions that are similar to those that can be observed
in cartographic maps. Gosper’s flowsnake curve has the
locality property, with c =

√
6.35 [44].

3.2 Positioning the leaves and dividing the space

The leaves’ order is extracted by a depth-first search,
which can be seen in Figure 1.b. We place the points
along Gosper ’s curve, as shown in Figure 1.c. Each curve
requires a specific way of dividing the plane, to make
each node represented by a polygon; using a Voronoi
diagram to perform this operation makes it generic,
although it is slightly time-consuming (o(n · log(n))). In
this specific case, the regions produced are hexagons, as
can be seen in 2.a and, thus, can be generated in o(n). The
size of a region that represents a node can be augmented
by attributing several consecutive points of the curve to
this node.

We are now able to create a region for each node
of the hierarchy from the bottom to the top of the
tree; a region of a node is obtained by merging the
regions of its children, as shown in Figure 2. Notice that
this method follows the region containment principle
because Gosper’s curve is planar.

(a) (b)

Fig. 2. Placement of the ordered leaves along the curve:

(a) Nodes positioned along Gosper’s curve. (b) Nodes

regions created by the Voronoi diagram and the initial

tree in which non-leaf nodes are represented by the

corresponding regions of the final layout.

Using the aforementioned method already produces
treemaps with irregular shapes such as in Figure 3 in
a very short time (less than one second for the graph
shown, of over 6,000 nodes). The parent regions are
drawn over their children, and are applied with some
transparency so that the children are visible. This process
does not allow the display of more than 3 levels, because
the borders are overlapping. If a leaf is the only child
of its parent, then their boundaries will overlap, hiding
the depth of the leaf. To show more levels, we could
hide all the current top-level regions, but we would lose

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 5

the ability to distinguish two regions of the same depth
in the tree that do not have the same parent. Another
solution would be to drill down in a specific region,
showing only the subtree of this region, which would
lose the contextual information. We added a post-process
to our method, which solves this problem (see section
4.1).

Fig. 3. Filesystem hierarchy of the Tulip (http://www.tulip-

software.org) open-source software, on which we have

implemented our prototype. The levels display changing

boundary sizes according to the depth of the correspond-

ing nodes in the hierarchy and provide a transparency

value to the regions.

4 IMPROVING THE MAP

Differentiation and identification of the hierarchical lev-
els in the map are required for the map to be visually
analyzed. The boundary computations and the labeling
can benefit from the map construction operations.

4.1 Boundary computations

An efficient way to detect the region containment for
each level of the hierarchy could consist of separating
the lines that delimit the regions from one another. As
we can see in Figure 1.c, the boundary that defines the
region {6, 7, 8} does not overlap its parent’s boundary
(region {5, 6, 7, 8}). As a result, it is easy to determinate
a region’s hierarchy because a region is contained inside
of its parent regions (i.e., nodes in the path from this
node to the root of the tree). Similar to in a cartographic
map, we can see such boundaries as contour lines that
demarcate regions that have the same altitude (i.e., the
same level in the hierarchy).

We use the hexagonal grid that was created by the
Voronoi diagram, and we replace each vertex of each
hexagon by a node. Then, we add edges between the
leaf and each of the vertices of its grid cell, effectively
creating an internally triangulated graph, as in Figure
4.a.

Next, we add boundaries to the regions, proceeding
from the bottom to the top of the tree. In our example,
we first create the boundary of the purple node. We

(a) (b)

(c) (d)

Fig. 4. (a) Vertices of the hexagon generated by the

Voronoi diagram are replaced by a new node, which is

linked to the leaf, effectively creating an internally trian-

gulated graph. (b) The boundary of the purple and blue

nodes, as computed by the first step of the boundary

computation and other boundaries recursively computed.

(c) Corresponding boundaries; the spacing between the

boundaries decreases exponentially according to the

number of nested boundaries. (d) Triangulated graph

constructed to apply our boundary expansion method.

process the edges that are crossed by the boundary
clockwise, and each of these edges is replaced by a node
that is positioned at the middle of the edge. These new
nodes are linked to the target and the source of the
removed edge by two new edges and to the following
and preceding new nodes, to create the purple boundary
that we see in Figure 4.b. We recursively apply this
process to create all of the boundaries. In contrast to
the method described in 3.2, the boundaries that are
generated do not overlap with one another.

We could directly use these new boundaries to display
our map. However, our technique consists of recursively
splitting the edges of the triangulated graph, which
makes the distance between two boundaries decrease
exponentially as we create more boundaries. Figure 4.c
highlights this phenomenon, in which the distance be-
tween the yellow boundary and the green boundary is
two-times smaller than the distance between the green
boundary and the purple boundary. A straightforward
way to solve this problem would be to simply divide
the space between the borders by the number of layers.
We opted for a more complex solution that separates
the borders clearly and smoothes the borders to produce
and enhance the aesthetics of our map. This method
also possesses the advantage of maintaining a better
area correlation for deeply nested nodes. This goal is
accomplished by first transforming the graph shown in
Figure 4.b into the internally triangulated (only the outer
face is not a triangle) graph shown in Figure 4.d.

We then apply Tutte’s algorithm [46] to find the
node positions, such as the distance between consecutive

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 6

boundaries, which is approximately the same. This step
is to iteratively position every node that is not on the
outer face at the barycenter of its neighbors. Each of
these iterations runs in linear time. According to Tutte,
this algorithm converges to a stable planar configuration
in at least a linear number of iterations. Our graph is
triangulated, and we fix the outer face of our graph.
Thus, the solution is unique and preserves the initial
embedding of our graph, which guarantees the region
containment property. In our case, the graph is already
planar, and the nodes are very close to their final posi-
tions, which considerably shortens the running time of
this step. Figure 5.a shows the graph that is positioned
by using this method, and Figure 5.b shows the same
graph, but the nodes and edges that are not in the
boundaries are removed. Notably, the barycenters can
be weighted to allocate a greater area to the boundaries
of the regions that represent the upper nodes of the
hierarchy.

(a) (b)

Fig. 5. (a) Applying Tutte’s algorithm to Figure 4.d enables

us to transform the initial triangulated graph that was

obtained by our method. This action solves the exponen-

tial problem on our boundaries, as shown in Figure 4.c,

and additionally smoothes the boundaries of the regions,

creating a more visually appealing visualization. (b) The

results obtained after removing all of the dummy ele-

ments.

At the end of the boundary computations, we obtain
a smooth, non-overlapping boundary for each internal
node of the tree. Furthermore, for each internal node,
we also obtain a list of triangles that define a closed
region (border region) in which nothing is displayed.
The node boundary is used to draw a filled polygon,
and the border region is utilized to draw a textured con-
tour that enhances the region containment visualization.
Figure 6 shows the entire process on a file system of
200 nodes extracted from the VisWeek 2011 electronic
proceedings. To enable visualization of the size of the
files as well as the size of the directories, we add a
number of dummy children to each leaf, for which the
number is proportional to the size (i.e., the file size in
that example). The dummy nodes are then removed.
Figure 7 shows an example of the final maps using the
Python standard library directory on a Linux system as
the input hierarchy.

Now that we have found a correct embedding of the
nodes, we must display the labels to direct the user’s
navigation. Displaying all of the labels induces occlusion
problems. The next section is devoted to an efficient

method that is adapted to the layout.

4.2 Labeling

We will first give a method that shows the labels of
all of the nodes at a certain depth, which provides a
good overview of the data. Then, we will demonstrate
a method that repeats a region’s label along its border,
allowing us to identify regions even when they do not
appear in full.

4.2.1 Labeling regions of a given depth

This method aims to enhance the map by displaying
labels that are inside of the regions. To achieve this goal,
we display the label of every node at a given depth.

Displaying rectangular labels over the regions without
accounting for their shapes was not efficient. Indeed,
because of the concavity of many of these regions, some
labels were not on the corresponding areas. Thus, we
only use this method for the last level of the hierarchy
(see Figure 7.b). We then experimented with rectangular
labels that were inscribed in the regions and aligned
along the horizontal or vertical axis (see Figure 3). How-
ever, the irregularity of the regions causes the rectangle’s
size to be very small, whereas spreading the label over
the region makes them larger and more readable.

We attempted to find a method that would generate
labels that follow the region, such as the labels that
Skupin presented [47]. The main idea is to locate a path
that is included in a region on which it would be possible
to draw text. This technique’s principle is similar to the
interaction of path text tools that are present in modern
imaging software.

The regions in which we want to display labels are
possibly concave polygons without holes. For each poly-
gon, we compute a Voronoi diagram of its vertices, and
then, we remove the vertices of the Voronoi diagram that
are not included in the polygon. We then reconnect the
Voronoi vertices to the closest polygon’s vertices (i.e., the
sources of their adjacent cells in the Voronoi diagram).
That operation creates a tree structure that is close to a
medial axis of our polygon [48]. Each path of that tree
can be used to display a text that is at an equal distance
from each of the polygon’s borders. Let n be the number
of vertices in a simple polygon; then, the complexity for
the tree construction is o(n · log(n)).

The challenge is to select one path in the set of
possible paths in the tree that we have constructed. We
first attempt to select the longest path, as shown in
Figure 9. This technique has the drawback of curving
the labels a large amount, which hinders the readability.
This effect results from the number inflection points
(see ”clustering“ in Figure 9). Furthermore, differences
in size along the medial axis makes choosing a proper
font size difficult (as shown in Figure 9 on ”import“
and ”distance“). The evaluation that we obtained in a
professional environment (see section 5.2) using that

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 7

(a) (b) (c)

Fig. 6. Examples of the embedding process: (a) Initial tree; (b) Triangulated graph embedded using Tutte’s algorithm;

and (c) Final map with a texture applied on the paths that correspond to the region boundaries.

(a) (b) (c)

Fig. 7. Visualizing the content of the Python standard library directory on a Linux system using a GosperMap. The

region areas are mapped to the size of the files that they contain or represent. (a) Only the first level of the file hierarchy

is shown. (b) All of the levels of the hierarchy are displayed. (c) After zooming in on the area that contains the small

blue (hotshot directory) and green (json directory) regions, which are located under the large yellow region (config

directory). The files contained in these folders and the boundaries, which clearly delimit the different regions, are

shown.

type of labeling demonstrates that a tradeoff between the
axis-aligned labels and the curved labels is necessary.

The evaluation indicates that, for the users, when it
comes to the labels, readability takes priority over size.
To attempt to better satisfy this constraint, we devised a
new approach, that uses the longest path in the tree that
we constructed. We selected the longest subpath that has
a similar thickness (i.e., the distance to the border of the
polygon) all the way and that is mostly straight. We find
this path in o(n) [49], and we select the thickness with
a threshold, which can also be accomplished in o(n).
Future work on the labeling includes curve smoothing
and size homogenization (the size can be constrained by
the depth of the node to which it is attached).

4.2.2 Labeling of the whole hierarchy

The second labeling method helps the user to maintain
the contextual information while he is zoomed in. This
method is to apply textures that contain the labels along
the regions’ boundaries, in a similar fashion as the
contour lines are applied on the cartographic maps. An
example of this technique is highlighted in Figure 9.
The leaf Makefile is contained in the plugins region,
which itself is contained in an arena, child of the root
node ALEX. PluginSample is clearly on the same level as
plugins, and CVS is on the same level as Makefile.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 8

(a) (b)

(c) (d)

Fig. 8. Label placement overview:(a) The polygon in

which we want to display a label. (b) A Voronoi diagram

of the polygon vertices is computed; we reconnect the

vertices to the cells that they belong to, and then remove

all of the vertices that are outside of the original polygon.

(c) The interior vertices form a free tree on which one

can compute the longest path in linear time [49]. (d) We

select the best subpath of the longest path according to

the length of the label that we want to display, the number

of abrupt changes and the surface that the label will have.

Fig. 9. Labels on the children of the plugins region, which

are the third level of the hierarchy. The box highlights the

labels on the border of the nested regions.

5 EVALUATION

To evaluate our GosperMap (G.M.), we performed a
scientific evaluation benchmark and a user evaluation in
a professional environment. The objectives of these two
evaluations are first to provide a quantitative evaluation
according to a set of measures and then to evaluate
the accuracy of the GosperMap for solving hierarchy

analysis tasks.

5.1 Numerical Evaluation

We measured several parameters on the “What We Pay
For“ dynamic (time-stamped) dataset. Furthermore, we
compared the results that were obtained by our tech-
nique with two of the most popular methods. We chose
the Sunburst (S.B.) [31] for its stability and the Squarified
Treemap (S.T.) [32] for its good aspect ratio. Unfortu-
nately, we were not able to compute these measures on
Voronoi treemaps [35], [36], but according to the results
of the original paper [35] and those of the fast Voronoi
treemap algorithm [37], Voronoi treemaps should be
at least as good as our technique. For each technique,
we measured the computation time, the aspect ratio of
each generated region, the correlation between the value
mapped on the elements and the on-screen area, and the
displacement of the elements between two consecutive
states. Figure 10 gives a sample of the results that we
obtained on the evolution of that weighted hierarchy for
the years 2007, 2008, 2009, and 2010. Table 2 summarizes
all of the measures that we computed on these different
visualization techniques.

Benchmarking all of the techniques for the visualiza-
tion of hierarchical data [35], [33], [32], [2], [3], [1], [34],
[39], [50] is outside the scope of this article. This evalu-
ation is given only as an indication that our technique
possesses the properties that make the treemaps efficient
when visualizing the hierarchy.

TABLE 2

(time) Computation times in seconds, (aspect ratio)

width/height ratio of the generated regions, (area) the

correlation between the value mapped on the elements

and the area used on the screen, and (stability) the

standardized displacement of elements between two

states. The standard deviations are noted in red

Dataset

The data comes from http://www.whatwepayfor.com,
and represents how much of a taxpayer’s money goes
to which accounts. The data used a yearly income of
$50.000 for a single person. We decided to visualize the

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 9

Fig. 10. Results for the “What We Pay For” dataset. GosperMap : For each year, the surface of each region is

correlated (0.99) with the “mycost” value of the dataset. Observing the “Commerce and Housing Credit” region,

even if the “mycost” parameter evolves significantly year after year, this evolution is easy to follow. Furthermore,

new elements are always inserted at the bottom left corner. Squarified Treemap : For each year, the surface of each

region is correlated (0.97) with the “mycost” value of the dataset. Observing the “Commerce and Housing Credit”

region, because of the ordering that is used by the algorithm, the “function” region significantly moves. Nodes with a

higher weight are easy to find because of the Squarified Treemap ordering. Sunburst : For each year, the surface of

each region is correlated (0.92) with the “mycost” value of the data set. The evolution of the “Commerce and Housing

Credit“ region is easy to follow because of the high stability of the technique. However because the surface that is

used for displaying one ring is constant, the addition of new elements (or small elements) is not always perceptible.

This phenomenon can lead to evolution being unnoticed.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 10

evolution of the income/outcome according to the ”func-
tion“, ”subfunction“ and account classification. Initially
the ”What We Pay For“ dataset is a directed acyclic
graph. To visualize it we have duplicated leaf nodes
(”accounts“) that are connected to several internal nodes
(”subfunction“). The resulting tree contains 990 nodes.
To visualize all of the accounts, whether they are positive
or negative, we use the absolute value of the ”mycost“
parameter.

Measures

Timing: In Table 2 one can see that the main drawback
of our technique is its computational cost. S.B. and S.T.
only need to sort elements, contributing to their speed
and ease of implementation. Because of the generation of
a Voronoi diagram and for our boundary computation
phase, our technique requires working with a triangu-
lated graph that is significantly larger than the input tree.
Thus even if the algorithms that we use are reasonably
fast (Voronoi, barycenter, polygon merging), the size of
our triangulated graph is the bottleneck. For example, in
Figure 10 we generated a triangulated graph of 33,059
nodes and 88,846 edges to obtain the final visualization.
If we only use the thickness of the boundaries (see Fig-
ure 3) to visualize our dataset, then we spare ourselves
the cost of generating the triangulated graph. Without
the boundaries computation, our running time has the
same order of magnitude as the other techniques.

Aspect Ratio: Table 2 summarizes the aspect ratio
that is obtained for each visualization. We define the
aspect ratio as the minimum of the width and height of
the smallest rectangle that encloses a region divided by
the maximum of the width and height of that rectangle
which results in a value between 0 and 1. The aspect ratio
of a visualization is the average of all the aspect ratios of
regions that are used to represent the internal nodes and
leaves. Our measures show that the G.M. surprisingly
outperforms the S.T. in terms of the aspect ratio. Looking
carefully at the S.T. results, one can see that the aspect
ratio could be far from the expected ratio, when the
size of the elements varies significantly. The G.M. uses
a Gosper curve, for which the fractal nature induces an
aspect ratio that is almost constant independently from
the length of the curve or the position of the subpart.
Curves that are smaller than the kernel (¡ 8 elements for
a Gosper’s curve at order 1) do not respect this property.
The irregularity of the concave regions makes it more
difficult to accurately compare areas, even though the
aspect ratio is better.

Area correlation: Table 2 summarizes the correlation
between the area of the regions and the value that
is assigned to a node in the original tree. For each
visualization we have computed the exact area of each
polygon that is induced by a region boundary. As can
be seen, the three methods have a significant correlation
between the desired area and the measured area. The
S.B.’s low score results from the fact that the algorithm

ensures a correlation of 1 with the size of the angular
sectors, if we had used a variable radius for each level of
the S.B., as in [30], we assume that we would have found
similar results as in the S.T. or G.M. layout. The scores
of G.M. and S.T. are not 1 because of the algorithms that
are used to free space for the labels. If we remove these
algorithms (see section 3.2), then the areas are perfectly
correlated with the node sizes.

Stability: Table 2 summarizes the element displace-
ment data when the weights of the tree’s elements are
modified. To measure these displacements, we computed
the center of the bounding box of each region. Then for
each time stamp (from 2006 to 2010), we measured the
standardized displacement between the elements that
are present in the two considered years (the 2006 layout
was used, which is not given here, to compute the
2006-2007 measure). The displacement is standardized
using the diagonal of the bounding box of each layout
(i.e., the maximum possible displacement of an element).
As expected, the S.B. technique has obtained the best
result during our experimentation and the S.T. has the
worst result. The S.T. result arises from the ordering
of the elements needed for the packing algorithm that
optimizes the aspect ratio. For the G.M. one can see that
the stability of the algorithm is between the stability of
the S.T. and the S.B.. Even if the G.M.’s algorithm does
not change the order of the elements, changing the size
of an element at the beginning of the Gosper curve can
shift all of the other nodes and can introduce a large
number of small displacements. The same situation is
not the case with S.B. because the angular sectors are
redistributed on a circle. However, after analyzing the
small standard deviation of the G.M., which is almost
similar to that of S.B., the displacement of the nodes
should not affect the readability of our visualization.

Discussion

The initial objective of this work was to create con-
tainment visualizations that resemble cartographic maps.
During all of the presentations of this work to users, we
only received positive feedback. We also observed true
enthusiasm for the use of such type of visualizations.
Users especially found them to be very aesthetically
pleasant. Attractiveness is a significant asset, especially
for a large audience or readership. Moreover, for other
visualizations, the use of decorations and embellish-
ments can have a positive influence on comprehension
and memorability [51]. A potential advantage of our
design is therefore to improve some user performance
tasks.

We ran the measurements presented in subsection 5.1.
The data indicate that, when using our technique, we
can obtain similar quality and even outperform other
algorithms. This evaluation allows us to claim that our
technique respects the most important requirements of
a treemap representation, not that it is superior to other
treemaps.

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 11

The application of our technique to time-stamped
datasets demonstrates that even if the number of dis-
placements is higher than for the S.B. algorithm, it
is straightforward to track the evolution, because the
amplitude of the displacement is small. For example, in
Figure 10, if we observe the ”Commerce and Housing
Credit“ region, we can see that even if the ”mycost“
parameter evolves significantly over time, the evolution
can easily be followed. Thus, G.M. can be used in tasks
that require tracking the evolution of the data, which is
similar to the spatially ordered treemaps [50].

Furthermore, because we use complex shapes to rep-
resent our regions, we noticed that such a represen-
tation helps when memorizing the produced map of
the dataset. Regarding the ”What We Pay For“ dataset,
part of the diagram was referred to using geographical
terminology. For example, considering the yellow region
in Figure 7, we immediately used the term ”China“.
Compared to S.T., in which all of the regions have a sim-
ilar shape (almost square), our technique appears to be
able to use cognitive skills. To confirm that observation,
we ran a user evaluation in a professional environment
(see Section 5.2).

5.2 Usability Study

We led a user study in a professional environment at
the French National Audiovisual Institute (Ina) whose
mission is to archive French TV and radio. The user
study is based on the visualization of the Ina thesaurus
which is a hierarchy of keywords that are used for doc-
ument annotation. Based on a previous similar approach
[19], we believe that most advantages of the GosperMap
would appear after long-term use and would be difficult
to measure. The study is not meant to formally or
quantitatively measure the benefits of the GosperMap,
but focuses on its usability in a professional application
context. We then tested and gathered the first impres-
sions on the use of the GosperMap visualization of the
thesaurus for annotation purposes.

Objectives: Evaluation of information visualization
techniques is based on testing both visual representation
and interaction mechanisms [52]. According to the norm
ISO 9241-11[53] we analyze the usability of the system
based on its interactivity and visual features: effective-
ness, efficiency, and user satisfaction [54], [55]. In addi-
tion, we are interested in testing the memorization and
ease of learning. We also analyze the system according
to the norm ISO 9241-12 on the information presentation,
testing the graphic user interface.

Dataset: The data is the Ina thesaurus, which consists
of 9420 terms represented as a hierarchy. Annotators use
a set of terms to label a document, to ease its retrieval.
The team in charge of the thesaurus wants to make
it more accessible for annotators and newcomers, to
maintain the high quality of the Ina archives. Currently,
annotators can ask for the presence of a term in the
thesaurus, but do not have the possibility of seeing its

context. The system features are designed to fit the users
professional needs.

Interaction: Because we only display the label that is
described in 4.2.1 on one level at a time, to provide a
clear decomposition of the different levels of the hier-
archy, we implemented an additional simple interaction
method to change the depth that we are focusing on.
We used the algorithm described in [56] to implement
a zoom and pan, to travel the hierarchy more easily. As
shown in Figure 9, we added a lifeline, that displays as
many boxes as the tree is deep and colors them depend-
ing on which subtree has the focus and at which depth
we are positioned. The leftmost green boxes represent
the parents of the currently focused region, and the
rightmost boxes show in brown the deepest local subtree
(additional gray boxes indicate the global deepest tree
if it stands in a different branch). For more details on
interaction techniques with hierarchical graphs, see [57].

Methodology: We set user tests based on professional
tasks to meet the Ina users motivations. Evaluating the
system’s discovery and its adequacy with the users’
needs, the tests measured the task completion only in
terms of the answers. The validation of the users oper-
ations (the quality of their answers) was assessed with
the help of an additional expert annotator, who helped
us design the tasks.

The users, 3 males and 3 females, were chosen consid-
ering 3 groups based on their thesaurus knowledge:

- 2 experts: they are the managers of the Ina thesaurus
and fully know it.

- 2 annotators: they have a partial knowledge of the
thesaurus knowing some keywords but not the structure
linking them.

- 2 researchers: they are experts in visualization pro-
totypes but have no knowledge about the thesaurus.

Each test requires approximately 2 hours, including
a presentation of the system and the evaluation, some
learning manipulations and 3 task achievements. Two
additional questionnaires complete the test. The first
questionnaire related information on readability and pre-
sentation. The other questionnaire regarded the ease of
use, the performance, the relevance of the system and
the user satisfaction.

Tasks: The tasks are set as ”high level“ tasks [54], [55],
because they do not aim to only find one element in the
tree and instead effectively produce an analysis by using
the map.

Task 1, the tree topology analysis: This task concerns
the readability and understanding of the visualization.
The user should compare and order the branches or
nodes according to their size and their depth. The ob-
jectives are: to see whether the tree is balanced; to find
whether there is a specific pattern; to order several terms
by their level; and, for a given term, to locate and observe
its neighborhood, its level, and the level of its children.

Task 2, annotation (find a node by its context): We
choose 5 web pages of news articles that contain an
image. The user should navigate in and interact with

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 12

the treemap to find the best keywords to annotate the
image on the page. This request means to navigate the
map and choose a term, checking at its level or below to
determine whether there is a more specific word that
could be a better match. The images were chosen so
that the annotation should contain at least 3 terms from
distinct branches of the thesaurus.

Task 3, ease of memorization: We tested wheter the
term’s characteristics and location are easy to remember.
We first asked the users to find the terms that were used
in the previous tasks using the navigation system on a
map with no label. Finally the users then must be asked
to put back the first level labels (representing 10 nodes)
on the blank map.

Results: On Task 1, all of the users were able to
successfully finish their tasks without major errors; how-
ever, some approximations in their answers existed.
The expert users immediately recognized the different
elements of the thesaurus on the map by analyzing the
tree structure, recognizing branches by their graphic at-
tributes, and picking specific patterns (the largest branch
in terms of the total number of leaves, deep branches
with a small number of leaves, or shallow branches with
a large number of leaves). The representation allowed
the users to have good global readability, while annota-
tors found it difficult to read the depth of a branch in
the map (but easy with the lifeline). They found different
depth perceptions depending on the colors that were
used for the boundaries and the leaves. The depth-label
representation gave the users difficulty in reading the
map topology especially when the labels were too long.
The depth and size perception for a specified node is
approximate but sufficiently good for this application.

On Task 2, all of the users succeeded in achieving their
tasks. Notably, in spite of some differences between the
chosen sets of keywords, all of the annotations were
considered to be valid. The work load was increased
by the interaction because the users could see far away
neighbors on the map; the users wanted to reach them
but were required to come back to the closest ancestor
before getting to them. The visual metaphor is good
enough that users want to navigate this map the same
way they navigate a cartographic map. There is also no
possibility to jump back to an ancestor that is farther
back than the node’s father.

On Task 3, every user was able to immediately find a
term the second time. We observed two main behaviors:
users remembered the path to a specific node, and users
remembered the actual location of a specific node on the
map. Most of the users could remember the labels and,
then, place them exactly on the map; the other users
remembered their locations after being given the labels.

Discussion: We confirmed that all of the users actually
achieved their tasks and found all of the elements that
are required to conduct an analysis based on the map,
validating its interaction effectiveness. With respect to
the visual effectiveness, the users were able to read all
of the tree elements. The exact depth perception of the

deepest elements is more confusing (perhaps because of
the choice of colors), but exploring them with the lifeline
perfectly fills this lack. Instead of the usual number
of direct children, the map shows within eyesight the
number of leaves under a tree node and its lineage,
which is a useful parameter for the thesaurus manager
to assess the tree balance.

The users easily found the context of any term while
searching it, without any additional manipulation or get-
ting lost in the thesaurus, which validates the efficiency
of the system. The hierarchical representation allows the
users to easily compare the size of the areas of different
shapes. The labels in their difference of sizes confuse the
users, with the largest labels attracting them regardless
of their node characteristics.

Most of the users have been eager to use this sys-
tem. The users have expressed a substantial amount of
positive feedback, but also recommended potential im-
provements, showing their immediate appropriation of
the tool. The users have expressed very concrete advice
on interaction and visual encoding improvements. More-
over, the users want to enrich the map with different
types of information such as the occurrences of each term
in the archive. The thesaurus also contains relationships
between terms; the users would like to see whether the
layout can be constrained by these relationships (term 1
is near term 2 because they share a relationship).

6 CONCLUSIONS AND FUTURE WORKS

We have presented a method for visualizing hierarchical
data as a map through the use of a 2D space-filling
curve. Elements of the hierarchy are displayed as nested
shapes following the region containment paradigm of
the treemaps. The algorithm presented in section 3.2
that regards the layout is the first contribution of this
paper. Although the solution is rapid, the hierarchy is
not easily readable. The second contribution of our paper
is the improvement of the first algorithm to separate the
boundaries between nested regions. This improvement
helps to more comfortably distinguish the hierarchy and
the boundaries can eventually be used to display the
labels. The final contribution of this paper is the labeling
algorithm for concave shapes. This solution is not only
useful for our technique but also can be applied to other
applications in the cartography field.

Such visualization ensures area correlation and the
stability of the layout. The input ordering of the nodes
is preserved, and represents itself as an additional vi-
sual variable that is expressed through node proximity
(even though our evaluation did not take such property
into account). Moreover, the GosperMap presents an
interesting and almost unique shape for each non-leaf
node of the tree (which we suspect can influence long
term memorization of the map), and pleasant aesthetic
shapes (which improve the prospects of users adopting
the interface).

We have validated the use of the GosperMap in
a professional documentation context. The limitations

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 13

mentioned by the users concern only a few minor im-
plementation aspects. Users even proposed many useful
improvements in both the interaction (offering a dual
exploration that is both tree-based and GosperMap-
based) and in the visualization (the relief effect could be
improved by a better color choice, and the layout could
be constrained with term relationships). We have shown
the stability and the ease for memorization of this type of
map, which are two qualities that are required for rapid
modification detection.

Following the interest of professional users for this
visualization, a more complete implementation integrat-
ing the temporal evolution of the hierarchy is underway,
together with constraints on the node ordering so that
the spatial positioning relates to transversal proximities.
We are also planning to improve the labeling readability,
and the boundary relief effect. Our future work will
focus on to what extent GosperMap visualizations are
preferred over other treemaps and what influence they
have on long term memory and mass adoption.

REFERENCES

[1] E. M. Reingold and J. S. Tilford, “Tidier drawings of trees,” IEEE
Transactions on Software Engeneering, vol. 7, no. 2, pp. 223–228,
1981.

[2] P. Eades, “Drawing free trees,” Bulletin of the Institute for Combi-
natorics and its Applications, vol. 5, pp. 10–36, 1992.

[3] S. Grivet, D. Auber, J.-P. Domenger, and G. Melancon, “Bubble
tree drawing algorithm,” in International Conference on Computer
Vision and Graphics, S. Verlag, Ed., 2004, pp. 633–641.

[4] B. Johnson and B. Shneiderman, “Tree maps: A space-filling ap-
proach to the visualization of hierarchical information structures,”
in IEEE Visualization, 1991, pp. 284–291.

[5] J. B. Kruskal and J. M. Landwehr, “Icicle plots: Better displays for
hierarchical clustering,” The American Statistician, vol. 37, no. 2,
pp. 162–168, 1983.

[6] T. Barlow and P. Neville, “A comparison of 2-d visualizations of
hierarchies,” in Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’01), 2001, pp. 131–138.

[7] W. M. Murrell, “Map on temperance,” Howes Sheet Anchor Press,
1846.

[8] A. Skupin, “From metaphor to method: Cartographic perspectives
on information visualization,” in Proceedings of the IEEE Sympo-
sium on Information Visualization (InfoVis’00), 2000, pp. 91–98.

[9] S. I. Fabrikant and A. Skupin, “Cognitively plausible informa-
tion visualization,” in Exploring Geovisualization, elsevier ltd. ed.,
J. Dykes, A. M. MacEachren, and M.-J. Kraak, Eds., 2005, pp. 667–
682.

[10] J. Bertin, “Semiology of graphics: diagrams, networks, maps,”
1983.

[11] N. Tractinsky, A. Katz, and D. Ikar, “What is beautiful is usable,”
Interacting with computers, vol. 13, no. 2, pp. 127–145, 2000.

[12] Y. Liu, “The aesthetic and the ethic dimensions of human factors
and design,” Ergonomics, vol. 46, no. 13-14, pp. 1293–1305, 2003.

[13] A. Sonderegger and J. Sauer, “The influence of design aesthetics
in usability testing: Effects on user performance and perceived
usability,” Applied Ergonomics, vol. 41, no. 3, pp. 403–410, 2010.

[14] M. Sarkar and M. H. Brown, “Graphical fisheye views,” Commu-
nication ACM, vol. 37, no. 12, pp. 73–83, 1994.

[15] W. Tobler, “Pseudo-cartograms,” The American Cartographer,
vol. 13, pp. 43–50, 1986.

[16] D. A. Keim, S. C. North, and C. Panse, “Cartodraw: A fast algo-
rithm for generating contiguous cartograms,” IEEE Transactions
on Visualization and Computer Graphics, vol. 10, no. 1, pp. 95–110,
2004.

[17] E. Raisz, “The rectangular statistical cartogram,” Geographical
Review, vol. 24, no. 2, pp. 292–296, 1934.

[18] M. J. van Kreveld and B. Speckmann, “On rectangular car-
tograms,” Computational Geometry, Theory and Applications, vol. 37,
no. 3, pp. 175–187, 2007.

[19] M. Rooke, T. Grossman, and G. Fitzmaurice, “Appmap: exploring
user interface visualizations,” in Proceedings of Graphics Interface
2011. Canadian Human-Computer Communications Society,
2011, pp. 111–118.

[20] T. Kohonen, Self-Organizing Maps. Springer-Verlag, 1995.
[21] A. Skupin, “A cartographic approach to visualizing conference

abstracts,” IEEE Computer Graphics and Applications (CGA), vol. 22,
no. 1, pp. 50–58, 2002.

[22] Y. Hu, E. R. Gansner, and S. G. Kobourov, “Visualizing graphs
and clusters as maps,” IEEE Computer Graphics and Applications,
vol. 30, no. 6, pp. 54–66, 2010.

[23] J. A. Wise, J. J. Thomas, K. Pennock, D. Lantrip, M. Pottier,
A. Schur, and V. Crow, “Visualizing the non-visual: spatial anal-
ysis and interaction with information from text documents,” in
Proceedings of the IEEE Symposium on Information Visualization
(InfoVis’95), 1995, pp. 51–58.

[24] R. van Liere and W. C. de Leeuw, “Graphsplatting: Visualizing
graphs as continuous fields,” IEEE Transactions on Visualization
and Computer Graphics, vol. 9, no. 2, pp. 206–212, 2003.

[25] I. Y. Liao, M. Petrou, and R. Zhao, “A fractal-based relaxation
algorithm for shape from terrain image,” Computer Vision Image
Understanding, vol. 109, no. 3, pp. 227–243, 2008.

[26] D. A. Keim, H.-P. Kriegel, and M. Ankerst, “Recursive pattern:
A technique for visualizing very large amounts of data,” in
Proceedings of the IEEE Visualization conference, 1995, pp. 279–286.

[27] M. Wattenberg, “A note on space-filling visualizations and space-
filling curves,” in Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’05), 2005, p. 24.

[28] C. Muelder and K.-L. Ma, “Rapid graph layout using space filling
curves,” IEEE Transactions on Visualization and Computer Graphics,
vol. 6, no. 14, pp. 1301–1308, 2008.

[29] M. Graham and J. B. Kennedy, “A survey of multiple tree visual-
isation,” Information Visualization (IVS), vol. 9, no. 4, pp. 235–252,
2010.

[30] K. Andrews and H. Heidegger, “Information slices: Visualising
and exploring large hierarchies using cascading, semi-circular
discs,” in Proceedings of the IEEE Symposium on Information Visual-
ization (InfoVis’98), 1998, pp. 9–12.

[31] J. T. Stasko and E. Zhang, “Focus+context display and navigation
techniques for enhancing radial, space-filling hierarchy visual-
izations,” in Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’00), 2000, pp. 57–65.

[32] M. Bruls, K. Huizing, and J. J. van Wijk, “Squarified treemaps,” in
Proceedings Joint Eurographics/IEEE TVCG Symposium Visualization,
VisSym, 2000, pp. 33–42.

[33] B. B. Bederson, B. Shneiderman, and M. Wattenberg, “Ordered
and quantum treemaps: Making effective use of 2d space to
display hierarchies,” ACM Transactions on Graphics (TOG), vol. 21,
no. 4, pp. 833–854, 2002.

[34] R. Vliegen, J. J. van Wijk, , and E.-J. van der Linden, “Visualizing
business data with generalized treemaps,” IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 5, pp. 789–796,
2006.

[35] M. Balzer, O. Deussen, and C. Lewerentz, “Voronoi treemaps for
the visualization of software metrics,” in Proceedings of the 2005
ACM symposium on Software visualization (SoftVis’05), 2005, pp.
165–172.

[36] M. Balzer and O. Deussen, “Voronoi treemaps,” in Proceedings of
the IEEE Symposium on Information Visualization (InfoVis’05), 2005,
p. 7.

[37] A. Sud, D. Fisher, and H.-P. Lee, “Fast dynamic voronoi
treemaps,” in Proceedings of the 2010 International Symposium on
Voronoi Diagrams in Science and Engineering (ISVD’10). IEEE
Computer Society, 2010, pp. 85–94.

[38] B. B. Bederson, “Photomesa: a zoomable image browser using
quantum treemaps and bubblemaps,” in Proceedings of the ACM
Symposium on User Interface Software and Technology (UIST’01),
2001, pp. 71–80.

[39] R. Wettel and M. Lanza, “Visualizing software systems as cities,”
in Proceedings of the 4th IEEE International Workshop on Visualizing
Software For Understanding and Analysis (VisSoft’07), 2007, pp. 92–
99.

[40] K. Buchin, D. Eppstein, M. Löffler, M. Nöllenburg, and R. I. Sil-
veira, “Adjacency-preserving spatial treemaps,” in Proceedings of

JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, JANUARY 2007 14

the 12th International Symposium on Algorithms and Data Structures
(WADS’11), ser. Lecture Notes in Computer Science, vol. 6844.
Springer, 2011, pp. 159–170.

[41] J. Wood and J. Dykes, “Spatially ordered treemaps,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 14, no. 6, pp.
1348–1355, 2008.

[42] B. B. Mandelbrot, The Fractal Geometry of Nature. W. H. Freedman
and Co., 1983.

[43] T. Itoh, C. Muelder, K.-L. Ma, and J. Sese, “A hybrid space-
filling and force-directed layout method for visualizing multiple-
category graphs,” in Proceedings of the 2009 IEEE Pacific Visualiza-
tion Symposium (PacificVis’09), 2009, pp. 121–128.

[44] H. J. Haverkort and F. van Walderveen, “Locality and bounding-
box quality of two-dimensional space-filling curves,” Computa-
tional Geometry, Theory and Applications, vol. 43, no. 2, pp. 131–147,
2010.

[45] B. Mandelbrot, Fractals: Form, Chance, and Dimension, ser. Mathe-
matics Series. W. H. Freeman, 1977.

[46] W. T. Tutte, “How to draw a graph,” Proceedings of the London
Mathematical Society, vol. 13, pp. 743–768, 1963.

[47] K. Börner, Atlas of Science: Visualizing What We Know. MIT Press,
2010.

[48] F. Y. L. Chin, J. Snoeyink, and C. A. Wang, “Finding the medial
axis of a simple polygon in linear time,” Discrete & Computational
Geometry, vol. 21, no. 3, pp. 405–420, 1999.

[49] R. Uehara and Y. Uno, “Efficient algorithms for the longest path
problem,” in Proceedings of the 15th International Symposium on
Algorithms and Computation (ISAAC 2004), 2004, pp. 871–883.

[50] J. Wood and J. Dykes, “Spatially ordered treemaps,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 14, pp. 1348–1355,
2008.

[51] S. Bateman, R. L. Mandryk, C. Gutwin, A. Genest, D. McDine, and
C. A. Brooks, “Useful junk?: the effects of visual embellishment
on comprehension and memorability of charts,” in Proceedings of
the 28th International Conference on Human Factors in Computing
Systems, (CHI’10), 2010, pp. 2573–2582.

[52] P. Luzzardi, C. Freitas, R. Cava, G. Duarte, and M. Vasconcelos,
“An extended set of ergonomic criteria for information visualiza-
tion techniques,” in Proceedings of the Seventh IASTED International
Conference on Computer Graphics And Imaging (CGIM 2004), 2004,
pp. 236–241.

[53] I. EIC, Ergonomic requirements for office work with visual display
terminals (VDTs), 1998.

[54] C. Plaisant, “The challenge of information visualization evalua-
tion,” in Proceedings of the working conference on Advanced visual
interfaces. ACM, 2004, pp. 109–116.

[55] Y. Wang, S. Teoh, and K.-L. Ma, “Evaluating the effectiveness of
tree visualization systems for knowledge discovery,” in Proceed-
ings of Eurographics/IEEE-VGTC Symposium on Visualization, 2006,
pp. 67–74.

[56] J. J. van Wijk and W. A. A. Nuij, “Smooth and efficient zooming
and panning,” in Proceedings of the IEEE Symposium on Information
Visualization (InfoVis’03), 2003, pp. 15–23.

[57] J. Yang, W. Peng, M. O. Ward, and E. A. Rundensteiner, “Inter-
active hierarchical dimension ordering, spacing and filtering for
exploration of high dimensional datasets,” in Proceedings of the
IEEE Symposium on Information Visualization (InfoVis’03), 2003, pp.
105–112.

David Auber received his PhD degree from the
University of Bordeaux I in 2003. He has been an
assistant professor in the University of Bordeaux
Department of Computer Science since 2004.
His current research interests include informa-
tion visualization, graph drawing, bioinformatics,
databases, and software engineering.

Charles Huet received his Masters degree in
2009 at University of Bordeaux I, Software Engi-
neer at INRIA Bordeaux Sud-Ouest since 2010.
His interests are Software Engineering and In-
formation Visualization.

Antoine Lambert received his PhD degree from
the University of Bordeaux I in 2012. He is
currently a research engineer at the University
of Bordeaux I and the LaBRI. His research in-
terests are information visualization and graph
drawing.

Benjamin Renoust did his graduate studies in
both the University of Technology at Belfort and
the Korea Advanced Institute of Science and
Technology in Computer Science and Engineer-
ing. He started preparing his PhD in 2009 at both
the LaBRI (University of Bordeaux I) and the
National Institute for Audiovisual with interests in
graph analysis and visualization.

Arnaud Sallaberry received his PhD degree
from the University of Bordeaux I in 2011. He is
currently a post doctoral researcher at the Uni-
versity of California, Davis, in the ViDi research
group. His current research interests include
information visualization, network analysis and
graph drawing.

Agnès Saulnier is a Researcher/Engineer in the
research department of INA. She received her
Engineering degree from the Ecole Nationale
Supérieure des Télécommunications in 1992.
She was firstly involved in research and devel-
opment in image analysis. Her current research
includes evaluation methodologies.

