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Abstract. We obtain explicit formulas for the enumeration of labelled parallelogram
polyominoes. These are the polyominoes that are bounded, above and below, by north-
east lattice paths going from the origin to a point (k, n). The numbers from 1 to n (the
labels) are bijectively attached to the n north steps of the above-bounding path, with
the condition that they appear in increasing values along consecutive north steps. We
calculate the Frobenius characteristic of the action of the symmetric group Sn on these
labels. All these enumeration results are refined to take into account the area of these
polyominoes. We make a connection between our enumeration results and the theory
of operators for which the integral Macdonald polynomials are joint eigenfunctions. We
also explain how these same polyominoes can be used to explicitly construct a linear
basis of a ring of SL2-invariants.

Contents

1. Introduction 1
2. Paths and labelled paths 2
3. Parallelogram polyominoes 5
4. Parallelogram polyominoes, as indexing set of SL2-invariants 8
5. Labelled parallelogram polyominoes 10
6. Doubly labelled polyominoes 14
7. Operators and Macdonald polynomials 16
8. Formula for the q-Frobenius characteristic of the labelled polyomino module 19
9. Thanks and future considerations 23
References 24

1. Introduction

Parallelogram polyominoes have been studied by many authors (see [5, 11, 8] for a nice
survey and enumeration results). They correspond to pairs π = (α, β) of north-east
paths going from the origin to a point (k, n) in the combinatorial plane N×N, with the
path α staying “above” the path β. Our aim here is to study properties, and related nice
formulas, of “labelled parallelogram polyominoes”. These are obtained by bijectively
labelling each of the n north steps of the path α with the numbers between 1 and
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n. Our motivation stems from a similarity between this new notion and recent work
on labelled intervals in the Tamari lattice, in connection with the study of trivariate
diagonal harmonic polynomials for the symmetric group (see [4]).

We calculate explicitly the Frobenius characteristic of the natural action of the symmetric
group Sn on these labelled polyominoes; and study aspects of a weighted version of this
Frobenius characteristic with respect to the area of the polyominoes. This connects our
study to interesting operators for which adequately normalized Macdonald polynomials
are joint eigenfunctions. This is the same theory that appears in the study of the Sn-
module of bi-variate diagonal harmonics (see [13, 14, 10]).

We also extend some of our considerations to parallelogram polyominoes, with added
labels on east steps of the below-bounding path; with a corresponding action of the
group Sk × Sn. Several components of these spaces are naturally related to parking
function modules.

2. Paths and labelled paths

Let k and n be two positive integers and set N = k + n. A k × n north-east (lattice)
path in N×N is a sequence α = (p0, . . . , pi, . . . pN) of points pi = (xi, yi) in N×N, with
p0 = (0, 0) and pN = (k, n), and such that

(xi+1, yi+1) =

{
(xi, yi) + (1, 0) an east step, or

(xi, yi) + (0, 1) a north step.

Figure 1 gives an example of a 10× 6 north-east lattice path. We denote by Pk,n the set
of k × n north-east paths. These paths are often encoded as a word ω = w1w2 · · ·wN ,
on the alphabet {x, y}, with x standing for an east step, and y for a north step; and k
is the number of x’s, while n is that of y’s. Thus, the path of Figure 1 is encoded as
yyxxxyyxxyxxxyxx.

Another description of such a path α may be given in terms of the sequence of “heights”
of its k horizontal steps (written from left to right), so that we may write

α = a1a2 · · · ak.

More specifically, ai is equal to the unique yj such that xj = i and xj−1 = i − 1. We
say that this is the height sequence description of α. Thus, the top path in Figure 1 may
be encoded as the height sequence 2224455566. We observe that the height sequence is
increasing, i.e. ai ≤ ai+1; and that any increasing sequence a1a2 · · · ak, with 0 ≤ ai ≤ n
corresponds to a unique path.

Exchanging the role of the axes, we may also describe α in terms of its indentation
sequence. This is simply the bottom to top sequence of distance between vertical steps
in α, and the y-axis. For example, the indentation sequence of our running example is
003358. Once again, this establishes a bijection between k × n north-east lattice paths,
and length n increasing sequences of values between 0 and k.
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There is a classical bijection between north-east paths in Pk,n and monomials of degree
k in the variables x = (x1, . . . , xn+1). One simply associates to a height sequence α =
(a1, a2, . . . , ak), the monomial

xα := xa1+1xa2+1 · · ·xak+1.

Thus, we get the well known formula for the Hilbert series, denoted R(x), of the poly-
nomial ring R = C[x]:

R(x) =
∞∑
k=0

(
n+ k

k

)
xk =

(
1

1− x

)n+1

. (2.1)

Recall that the coefficients of this series correspond to the dimension of the homogeneous
components of the space considered.

The q-weighted area enumeration of Pk,n, is defined to be

Pk,n(q) :=
∑
α∈Pk,n

qarea(α), (2.2)

with area(α) equal to the number of cells in N×N lying below the path α. In Figure 1,
the area of the path is the shaded region. It is also well known that Pk,n(q) is equal to
the classical q-analog of the binomial coefficient:

Pk,n(q) =

[
n+ k

k

]
q

= hk(1, q, . . . , q
n+1). (2.3)

-

6

n


︸ ︷︷ ︸

k

Figure 1. A north-east path, and its area.

Labelled paths. We now add labels to north steps of paths in Pk,n. We require these
labels, going from 1 to n, to be increasing whenever they lie on north steps having same
horizontal coordinate. The underlying path, of a labelled path `, is said to be its shape.
We denote by Lk,n, the set of labelled paths having shapes lying in Pk,n. It is easy to see
that the number of labelled paths is (k+ 1)n, with q-weighted enumeration given by the
straightforward q-analog ∑

α∈Lk,n

qarea(α) = ([k + 1]q)
n. (2.4)
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Observe1 that labelled path ` may be bijectively turned into a function from [n] :=
{1, 2, . . . , n} to [k+ 1] := {1, 2, . . . , k+ 1}, as follows. We simply set `(i) := j, whenever
i lies along a north step having first coordinate equal to j − 1. Thus, the fibers of the
resulting function correspond to the labels of consecutive north steps. We say that the
set partition of `, is the partition of [n] into these fibers.

-

6

n


︸ ︷︷ ︸

k

1
3

2
6

5
4

Figure 2. A labelled path with below area equal to 41.

The symmetric group Sn acts by permuting labels, up to reordering labels that lie one
above the other. In fact, it may be best to consider this in the context of the inden-
tation sequence encoding of paths. In this point of view, a labelled path is simply a
permutation of this sequence. Thus, k × n labelled paths are just another name for
length n sequences of numbers between 0 and k. The shape α (underlying path), of a
labelled path `, is simply the increasing ordering of this sequence. Still we will keep using
the path terminology, which is better adapted to our upcoming study of parallelogram
polyominoes.

It is a classical result that the corresponding Frobenius characteristic is given by the
formula2

Frob(Lk,n)(z) = hn[(k + 1) z] (2.5)

=
∑
µ`n

(k + 1)`(µ)
pµ(z)

zµ
(2.6)

=
∑
µ`n

sµ[k + 1] sµ(z). (2.7)

Recall that this last equality says that sµ[k + 1] is the multiplicity, in Lk,n, of the irre-
ducible representation indexed by the partition µ. Taking into account the area, we have

1Our reason for considering functions from [n] to [k + 1] as labelled paths will become apparent in
the sequel.

2We follow Macdonald’s notation (see [17]) for symmetric functions. Complete symmetric and Schur
functions are respectively denoted by the letters h and s. We also use plethystic notations. See [3] for
more on this.
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a direct q-analog of the previous formula

Frob(Lk,n)(z; q) = hn

[
z
qk+1 − 1

q − 1

]
(2.8)

=
∑
µ`n

sµ(1, q, . . . , qk) sµ(z). (2.9)

3. Parallelogram polyominoes

Beside setting up notations, the aim of this section is to recall basic (well-known) facts
about parallelogram polyominoes. For two paths α and β in Pk,n, we get a polyomino
π = (α, β) if α stays “above” β. One usually thinks of a parallelogram polyomino
π = (α, β) as the region of the plane bounded above by the path α, and below by the
path β. Except for endpoints, all points of the path β = (q0, . . . , qi, . . . qN) are required
to be strictly below those of α = (p0, . . . , pi, . . . pN). Hence, writing qi = (x′i, y

′
i), this is

to say that y′i < yj whenever x′i = xj, for 1 ≤ i, j ≤ N . We say that n is the height of π,
and that k is its width; and we denote by Pk,n the set of parallelogram polyominoes of
height n and width k. The number of 1× 1 boxes lying between the two paths is always
larger or equal to k + n− 1, and equality holds for ribbon shapes. Thus, it is natural to
subtract this value in the definition of the area of the polyomino π, denoted by area(π).
Hence ribbon shapes have zero area. The area-enumerating polynomial is then defined
as

Pk,n(q) :=
∑
π∈Pk,n

qarea(π). (3.1)

Clearly the reflection in the diagonal x = y maps bijectively the set Pk,n on the set Pn,k,
we have the symmetry Pk,n(q) = Pn,k(q). This is reflected in the generating function

P(x, y; q) :=
∑

(k,n)∈N×N

Pk,n(q)xk yn,

= xy + xy2 + x2y + xy3 + (2 + q)x2y2 + x3y

+ xy4 + (3 + 2 q + q2)x2y3 + (3 + 2 q + q2)x3y2 + x4y

+ xy5 + (4 + 3 q + 2 q2 + q3)x2y4

+ (6 + 6 q + 5 q2 + 2 q3 + q4)x3y3

+ (4 + 3 q + 2 q2 + q3)x4y2 + x5y + . . .

which can be expressed in terms of Bessel functions (see [5]). When q = 1, we have

Pk+1,n(1) = |Pk+1,n| = sk,k[n+ 1] (3.2)

=
1

k + 1

(
n+ k

k

)(
n+ k − 1

k

)
. (3.3)

Indeed this is a direct consequence of the principal specialisation formula for Schur
functions.
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-
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Figure 3. A Parallelogram polyomino and the corresponding Motzkin path.

Alternate descriptions. We may shed new light on our study of parallelogram poly-
ominoes by exploiting alternate encodings for them. For paths α, β ∈ Lk+1,n, respec-
tively3 given as increasing sequences α = a0a1 · · · ak and β = b1b2 · · · bk+1, the pair
π = (α, β) is a parallelogram polyomino if and only if a0 = 0, bk+1 = n+ 1, and ai > bi,
for 1 ≤ i ≤ k. Hence, we may identify parallelogram polyominoes with semi-standard
tableaux (see Figure 4) of shape k2 with values in {1, 2, . . . , n + 1}, thus explaining
formula (3.2). Naturally, we may also describe parallelogram polyominoes in terms of
indentation sequences, thus getting semi-standard tableaux of shape n2, with values in
{1, 2, . . . , n}. Going from the first encoding of a given polyomino to the second one, es-
tablishes a classical bijection between the two equally numerous families of semi-standard
tableaux.

a1 a2 a3 ak

b1 b2 b3 bk. . .

. . .

. . .

Figure 4. Semi-standard tableau of shape k2; ai ≤ ai+1 and ai > bi.

There is also a well-known bijection (see [8]) between parallelogram polyominoes and
Primitive Motzkin Paths. Recall that these are the paths, in N×N, going from (0, 0) to
(N, 0), with steps either north-east, east (either red or blue), or south-east. Thus, the
consecutive points, along the path, are linked as follows

(xi+1, yi+1) =



(xi, yi) + (1, 1) a north-east step, or

(xi, yi) + (1, 0) a red-east step, or

(xi, yi) + (1, 0) a blue-east step, or

(xi, yi) + (1,−1) a south-east step.

Primitive paths are those that never return to the horizontal, except at endpoints.
Motzkin paths are often simply presented in terms of Motzkin words. Recall that these
are the words ω = w1w2 · · ·wN , on the alphabet {d, d, r, b}, such that

(1)
∣∣ω≤i∣∣d ≥ ∣∣ω≤i∣∣d, for all 1 ≤ i ≤ N − 1,

3The shift in indices is intentional here.
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(2)
∣∣ω∣∣

d
=
∣∣ω∣∣

d
,

where |ω|d (resp. |ω≤i|d) stands for the number of d′s occurring in ω (resp. d), and ω≤i
denotes the prefix of length i of ω. The word corresponds to a primitive path, precisely
when all inequalities are strict in the first condition. Each letter encodes one of the
possible steps: d for north-east, r for red-east, b for blue-east, and d for south-east. For
a polyomino π = (α, β), with α = u1u2 · · ·uN and β = α = v1v2 · · · vN given as words in
{x, y}, Viennot’s encoding [8] consists in setting

wi :=



d if (ui, vi) = (x, y),

r if (ui, vi) = (y, y),

b if (ui, vi) = (x, x),

d if (ui, vi) = (y, x).

See Figure 3 for an example.

Lastly, a parallelogram polyomino may be encoded as a word in the ordered alphabet

A = {0, 1, 1, 2, 2, 3, 3, 4, · · · }.

To do this, we start with its primitive Motzkin path encoding π, and successively replace
each step in π by a m-sequence of letters in the A, 0 ≤ m ≤ 2, according to the following
rules.

• A down step is replaced by an empty sequence;
• an up step, at height j, is replaced by the 2-sequence j (j + 1);
• a red horizontal step, at height j, is replaced by j;
• a blue horizontal step at height j is replaced by j.

Figure 5 illustrates this process.

-

6

����
���� @@@@����@@@@

@@@@ 0 1 1 1 2 2 1 2 1

Figure 5. From Motzkin path to word in A.

Remark 1. The correspondence between parallelogram polyominoes and primitive Motz-
kin paths, suggests that we should study “sequences” of parallelogram polyominoes which
correspond to general Motzkin paths. In particular, this will make apparent more ties
with the study of parking functions that correspond to Dyck path touching the diagonal
at specific points.
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Figure 6. A parallelogram polyomino sequence.

4. Parallelogram polyominoes, as indexing set of SL2-invariants

Part of the motivation for our current study of the combinatorics of parallelogram poly-
ominoes is to tie this study to that of parking functions and labelled intervals in the
Tamari poset. Recall that more and more evidence shows that this combinatorics is
intimately related to the study of the Sn-modules of bivariate and trivariate diagonal
harmonics. Along these lines, it is interesting to observe that the number of polyomi-
noes corresponds to the dimension of the space of SL2-invariants of weight k + 1 of the
Grassmannian G(2, n+1), see [19, page 238]. We make this more explicit as follows. Let
X be the matrix of 2× n variables

X =

(
x1, x2, · · · , xn
y1, y2, · · · , yn

)
.

The special group acts on polynomials f(X), in C[X], by left multiplication of X by
matrices in SL2. Invariants under this action are precisely the polynomial expressions
in the 2 × 2 minors4 of X. To construct an explicit linear basis of the resulting ring,
Rn := C[X]SL2 , one needs only take into account the Plücker relations on these 2 × 2
minors. More precisely, as described in [18], we have the exact sequence

0 −→ Pn −→ C[Yi,j]1≤i<j≤n −→ Rn −→ 0, (4.1)

where the Yi,j are variables, the third arrow sends Yi,j to Xi,j (the 2 × 2 minor corre-
sponding to the choice of columns i and j in X), and Pn stands for the ideal generated
by the Plücker relations

Yi`Yjk − YikYj` + YijYk` = 0, for 1 ≤ i < j < k < ` ≤ n. (4.2)

Moreover, using a somewhat reformulated result also discussed in [18, Thm 14.6], it fol-
lows that a linear basis of Rn = C[X]SL2 may be indexed by parallelogram polyominoes.
In fact, we do this in a graded fashion5, constructing for each d ≥ 0 the d-homogeneous
part of the basis as a collection of product of d minors. The characterizing property

4These are clearly SL2-invariants.
5Considering 2× 2 minors to be of degree 1.
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of these products is that they must not be divisible by a binomial XijXk`, for {i, j}
incomparable to {k, `} relative to the following order on pairs of integers. We set

{i, j} ≺ {k, `}, iff i < k and j < `,

assuming, without loss of generality, that i < j and k < `.

Now, given a polyomino π = (α, β) ∈ Pd+1,n−1, for which the height sequences of α and
β are respectively6 a0a1 · · · ad and b1b2 · · · bd+1, we consider the minor monomial

Xπ :=
d∏
i=1

X(bi+1,ai+1). (4.3)

The fact that the path β remains below the path α is equivalent to the fact that the
minor monomial Xπ satisfies the charactering property of the previous paragraph. For
example, the minor monomial associated to the polyomino π = (2224455566, 0011112223)
of Figure 7 is

Xπ = X13X
2
23X

2
25X

3
36X47.

Proposition 1. The family {Xπ}π, with π varying in the set of parallelogram polyomi-
noes Pd+1,n−1, constitute a linear basis for the degree d homogeneous component of the
ring Rn.

It follows that, for a given n, the Hilbert series of Rn is given by the formula

Rn(x) =
∞∑
d=0

|Pk+1,n|xk (4.4)

=
1

1− x2n−1
n−2∑
k=0

1

k + 1

(
n− 2

k

)(
n− 1

k

)
xk. (4.5)

This approach may readily be expanded to cover families of r non-intersecting paths from
(0, 0) to (k, n), which also parametrize SLr-invariants. The corresponding enumeration is
easily obtained in terms of Schur functions (using Lindström-Gessel-Viennot [12]), giving

|P(r)
k+1,n| = skr [n+ 1], (4.6)

where P(r)
k,n denotes the set of such families, and kr stands for the rectangular partition

(k, k, . . . , k︸ ︷︷ ︸
r

).

Action of Sn on Rn. We may refine the graded enumeration of the ring Rn, by consid-
ering its irreducible decomposition with respect to the action of Sn, which corresponds
to permutations of the n columns of X. Thus we consider the graded Frobenius charac-
teristic

Frob(Rn)(z;x) =
∞∑
d=0

Frob(R(d)
n )(z)xd, (4.7)

6The shift in indices is intentional here.
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where R(d)
n stands for the degree d homogeneous component of Rn.

To calculate this, we follow an approach due to Littlewood for the calculation of the
character of the restriction to Sn of an action of GLn. It follows from general principles

that the character of the action of GLn on R(d+1)
n , the degree d + 1 component of Rn,

is equal to the schur function sd2(q1, . . . , qn). The corresponding character value, for
the restriction of this action to Sn, is obtained by evaluating this Schur function at the
eigenvalues of permutations. This may be easily calculated, without explicit knowledge
of these eigenvalues, in the following manner.

We start by expanding sdd(q1, . . . , qn) in terms of the power-sum symmetric function,
thus turning the required evaluation into the calculation of the sums of kth-powers of the
eigenvalues of any given permutation matrix σ. But this turns out to be equal to the
number of fixed points of the kth-power of σ. If µ is the partition giving cycle sizes of σ,
this number of fixed points may simply be expressed as

fix(σk) =
∑
µi|k

µi. (4.8)

Hence, the Frobenius characteristic that we are looking for is given by the formula

R(d+1)
n (z) =

∑
µ`n

sdd
∣∣
pk←ϕk(µ)

pµ(z)

zµ
, (4.9)

where we set ϕk(µ) :=
∑

µi|k µi, i.e. the sum of the parts of µ that divide k.

5. Labelled parallelogram polyominoes

A labelled parallelogram polyomino is obtained by labeling (as in Section 2) the top path
of a parallelogram polyomino. Equivalently, this may be presented in terms of labelled
Motzkin paths, with labels associated with either north-east steps, or red-east steps. In
this case, the relevant increasing-labelling condition simply states that labels should be
increasing whenever we they occur on consecutive north-east or red-east steps. Figure 3
gives an example of such a labelling, in both encodings.

1
3

2
6

5
4

-
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1
3 2

6 5 4

Figure 7. A labelled parallelogram polyomino.
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We say that the underlying parallelogram polyomino is the shape of the labelled paral-
lelogram polyomino, and denote by Lπ the set of labelled parallelogram polyominoes of
shape π. We also denote by Lk,n7 the set of labelled parallelogram polyominoes of height
n and width k, so that

Lk,n =
⋃

π∈Pk,n

Lπ.

A maximal length sequence of north steps, in a path α, is said to be a big-step of α.
Clearly, for a height n path α, the sequence of big-step lengths in α forms a composition
of n. We denote it by γ(α), also setting γ(π) := γ(α) in the case of a parallelogram
polyomino π = (α, β). Recall that it is customary to write ν |= n when ν is a composition
of n.

Remark 2. It is surely worth mentioning that, when k = n, “classical” Parking Func-
tions may be obtained as special instances of parallelogram polyomino (sequences8), in
fact in at least three different ways. The first is obtained by the simple device of con-
straining the lower path to be equal to the zigzag path, the one who has height sequence
equal to 012 · · · (n−1). In a similar manner, we may fix the lower path to be the one that
follows the lower boundary of the surrounding rectangle. Still, an even more natural way
is to consider labelled parallelogram polyominoes sequences whose shape is symmetric
with respect to the diagonal x = y. All of these correspondences are compatible with
the action on labels, and area is easy to track. Hence, most of the following formulas
may be considered as extensions of analogous formulas for parking functions, potentially
in three different ways.

For a height n parallelogram polyomino π = (α, β), the symmetric group Sn acts by
permutation on the set Lπ, up to a reordering of labels along big-steps. This implies
that

|Lπ| =
(

n

γ(π)

)
, (5.1)

where we use the classical multinomial coefficient notation(
n

ν

)
=

n!

ν1!ν2! · · · νk!
, when ν = (ν1, ν2, . . . , νk) and ν |= n.

It follows (see Proposition 3) that

Proposition 2. The number of labelled parallelogram polyominoes is given by the formula

|Lk,n| = kn−1
(
n+ k − 2

k − 1

)
, (5.2)

and we have the identity

kn−1
(
n+ k − 2

k − 1

)
=
∑
π∈Pk,n

(
n

γ(π)

)
. (5.3)

7The top (labelled) path of any element of Lk,n is an element of Lk,n (see Section 2), whence the
notation.

8This is needed to take into account the possibility that the two paths may touch one another.
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It may be worth mentioning that we have the nice generating function
∞∑
n=0

kn−1
(
n+ k − 2

k − 1

)
xn =

(
1

1− k x

)k
. (5.4)

The following result provides a common refinement of formulas (3.3) and (5.2), stated
in terms of the Frobenius characteristic of the Sn-modules Lπ and Lk,n (here considered
as free vector spaces over the specified sets).

Writing ν = (ν1, ν2, . . . , νj) for γ(π), it is a classical result that the Frobenius charac-
teristic of Lπ is simply given by the symmetric function hν(z) (in the variables z =
z1, z2, z3, . . .). Indeed, the Young subgroup Sν1 × · · · × Sνj is precisely the stabilizer of
the labelled parallelograms polyominoes of shape π. We thus have that

Proposition 3. The Frobenius characteristic of Lk,n is given by the formula

Frob(Lk,n) :=
∑
π∈Pk,n

hγ(π)(z), (5.5)

and

Frob(Lk,n) =
1

k
hn[k z]

(
n+ k − 2

k − 1

)
(5.6)

=
∑
λ`n

k`(λ)−1
(
n+ k − 2

k − 1

)
pλ(z)

zλ
(5.7)

=
∑
µ`n

1

k
sµ[k]

(
n+ k − 2

k − 1

)
sµ(z), (5.8)

where `(ν) (resp. `(µ)) stands for the length of a composition ν (resp. partition µ), and
k is considered as a constant for the plethystic evaluation in the formulas.

Observe that Formulas (5.2) and (3.3) follow easily from the above expressions, and
that (5.6)–(5.8) are polynomial in k. Special values are as follows:

Frob(Lk,1) = h1(z)

Frob(Lk,2) =

(
k

2

)
h11(z) + k h2(z)

Frob(Lk,3) = 2

(
k + 1

4

)
h111(z) + 3

(
k + 1

3

)
h21(z) +

(
k + 1

2

)
h3(z)

Frob(Lk,4) = 5

(
k + 2

6

)
h1111(z) + 10

(
k + 2

5

)
h211(z) + 4

(
k + 2

4

)
h31(z)

+ 2

(
k + 2

4

)
h22(z) +

(
k + 2

3

)
h4(z)

Proof of (5.6). An extension of the “cyclic lemma” of [1] gives a combinatorial proof
of Identity (5.6). Consider the action of Sn, on pairs (`′, β′) in Lk−1,n × Pk−1,n−1, that
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permutes labels in `′ (as in Section 2). Assume that α′ is the underlying path of `′. Since
`′ and β are independent, in view of (2.5), the corresponding Frobenius characteristic
may be expressed as

Frob(Lk−1,n × Pk−1,n−1)(z) = hn[k z]

(
n+ k − 2

k − 1

)
. (5.9)

We are going to show that there is an equivalence relation on the set Lk−1,n × Pk−1,n−1,
whose equivalence classes are all of size k, each of which containing one and only one
labelled polyomino. Furthermore, for all pairs of a given class, the set partition associated
to the labelled path are all the same. Hence, we may conclude that Frob(Lk,n) is equal
to the right hand-side of (5.9) divided by k, as formulated in (5.6).

2

1

3

≡
1

3

2

Figure 8. There is only one polyomino in the equivalence class of a pair (`, β).

To this end, we work with slightly modified versions, denoted by α and β, of the paths
α′ and β′. On one hand, α is obtained by simply adding an east step at the end of α′.
On the other hand, we get β by first shifting β′ to the right (sending each vertex (a, b)
to (a+ 1, b)), and then adding a final north step. Hence α now goes from (0, 0) to (k, n),
while β goes from (1, 0) to (k, n). We further denote by ` the labelled path version of `′,
which is directly obtained by carrying over the labels of α′ to α. This makes sense since
the only difference between the two is the perforce unlabeled final step. We underline
that by construction, ` and β end up at the same point, with a final east step for ` and
a final north step for β.

We now consider the two bi-infinite (labelled in one case) paths, denoted by `∞ and β∞,
obtained by repeatedly gluing together copies of the paths ` and β at both of their ends.
This is illustrated in Figure 9. Two pairs (`′1, β

′
1) and (`′2, β

′
2), in Lk−1,n × Pk−1,n−1, are

considered to be equivalent if they give rise to the same pair of bi-infinite paths, i.e.
(`∞1 , β

∞
1 ) is equal to (`∞2 , β

∞
2 ) up to a shift of the origin. Equivalent pairs correspond to

specific portions of the pair of infinite paths. These portions are precisely characterized
by points (x, y) where the two paths intersect in such a way that the `∞ reaches (x, y) by
an east step, and β∞ by a north step. We then say that `∞ and β∞ have a transversal
intersection at (x, y). Equivalent pairs correspond to portions of `∞ and β∞ both lying
in the rectangle having south west corner (x− k, y− n) and north east corner (x, y), for
transversal intersection points p = (x, y). We denote by `p and βp these portions.

As shown in [1] the two paths `∞ and β∞ have exactly k transversal intersections. To
finish our proof, we need only observe that, for every transversal intersection point p,
the set partition of `p is equal to that of `. Indeed, the big steps of `p are simply a cyclic
shift of those of `, together with their labels. �
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-

6

2

1

3

2

1

3

2

1

3

2

1

3

2

1

3

t
t t

t

. . . . . .

. . .. . .

Figure 9. The k transversal intersections of ∞-iterates of binomial paths.

Remark 3. It is interesting to compare Formula (5.7), evaluated at k = r n, with the
conjectured expression [4, Formula (17)] for the Frobenius characteristic of the space of
trivariate generalized diagonal harmonics. Recall that, up to a sign twist, this expression
takes the form ∑

λ`n

(r n+ 1)`(λ)−2
∏
j∈λ

(
(r + 1) j

j

)
pλ(z)

zλ
. (5.10)

It has been shown in [6] that this formula gives the Frobenius characteristic for the action
of the symmetric group on labelled intervals in the r-Tamari posets. Our point here is
that the difference∑

λ`n

(rn)`(λ)−1
(

(r + 1)n− 2

n− 1

)
pλ(z)

zλ
−
∑
λ`n

(r n+ 1)`(λ)−2
∏
j∈λ

(
(r + 1) j

j

)
pλ(z)

zλ
(5.11)

turns out to be h-positive. In terms of the corresponding Sn-modules, this implies that
the latter is contained in the former as a“permutation” Sn-module. In fact, more appears
to be true as discussed in Remark 7.

6. Doubly labelled polyominoes

We may further add labels to horizontal steps of the lower path, and get an action of

the product group Sk × Sn on the resulting set L(2)
k,n of doubly labelled parallelogram

polyominoes. We observe experimentally that the associated Frobenius characteristic is
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given by the formula

Frob(L(2)
k,n)(y, z) =

1

n− 1
hk[(n− 1)y]hn[k z] +

1

k − 1
hk[ny]hn[(k − 1)z]

− n+ k − 1

(n− 1)(k − 1)
hk[(n− 1)y]hn[(k − 1)z]. (6.1)

Observe the evident symmetry

Frob(L(2)
k,n)(y, z) = Frob(L(2)

n,k)(z,y), (6.2)

which corresponds to exchanging the coordinates in our polyominoes. For example, we
have

Frob(L(2)
3,2)(y, z) = (6 s3(y) + 3 s21(y)) s2(z) + (3 s3(y) + s21(y)) s11(z).

Here, the sµ(y) encode irreducibles of Sk, whereas the sλ(z) encode those of Sn. Naturally,
our previous formula (5.6) appears as the multiplicity of the trivial representation of Sk
in (6.1). More precisely, recalling that

〈hk[ny], hk(y) 〉 =

(
n+ k − 1

k

)
,

we have

Frob(Lk,n)(z) = 〈Frob(L(2)
k,n)(y, z), hk(y) 〉

=
1

n− 1

(
n+ k − 2

k

)
hn[k z]

+

(
1

k − 1

(
n+ k − 1

k

)
− n+ k − 1

(k − 1)(n− 1)

(
n+ k − 2

k

))
hn[(k − 1) z]

=
1

k

(
n+ k − 2

k − 1

)
hn[k z],

since the coefficient of hn[(k − 1)z] vanishes.

It also follows, directly from (6.1), that the total number of doubly labelled parallelogram

polyominoes in L(2)
k,n is

|L(2)
k,n| = kn (n− 1)k−1 + (k − 1)n−1 nk − (k − 1)n−1 (n− 1)k−1 (n+ k − 1). (6.3)

Considering Sk-isotypic components of L(2)
k,n, we sometimes obtain nice formulas for the

Frobenius characteristic of the resulting Sn-module. For instance, denoting by ρ the

rectangular partition rn, we find that the coefficient of sρ(y) in L(2)
rn,n(y, z) is

L(2)
rn,n(y, z)

∣∣∣
sρ(y)

=
1

rn− 1
hn[(rn− 1) z)]. (6.4)

See remark 6 for a q-analog of this formula.

We also have an alternative way to doubly label parallelogram polyominoes, which has a
meaning when such labelled objects encode stable configurations for the sandpile model
associated to the complete bipartite graph Kk,n [9]. In this setting, we fix the label of the
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first step of the blue path to be 1 (in words of the sandpile model, this step corresponds
to the sink). With this convention, we may let Sn × Sk−1 act on the labels, and denote

by Frob(L(2,?)
k,n ) the corresponding Frobenius characteristic.

Proposition 4. We have:

Frob(L(2,?)
k,n ) =

1

k
hn[k z]hk−1[ny] (6.5)

which implies that

|L(2,?)
k,n | = kn−1 nk−1, (6.6)

the number of parking functions (or of recurrent configurations, or of spanning trees) of
Kk,n.

Proof. Take the proof of (5.6) and just add labels on the horizontal steps (but one) of
the blue path. �

7. Operators and Macdonald polynomials

To go on with our presentation, we need to recall a few notions related to the theory
of Macdonald polynomials, and operators for which they are joint eigenfunctions. The
integral form (modified) Macdonald polynomials9 Hµ(z; q, t), with µ a partition of n,
expand as

Hµ(z; q, t) =
∑
λ`n

Kλ,µ(q, t) sλ(z),

where the K(q, t)’s are certain rational fractions in q, t, normalized so that Kn,µ = 1.
They are entirely characterized by this normalization together with the two triangularity
properties

(1) Hµ[z (1− q)] is in the span of the sλ(z), for λ � µ in dominance order,

(2) Hµ[z (1− t)] is in the span of the sλ(z), for λ � µ′ in dominance order.

It may be worth recalling that we have the special case

Hn(z; q, t) =
n∏
i=1

(1− qi)hn
[

z

1− q

]
. (7.1)

Observe that the right hand side is independent of t. This is helpful when we specialize
the Hµ’s at t = 1, since in that case we have the following multiplicative property

Hµ(z; q, 1) =
r∏
i=1

Hµi(z; q, 1), for µ = µ1µ2 · · ·µr. (7.2)

Thus, we can evaluate this last right hand side using (7.1). Observe also that this states
that Hµ(z; q, 1) is proportional to hµ[z/(1− q)].

9In previous papers, the notation H̃µ is often use for these, to distinguish them from other polynomials
that are not used here.
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Another often used specialization is at t = 1/q. In this case we have (see [10])

Hµ(z; q, 1/q) = q−n(µ)
∏
c∈µ

(1− qhook(c)) sµ
[

z

1− q

]
, (7.3)

where n(µ) =
∑

i(i− 1)µi, the sum is taken over the cells c in the Ferrers diagram of µ,
and hook(c) is the hook-length of the cell c in µ, i.e. the number of cells of µ above c in
the same column or to its right in the same row, including c itself.

Operators. For a symmetric function f , we consider the linear operator ∆f , on sym-
metric functions, such that

∆f (Hµ) := f [Bµ(q, t)]Hµ, (7.4)

where f [Bµ] stands for the evaluation of f in the qitj, with (i, j) varying in the set of cells
of µ. It is customary to denote by ∇ the operator ∆en restricted to symmetric functions
of degree n. Observe that the operator ∆hk (resp. ∆ek) appears as the coefficient of uk

in the linear operator Φ such that

Φ(Hµ) =
( ∏

(i,j)∈µ

1

1− qitj u

)
Hµ, resp. Ψ(Hµ) =

( ∏
(i,j)∈µ

(1 + qitj u)
)
Hµ. (7.5)

One of the interests of the operator ∇ is that it allows a very compact formulation of the
Frobenius characteristic of the Sn-module of bivariate diagonal hamonic polynomials, in
the form ∇(en(w)) (see [15] for more on this).

We will also denote ∆̃f (resp. ∆f ) the specialization at t = 1 (resp t = 1/q) of the

operator ∆f . It turns out that the operators ∇̃, Φ̃, and Ψ̃ are multiplicative, since the
associated eigenvalues are multiplicative. In view of our previous observations (see (7.1)),
the set

{hµ[z/(1− q)] | µ ` n} (7.6)

constitute a basis of eigenfunctions for the operators ∆̃f .

Similarly, from (7.3), it follows that the sµ[z/(1−q)]’s are eigenfunctions of ∆f , since they
are proportional to the Hµ(z; q, 1/q)’s. The corresponding eigenvalues are f [Bµ(q, 1/q)].
Observe that in the case of hook shapes, i.e. µ = s(n−r),1r , these are simply

f [B(n−r),1r(q, 1/q)] = f
[
q−r[n ]q

]
. (7.7)

More operators. Recall from [14] that we may introduce symmetric functions En,r by
means of the plethystic identity

en

[
z

1− x
1− q

]
=

n∑
r=1

(x; q)r
(q; q)r

En,r(z). (7.8)

In particular, setting z = q, we find that

en(z) =
n∑
r=1

En,r(z). (7.9)
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These play a key role in a generalized version of the “Shuffle Conjecture”, together with
another family of linear operators on symmetric functions defined as follows. For each
integer a, and any symmetric function f(z), we set

Caf(z) = (−q)1−af
[
z− q − 1

q x

] ( ∞∑
k=0

hk(z)xk
) ∣∣∣

xa
. (7.10)

For example, we have

Ca(1) = (−q)1−a sa(z), Ca(s1(z)) = (−q)1−r (sa,1(z) + q−1 sa+1(z)), and

Ca(s2(z)) = (−q)1−r (sa,2(z) + q−1 sa+1,1(z)) + q−2 sa+2(z)), if a ≥ 2.

As shown in [14], the operators Ca satisfy the commutativity relations

q (CbCa + Ca−1Cb+1) = CaCb + Cb+1Ca−1, whenever a > b. (7.11)

Recall also that, for a composition of n into r parts, we may consider the symmetric
functions recursively defined as

Eγ(z) :=

{
Ca(Eν(z)) if γ = aν,

1 if γ = 0,
(7.12)

where we denote by 0 the empty composition; and, we have

En,r(z) =
∑

γ∈Comp(n,r)

Eγ(z). (7.13)

Remark 4. An explicit enumerative description of ∇(Eγ(z)) is conjectured, in [14,
Conj. 4.5], in terms of parking functions whose underlying Dyck path has prescribed
returns to the diagonal. It appears that a similar statement holds for ∇r(Eγ(z)), with
the heights of returns to the diagonal specified by the composition γ. This is what
we call the r-generalized shuffle conjecture. In the particular case of γ = n, since

En(z) = (−q)−n+1hn(z), this conjecture implies that ω ∇̃r((−q)−n+1hn(z)) is the q-
graded Frobenius characteristic of the Sn-module generated by r-parking functions whose
underlying r-Dyck path never returns to the “diagonal” (of slope 1/r), except at its end-
points.

Observe that the commutativity relation (7.11) implies that, for any length r composition
γ of n, we may express Eγ(z) as a linear combination of the Eµ(z)’s, for µ varying in
the set of partitions of n having r parts. These last symmetric functions are in fact
proportional to a specialization of Macdonald polynomials, that is

Eµ(z) = q−n(µ)(−1/q)n−rHµ′(z; q, 0), (7.14)

where, as usual, n(µ) stands for
∑r

i=1(i − 1)µi. Notice that the right hand side of this
last identity is expressed in terms of the conjugate partition µ′.
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8. Formula for the q-Frobenius characteristic of the labelled
polyomino module

Michele D’Adderio has proposed [7] the following explicit formula for the q-weighted area
counting version of the Frobenius characteristics

Frob(Lk+1,n)(z; q) = ω ∆̃hk(en(z)). (8.1)

Here ∆̃hk stands the specialization at t = 1 of the operator ∆hk . This implies that

∆̃hk(en(z)) is e-positive, i.e. with coefficients in N[q] when expanded in the basis of
elementary symmetric functions. In generating function format, we may reformulate (8.1)
as ∑

k≥1

Frob(Lk,n)(z; q)uk = ω(u Φ̃(en(z)))

= ω
∑
µ`n

fµ[1− q]
`(µ)∏
i=1

uhµi [z/(1− q)]
(1− u) · · · (1− u qµi−1)

where we denote by fµ(z) the forgotten symmetric functions, that are dual to the ele-
mentary symmetric functions. Small values are as follows:∑

k≥1

Frob(Lk,1)(z; q)uk =
u

1− u
h1(z),

∑
k≥1

Frob(Lk,2)(z; q)uk =
u

(1− u)(1− qu)

(
h2(z) +

u

1− u
h11(z)

)
,

∑
k≥1

Frob(Lk,3)(z; q)uk =
u

(1− u)(1− u q)(1− u q2)(
h3(z) +

u (2 + q)

1− u
h21(z) +

u2 (1 + q)

(1− u)2
h111(z)

)
.

Even if Formula (8.1) is still conjectural, the following two formulas should help under-
stand how ω∆hk(en(z)) could be interpreted as a bivariate Frobenius characteristic for
labelled polyominoes, with a second statistic accounting for the parameter t, on top of q
which already accounts for area. This also confirms indirectly that (8.1) should hold.

Proposition 5. The q-free component of ω∆hk(en(z)) is given by the following formula

ω∆hk(en(z))
∣∣
q=0

=
1

tk

(
hn

[
z

1− tk+1

1− t

]
− hn

[
z

1− tk

1− t

])
. (8.2)

Moreover, we have

ω∆hk−1
(en(z))

∣∣
t=1/q

=
qn+k−nk−1

[ k ]q
hn

[
z

1− qk

1− q

] [
n+ k − 2

k − 1

]
q

(8.3)

which is a direct q-analog of (5.6).
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For a combinatorial interpretation of the right hand side of (8.2), see Remark 5.

Proof. To prove (8.2), we first observe that ∆hk(en(z)) is symmetric in q and t, we may
thus exchange their role. We may also remove ω, so that we need only show that

∆̂hk(en(z)) =
1

qk

(
en

[
z

1− qk+1

1− q

]
− en

[
z

1− qk

1− q

])
, (8.4)

where ∆̂hk := ∆hk

∣∣
t=0

. Evaluating (7.8) at z = qk+1, we get

en

[
z

1− qk+1

1− q

]
=

n∑
r=1

[
k + r

r

]
q

En,r(z). (8.5)

Using (8.5), and well known properties of q-binomial coefficients, we can calculate that
the right hand side of (8.4) is

∆̂hk(en(z)) =
n∑
r=1

1

qk

([
k + r

r

]
q

−
[
k + r − 1

r

]
q

)
En,r(z) (8.6)

=
n∑
r=1

[
k + r − 1

r − 1

]
q

En,r(z). (8.7)

Now, recalling (7.9), this last equation readily follows from the surprising fact that the

En,r(z)’s are eigenfunctions of the operator ∆̂hk . Indeed, as we will see, we have

∆̂hk En,r(z) =

[
k + r − 1

r − 1

]
q

En,r(z). (8.8)

This follows from the even stronger fact that for all compositions γ, having r parts, we
have

∆̂hk Eγ(z) =

[
k + r − 1

r − 1

]
q

Eγ(z). (8.9)

In view of the observation following (7.13), we need only show that (8.9) holds for Eµ(z),
with µ a length r partition. Since we have already seen recalled (see (7.14)) that these
Eµ’s are essentially specializations of the Hµ’s, it only remains to check that

∆̂hk Hµ′(z; q, 0) =

[
k + r − 1

r − 1

]
q

Hµ′(z; q, 0).

But, by definition of ∆hk , this is equivalent to the classical fact that[
k + r − 1

r − 1

]
q

= hk

[
1− qr

1− q

]
.

This ends our proof of (8.2).

To prove (8.3), we start by recalling from above (see (7.3)) that the sµ[z/(1 − q)]’s are
eigenfunctions of ∆hk−1

= ∆hk−1

∣∣
t=1/q

, with eigenvalue hk−1[Bµ(q, 1/q)]. Once again, we
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remove ω, to turn the identity we have to show into

∆hk−1
(en(z)) =

qn+k−nk−1

[ k ]q
en

[
z

1− qk

1− q

] [
n+ k − 2

k − 1

]
q

. (8.10)

Cauchy’s identity implies that

en

[
z

1− qk

1− q

]
=
∑
µ`n

sµ′ [1− qk] sµ
[

z

1− q

]
.

Since sν [1−u] is only non-zero when ν is a hook shape, and s(n−r),1r [1−u] = (−u)r(1−u),
we may rewrite the above identity as as

en

[
z

1− qk

1− q

]
=

n−1∑
r=0

(1− qk) (−qk)n−r−1s(n−r),1r
[

z

1− q

]
. (8.11)

Using this identity at k = 1, we may expand en(z) in terms of eigenfunctions for the
operator ∆hk−1

, and thus we calculate (using (7.7)) that

∆hk−1
(en(z)) = ∆hk−1

n−1∑
r=0

(1− q) (−q)n−r−1s(n−r),1r
[

z

q − 1

]

=
n−1∑
r=0

(1− q) (−q)n−r−1q−r(k−1)hk−1
[

1− qn

1− q

]
s(n−r),1r

[
z

q − 1

]

=

[
n+ k − 2

k − 1

]
q

n−1∑
r=0

(−1)n−r−1(1− q) qn−rk−1s(n−r),1r
[

z

q − 1

]

=
qn+k−nk−1

[ k ]q

[
n+ k − 2

k − 1

]
q

n−1∑
r=0

(1− qk) (−qk)n−r−1s(n−r),1r
[

z

q − 1

]
which shows (8.10), using (8.11) to evaluate the sum. �

Remark 5. The right-hand side of (8.2) may be interpreted as a graded Frobenius
characteristic of ribbon shaped labeled parallelogram polyominoes of size n × k. The
needed grading corresponds to the dinv statistic for unlabeled parallelogram polyominoes,
as defined in [2]. Recall that, in the A-word encoding w = w1w2 · · ·wk of a parallelogram
polyomino (see Figure 5), the dinv statistic is the number of pairs (wi, wj), with i < j and
j is the successor of i in A. For any ribbon-shaped labeled polyomino, we may simply set
its dinv-statistic to be equal to that of the underlying parallelogram polyomino. With
this definition, we observe that the dinv-value coincides with the area below the lower
path of the polyomino. This readily implies that(

Frob(Lk,n)(z; q)
)∣∣∣

q=0
= tn

(
hn

[
z

1− tk

1− t

]
− hn

[
z

1− tk−1

1− t

])
. (8.12)

Remark 6. Experiments suggest that we have the following area enumerating analog of
Formula (6.4)

L(2)
rn,n(y, z; q)

∣∣∣
sρ(y)

= ω ∇̃r((−q)−n+1 hn), (8.13)
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where ρ is the partition consisting of n rows of size r. In fact, this identity follows
from the r-generalized shuffle conjecture (see Remark 4), considering paths that never
come back to the diagonal of slope 1/r. It would be interesting to describe all isotypic

components of L(2)
rn,n in this manner.

Toward a general dinv statistic. A dinv-statistic10 on general labelled polyominoes
would make possible an analog of the “Shuffle Conjecture” of [13], in the form:

∆hk(en(z)) =
∑
π

qarea(π)tdinv(π)zπ, (8.14)

with π varying in the set Lk,n. More explicitly, this means that we would consider more
general labellings of polyominos; with labels in N and allowing for repetition of labels,
while keeping the strictly increasing condition on runs of vertical steps. In the above
expression, zπ denotes the product of the variables zi, for i running through all labels
(with multiplicities) of π. In a sense, this should be a natural extension of the original
Shuffle Conjecture, since it appears (observed experimentally) that

∆hrn−1(en(z))− q(
n−1
2 )∇r(en(z)) lies in N[q, t]{sµ|µ ` n}. (8.15)

As we have already seen (see Remark 2), parking functions can be considered as special
cases of labelled parallelogram polymominoes, making (8.15) a natural phenomenon.

Remark 7. Explicit computer calculations suggest that even more seems to hold. In-

deed, up to the same multiplicative factor of q(
n−1
2 ), the difference between ∆hn−1(en(z))

and the “Shuffle-like Conjecture Formula” for the Frobenius characteristic of the space of
trivariate diagonal harmonics (see [4, Formula (15)]), appears to always be Schur-positive
(with coefficients in N[q, t]). Not only is this stronger than (8.15), but it suggest that a
third statistic might play a role here.

Remark 8. Along these lines, it is interesting to observe that, when k ≤ n,

qk n−(k+1
2 ) ∆ek(en(z)) =

1

[ k + 1 ]q

[
n

k

]
q

en

[
z
qk+1 − 1

q − 1

]
. (8.16)

Hence, the Frobenius characteristic (2.8) may be expressed as

Frob(Lk,n)(z; q) = qk n−(k+1
2 ) [ k + 1 ]q

[
n

k

]−1
q

ω∆ek(en(z)). (8.17)

Observe the similarity between this expression and (8.1).

The bounce statistic. Angela Hicks [2] has recently given a nice bijection from which
it follows that we have the following explicit formula due to Garsia and D’Adderio

Pk,n(q, t) :=
∑
π∈Pk,n

qarea(π)tb(π) = 〈∇(ek+n−2), hk−1 hn−1〉 (8.18)

10Which we do not know how to define yet.
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where b(π) denotes the bounce statistic of a polyomino π, introduced in [9]. In other
words, up to a multiplicative factor, the right hand side is the coefficient of the monomial
symmetric function of mk−1,n−1 in the expansion of ∇(ek+n−2). It immediately follows
that Pk,n(q, t) is symmetric, both in q, t and n, k, as already observed in [9]. Moreover,
specializing t at 1/q, we get the following direct q-analogs of (3.3)

q(k−1) (n−1) Pk,n(q, 1/q) =
1

[n+ k ]q

[
n+ k

n

]
q

[
n+ k − 2

n− 1

]
q

(8.19)

= q−(k−1) s(k−1,k−1)(1, q, q
2, . . . , qn). (8.20)

To prove this, we proceed as follows. Recall from [10] that

q(
n
2)∇(en)

∣∣∣
t←1/q

=
1

[n+ 1 ]q
en [z [n+ 1 ]q] ,

so that (8.18) may be reformulated as

q(
n+k−2

2 )Pk,n(q, 1/q) =

〈
1

[n+ k − 1 ]q
en+k−2 [z [n+ k − 1 ]q] , hk−1 hn−1

〉
. (8.21)

Now, Cauchy formula gives

en+k−2[z[n+ k − 1 ]q] =
∑

λ`n+k−2

s′λ([n+ k − 1 ]q) sλ(z),

leading us to

q(
n+k−2

2 )Pk,n(q, 1/q) =
1

[n+ k − 1 ]q
ek−1([n+ k − 1 ]q) en−1([n+ k − 1 ]q). (8.22)

Finally, since

ej([n ]q) = qj
[
n

j

]
q

,

we conclude that

q(
n+k−2

2 )Pk,n(q, 1/q) =
1

[n+ k − 1 ]q
qk−1

[
n+ k − 1

k − 1

]
q

qn−1
[
n+ k − 1

n− 1

]
q

. (8.23)

A direct calculation shows that this is equivalent to (8.19).

We cannot fail to notice that since the right hand side of (8.19) has potentially also a
combinatorial interpretation, we should naturally wonder what that may be in this case.

This has been carried out recently by Angela Hicks and Emily Leven [16] who also were
able to obtain a direct bijective proof of (8.19).

9. Thanks and future considerations

We would like to thank Vic Reiner for reminding us that we should consider doubly
labelled polyominoes in the specific manner we describe here. We would also like to thank
Nolan Wallach for putting us on the right track for the interpretation of parrallelogram
polyominoes as indexing sets for SL2-invariants.
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In our view, the main question that begs to be addressed in the future, seems to find a
natural context in which ∆hk(en) would appear as the bigraded Frobenius characteristic
of an Sn-module similar to the Sn-module of diagonal harmonic polynomials. This would
help truly explain all our observations above.
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