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1. Introduction

A parallelogram polyomino having an m× n bounding box is a polyomino
in a rectangle consisting of m × n cells that is formed by cutting out two
(possibly empty) non-touching standard Young tableaux which have corners
at (0, n) and (m, 0). An example of a parallelogram polyomino having a
12× 7 bounding box is illustrated in Figure 1. Let Polyom,n be the set of all
parallelogram polyominoes having a rectangular m × n bounding box. The
cardinality of Polyom,n is known to be N(m + n − 1,m) where for positive
integers a and b,

N(a, b) :=
1

a

(
a

b

)(
a

b− 1

)
are the famous Narayana numbers. Two authors of this work introduced [4]
two statistics on these combinatorial objects, area and bounce, which led to
a q, t-analogue of the Narayana numbers N(m+ n− 1,m), namely

Naram,n(q, t) :=
∑

P∈Polyom,n

qarea(P )tbounce(P ),

that they called the q, t-Narayana polynomial. In that same work it was
conjectured that the q, t-Narayana polynomials are symmetric in q and t,
and as expressions were also symmetric in m and n. We introduce a new
statistic dinv which gives a new q, t-analogue of the same numbers

Ñaram,n(q, t) :=
∑
P

qdinv(P )tarea(P ).

The following theorem establishes a relation between these two polyno-
mials.

Theorem 4.1. For all m ≥ 1 and n ≥ 1, we have

Naram,n(q, t) = Ñaran,m(q, t).

We give two proofs of this result, one using an explicit bijection, and
another one using a recursion. The main result of this paper is the proof of
the symmetries conjectured in [4].

Theorem 6.2. For all m ≥ 1 and n ≥ 1, we have

Naram,n(q, t) = Naram,n(t, q)
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and
Naram,n(q, t) = Naran,m(q, t).

In particular
Naram,n(q, t) = Ñaram,n(q, t).

In order to prove this result, we will give a symmetric functions interpre-
tation of our q, t-Narayana numbers:

Theorem 6.1. For all m ≥ 1 and n ≥ 1 we have

Naram,n(q, t) = (qt)m+n−1 · 〈∇em+n−2, hm−1hn−1〉,

where ek and hk are the elementary and the homogeneous symmetric functions
of degree k respectively, ∇ is the well known nabla operator introduced by
Bergeron and Garsia (see [2, Section 9.6]), and the scalar product is the
usual Hall inner product on symmetric functions.

This result establishes a remarkable link between the q, t-Narayana poly-
nomials and the well-known diagonal harmonics DHn, since∇en is the Frobe-
nius characteristic of this important module of the symmetric group Sn, as
shown by Haiman in [7].

Haglund [5] gave a combinatorial interpretation of the particular polyno-
mial 〈∇em+n−2, hm−1hn−1〉 in terms of parking functions. In fact Haglund’s
result would be an easy consequence of the famous shuffle conjecture, which
predicts a combinatorial interpretation of ∇en in terms of parking functions
(see [6, Chapter 6]), if a proof of it could be found.

In order to prove Theorem 6.1, we use the results of Section 5, proving
that the combinatorial polynomials in Haglund’s result and our q, t-Narayana
polynomials both satisfy the same recursion. This paper is organized in the
following way:

• In Section 2 we define three statistics on parallelogram polyominoes
and two q, t-analogues of Narayana numbers.

• In Section 3 we establish a bijection between our parallelogram poly-
ominoes and a set of Dyck paths. We classify those words that are
area words of members of Polyom,n. Area words are important in the
definition of several statistics mentioned in Section 2.
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• In Section 4 we present a bijection from Polyom,n to Polyon,m which
sends the bi-statistic (area, bounce) to the bi-statistic (dinv, area), thereby
establishing Theorem 4.1.

• In Section 5 we prove a recursion satisfied by both of our q, t-Narayana
polynomials, which gives another proof of Theorem 4.1.

• In Section 6 we provide the necessary background to state Theorem
6.1, and we show how Theorem 6.2 follows from it. Theorem 6.1 is
then proven.

2. Three statistics on parallelogram polyominoes

We may give an alternative characterisation of parallelogram polyominoes
in terms of non-intersecting paths in the plane. This alternative charateri-
sation will prove useful in defining the statistics and mappings used in the
paper.

Consider a rectangular grid in Z2 of width m and height n. On this grid
consider two paths, both starting from the Southwest corner and arriving
at the Northeast corner, travelling on the grid, performing only North or
East steps, with the further restriction that they touch each other only at
the starting point and at the ending point. Such a pair of paths uniquely
defines a parallelogram polyomino. The region between the two paths is
called the interior of the (parallelogram) polyomino. The two paths defining
the parallelogram polyomino of Figure 1 are coloured in red and green, and
the interior has been shadowed.

Figure 1: A parallelogram polyomino having a 12 times 7 bounding box.

In what follows we will encode a parallelogram polyomino as an area word
consisting of natural numbers (unbarred numbers) and natural numbers with
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a bar on top (barred numbers), in the following way. We will label every
North step of the upper (red) path with a barred number, and every East
step of the lower (green) path with an unbarred number. This is done in two
stages.

First, for each East step of the lower path we draw a line starting with
the East endpoint and going Northwest until reaching the upper path: we
label this step with the number of squares crossed by this line. Second, we
label each North step of the upper path with the number of squares in the
interior of the polyomino to the East of it which were not crossed by any of
the lines that we drew during the previous stage. An example of this labelling
is shown in Figure 2, where we put a black dot in the non-crossed squares.

22

1

2

2

1

0

1 2 3

2 2

1 2

1 1

2 21

Figure 2: The parallelogram polyomino of Figure 1 with its perimeter labelled.

Once we have done this labelling, we read the labels in the following order:
starting from Southwest and going to Northeast imagine moving a straight
line of slope −1 over the polyomino. When we encounter vertical steps of the
upper path or horizontal steps of the lower path we write the corresponding
labels. If we encounter both types of steps at the same time then we write
the label of the upper path first. The area word of the example in Figure 2
is 0112232221121112222.

Notice that the sum of these numbers (disregarding the bars) gives the
area of the polyomino, which is the number of squares between the two paths.
This is the first of the statistics that are relevant to us. In the example the
area is 30.

Next we will define the dinv statistic. Consider the total order on the
labels

0 < 1 < 1 < 2 < 2 < 3 < 3 < 4 < 4 < · · · .
Given a polyomino with area word a1a2 . . . ak, we define its dinv as the number
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of pairs ai, aj with i < j and aj is the immediate successor of ai in the fixed
order. In the example of Figure 2, the number of such pairs containing 0 is
4 and the dinv of the polyomino is 35.

The last statistic that we introduce is the bounce. Consider the following
path in a given polyomino: begin with a single East step from the Southwest
corner, and then move North until reaching the East endpoint of a horizontal
step of the upper path; at this point we “bounce”, i.e. we start moving East,
until we reach the North endpoint of a vertical step of the lower path; at this
point we “bounce” again, start moving North, and we repeat this procedure
until we reach the Northeast corner. This path is called the bounce path.

Once we have the bounce path, starting from Southwest corner, we label
each step of the first sequence of vertical steps with 1, then each step of the
second of such sequences with 2, and so on; we label each step of the first
sequence of horizontal steps with 0, then each step of the second of such
sequences with 1, and so on. See Figure 3 for an example of this labelling.

4

0 1

1

1

1 1 1 1 2

2 2 3

3 33 4

4

4

Figure 3: The labelled bounce path.

The bounce of a polyomino is the sum of the labels of its bounce path,
disregarding the bars. The bounce of the parallelogram polyomino in Figure
3 is 41.

These three statistics give rise to a pair of bi-statistics on Polyom,n whose
generating functions

Naram,n(q, t) :=
∑

P∈Polyom,n

tarea(P )qdinv(P )
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and

Ñaram,n(q, t) :=
∑

P∈Polyom,n

tbounce(P )qarea(P ).

are studied in this paper. The polynomials Naram,n(q, t) where first intro-
duced in [4] by two of the authors of the present work. In the same paper,
it was conjectured that these were polynomials symmetric in q and t, and as
expressions symmetric in m and n.

3. A bijection with Dyck paths

In this section we present a bijection ptd between the set Polyom,n and
a set of Dyck paths having length 2(m + n). We then prove a result which
shows how to read the area word of a parallelogram polyomino from its
corresponding Dyck path under ptd. From this we will get a characterization
of the area words of polyominoes from Polyom,n which will be used in the
proof of Theorem 4.1. We finally observe that this description provides a way
to computationally work with the set of area words of Polyom,n by working
with the easier to construct set of Dyck paths.

Recall that a Dyck path can be thought of as a path consisting of North-
east or Southeast steps lying between parallel horizontal lines, such that the
path starts with a Northeast step, it never crosses the starting horizontal
line, and returns to it at the end. Its length is simply the number of its steps
it contains. Figure 4 shows an example of a Dyck path having length 38.

Notice that a Dyck path is uniquely determined by the sequence of rises
and falls we encounter as we move along the path from left to right.

We will next describe a bijection between the polyominos in Polyom,n and
the set of Dyck path of length 2(m + n) with m rises in even positions and
n rises in odd positions, which do not return to the starting horizontal line
until the end. This bijection appears in [3] in a somewhat different language.

The idea is to read the steps of the upper and lower paths of a parallogram
polyomino P alternatingly and form the Dyck path D = ptd(P ) by using two
rules. We perform a rise of the Dyck path for either a North step of the upper
path or an East step of the lower path, and perform a descent of the Dyck
path for either an East step of the upper path or a North step of the lower
path. Using this construction, the polyomino in Figure 1 is sent to the Dyck
path shown in Figure 4.
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Figure 4: The Dyck path corresponding to the polyomino of Figure 1.

It should be clear that this mapping sends the parallelogram polyomines
to the stated subset of Dyck paths. The fact that the Dyck path does not
return to the starting horizontal line before the end corresponds to the fact
that the upper and the lower paths do not intersect each other between
the starting and ending points. The inverse operation is straightforward to
describe and verify.

We can easily read the area word of a parallelogram polyomino P from
the corresponding Dyck path ptd(P ) as we will now describe. Consider the
Dyck path in Figure 4 when reading the next proposition. It consists of
Northeast and Southeast steps lying between parallel lines which determine
certain rows.

Proposition 3.1. Let P ∈ Polyom,n with D = ptd(P ). If we label the rows

of D with 0, 1, 1, 2, 2, 3, 3, · · · from bottom to top, then reading the labels of
the rows of the rises from left to right we get the area word of the polyomino
P .

To prove this proposition, we will use induction on the number of pairs
of steps of the upper and lower paths starting form the Southwest corner.
At each step of this induction we will consider the partial box that includes
the partial paths, i.e. the smallest rectangle that includes them (see Figure
5). Then we imagine to complete the paths inside the partial box by moving
along the edges to reach the Northeast corner, and we read the labels of the
resulting polyomino on the partial paths.

We claim that this gives exactly the corresponding part of the area word
of the original polyomino.

The key observation is the following claim.

Claim. In the last pair of steps, the label of a North step of the upper path is
always the distance from the right edge of the previous partial box, with a bar
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Figure 5: The highlighted area is the partial box after the first 6 steps of both the green
path and the red path.

on top; while the label of a East step of the lower path is always the distance
from the upper edge of the partial box.

After proving this claim, it remains only to observe that the distance
from the right edge of the previous partial box of the North steps of the
upper path corresponds to the number of odd rows from the bottom line in
the corresponding Dyck path; while the distance from the upper edge of the
partial box of the East steps of the lower path corresponds to the number of
even rows from the bottom line. This completes the proof of the proposition.

Proof of the Claim. At the beginning the upper path is forced to go North
and the lower path is forced to go East. The partial box at this point consists
of a single square, and we clearly have the partial area word 01: this is always
the beginning of an area word for a polyonimo, and it corresponds to the first
two rises in the corresponding Dyck path, as it should be.

Now suppose that everything works up to a certain pair of steps, and let
us make the next pair of steps. We have four cases (see Figure 6):

Case 1: The upper path moves East, and the lower path moves North.
Then there are no labels to add, and the previous labels remain unchanged,
since the partial box remains unchanged.

Case 2: Both the upper and the lower paths move North. Then the label
of the North step of the upper path is clearly the distance from the right edge
of the partial box, which is the same distance from the one of the previous
partial box. The previous labels clearly remain unchanged.

Case 3: Both the upper and the lower paths move East. Then the label
of the East step of the lower path is the distance to the upper edge of the
partial box. The previous labels of the upper path remain unchanged, since

9



Case 1

Case 4Case 3

x

x

Case 2

x

x

x

y
y

y y

Figure 6: The four cases. The previous partial box is marked by violet lines, while the
new one is marked by black lines.

in each row we added just a box crossed by the diagonal corresponding to
the new East step of the lower path. The previous labels of the lower path
also remain unchanged, since we did not move the upper edge of the partial
box.

Case 4: The upper path moves North, and the lower path moves East.
Then the label of the North step of the upper path is the distance from the
right edge of the partial box minus 1, since the first box becomes crossed
by the diagonal of the East step of the lower path. But this is equal to the
distance from the right edge of the previous partial box. The label of the
East step of the lower path is clearly the distance from it to the upper edge
of the partial box. The previous labels of the upper path remain unchanged,
since in each row we added just a box crossed by the diagonal corresponding
to the new East step of the lower path. The previous labels of the lower path
also remain unchanged, since the diagonals of the previous horizontal steps
all hit the upper path in the same spots as before.

As an immediate consequence, we get a characterization of the words in
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the ordered alphabet 0 < 1 < 1 < 2 < 2 < 3 < 3 < · · · which are area words
of elements of Polyom,n.

We state this characterization here as a corollary.

Corollary 3.2. Consider the alphabet 0 < 1 < 1 < 2 < 2 < 3 < 3 < · · · ,
with the letters in the given order. A word a1a2 · · · ar in this alphabet is the
area word of an element of Polyom,n if and only if the following conditions
hold:

1. a1 = 0, and this is the only 0 that appears in the word;

2. there are exactly m of the ai’s which are from the set of numbers without
a bar {1, 2, 3, . . . }, and exactly n of the ai’s which are from the set of
numbers with a bar {0, 1, 2, . . . } (in particular r = m+ n);

3. for all i = 1, 2, . . . ,m+n−1, the letter ai+1 is less than or equal to the
immediate successor of the letter ai, in the given order on the alphabet.

We mention here that this bijection also gives an easy way to construct
the polyomino from its area word: draw the corresponding Dyck path (this
is immediate), and then look at the odd and even steps to construct the
polyomino.

4. The bi-statistics (area, bounce) and (dinv, area)

This section is dedicated to proving the following theorem.

Theorem 4.1. For all m ≥ 1 and n ≥ 1,

Naram,n(q, t) = Ñaran,m(q, t).

In order to prove this theorem it suffices to give a bijection from Polyom,n
to Polyon,m which sends the bi-statistic (area, bounce) to the bi-statistic
(dinv, area).

The bijection that we will now describe is similar in spirit to the one used
in the proof of the analogous [6, Theorem 3.15].

Let P ∈ Polyom,n. Starting from P , we read the labels of its bounce path,
getting a word consisting of barred and unbarred numbers. Then, starting
from the bottom-left corner, for each turn of the bounce path, we look at
the part of the path (upper or lower) that includes it. For example in the
polyomino of Figure 3, the first turn of the bounce path is between 0 and
the next 1 in the labelling of the bounce path. The containing path consists
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of the first 4 steps (counted from the Southwest corner) of the upper path.
We label the vertical steps of the containing path with the labels used for
the vertical steps in that part of the bounce path, and the horizontal steps
of the containing path with the labels used for the horizontal steps in that
part of the bounce path. See Figure 7 for an example.

1 1

1

0

0

1

11

Figure 7: The containing path is the blue line from (0,0) to (1,3) and the new labels for
each of its steps are also blue.

We then read the new labels by following the containing path from North-
east down to Southwest. In the example we read 0111.

During the remainder of the construction we will preserve the relative
positions of these labels.

We then repeat the algorithm with the second turn of the bounce path
of P . In the example this occurs between the last 1 and the first 1 in the
bounce path. This time the containing path consists of the steps of the lower
path between the second and the eighth. We repeat the procedure that we
used before, and the word that we get reading the new labels will prescribe
the relative positions of the 1’s and the 1’s. In the example (see Figure 8)
we get the prescriptions 1111111. This together with the other prescription
gives a partial word 01111111.

In general we will construct this partial word in a way that it can be
the word of a parallelogram polyomino while respecting all the prescriptions.
This will always be possible since the first step of the containing path that
we read will always be labelled by the smallest of the two types of labels that
we are considering: this is due to the definition of the bounce path.

We keep doing this until all the labels of the bounce path of P have
been included. At the end we will get a word of another parallelogram poly-
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Figure 8: The containing path is the new violet line along the Southeast border with new
violet labels added in the same corner.

omino. In the example, at the next step we get the prescriptions 11211, which
gives the partial word 011112111; then we get the prescriptions 222, which
gives the partial word 01111222111; then we get the prescriptions 223, which
gives the partial word 011112223111; then we get the prescriptions 3333,
which gives the partial word 011112223333111; then we get the prescriptions
33443, which gives the partial word 01111222333443111; and finally we get
the prescriptions 4444, which gives the final word 0111122233344443111.

It is clear from the construction and the characterization of Corollary
3.2, that in this way we get the area word of a polyomino z(P ) in Polyon,m.
Moreover z(P ) clearly has area equal to the bounce of the original poly-
omino P , again by construction. Figure 9 illustrates z(P ) for when P is the
polyomino of Figure 1.

We need to show that the dinv of z(P ) is equal to the area of P .
To see this, recall how we constructed the word of the new polyomino: for

consecutive types of labels, we prescribed the relative positions by reading
the corresponding containing path. But in the containing path, those pairs
of vertical and horizontal steps which contribute to the dinv of the polyomino
correspond each to a square in its area.

It remains to show that z is a bijection. To see this, we can consider the
inverse function: given a parallelogram polyomino, write in weakly increasing
order its area word, and draw it as a bounce path with labels. Then read-
ing the relative positions of consecutive types of labels you can reconstruct
piecewise both the upper and lower paths. This completes the proof.

Let us observe some remarkable consequences of this result. First of all,
notice that iterating this bijection a second time, we get a bijection z ◦ z
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Figure 9: The outcome of applying z to the polyomino of Figure 1.

from Polyom,n to itself which sends bounce to dinv. Moreover, applying the
inverse and composing it with the flip along the Southwest to Northeast line
that pass through the Southwest corner (which obviously preserves the area)
we get a bijection from Polyom,n to itself which sends dinv to area.

In conclusion, we see that all our three statistics are equidistributed both
inside the same m times n rectangle and with the polyominoes in the flipped
n times m rectangle.

5. Recursions for Naram,n(q, t) and Ñaran,m(q, t)

In this section we prove that both Naram,n(q, t) and Ñaran,m(q, t) satisfy
a certain recursion. As an immediate byproduct we get another proof of the
identity Naram,n(q, t) = Ñaran,m(q, t) stated in Theorem 4.1.

Let P̃olyo
(r,s)

m,n be the set of polyominoes in Polyom,n whose labelled bounce

path has r many 1’s and s many 1’s. In other words, r is the number of steps
between the first and the second bounce of the bounce path, while s is the
number of steps between the second and the third bounce. Define

Ñara
(r,s)

m,n (q, t) :=
∑

P∈P̃olyo
(r,s)

m,n

tbounce(P )qarea(P ),
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so that Ñaram,n(q, t) is the sum over all r and s of Ñara
(r,s)

m,n (q, t). Also, we
define the q-analogue of the non-negative integers by setting [0]q := 1, and
for all positive integers n,

[n]q :=
1− qn

1− q
= 1 + q + q2 + · · ·+ qn−1.

We define the q-analogue of the factorial of a non-negative integer by setting
[0]q! := 1, and for all positive integers n,

[n]q! :=
n∏
i=1

[i]q.

Finally, for 0 ≤ k ≤ n, [
n

k

]
q

:=
[n]q!

[n− k]q![k]q!

denotes the q-analogue of the binomial
(
n
k

)
.

Theorem 5.1. For all m,n, r and s such that 1 ≤ r ≤ n and 0 ≤ s ≤ m−1,
we have the recursion

Ñara
(r,s)

m,n (q, t) = tm+n−1qr+s
n−r∑
h=1

m−s−1∑
k=0

[
s+ r − 1

s

]
q

[
s+ h− 1

h

]
q

Ñara
(h,k)

m−s,n−r(q, t),

with initial conditions

Ñara
(n,s)

m,n (q, t) =

{
(qt)m+n−1[m+n−2

m−1

]
q

if s = m− 1

0 if s < m− 1,

and Ñara
(r,0)

1,n (q, t) = 0 for r < n.

Proof. The argument in this proof is best understood by referring to Figure
10.

The figure shows a typical element of P̃olyo
(r,s)

m,n . The orange grid cuts out

an element of P̃olyo
(h,k)

m−s,n−r: its lower-left corner is placed at the beginning

of the rightmost step of the bounce path labelled by 1.
Observe that the labels of the bounce path in the orange grid are the

same as the labels of the corresponding small path all increased by 1. Hence,
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h
n
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k

r

m

Figure 10: The black path is the bounce path.

together with the 1’s and the 1’s of the bounce path outside of the orange
grid, we see that the bounce of the larger polyomino is m+ n− 1 more than
the bounce of the small polyomino in the orange grid. This shift is taken
care of by the factor tm+n−1.

The area of the larger polyomino is equal to the area of the small poly-
omino in the orange grid plus the yellow area, which is taken care of by the
factor qr+s, the light blue area, which is counted by the factor

[
s+r−1
s

]
q
, and

the pink area, which is counted by the factor
[
s+h−1
h

]
q
. This explains the

recursion formula.

Let us denote by Polyo(r,s)
n,m the set of parallelogram polyominoes in an

n×m rectangle whose area word has r many 1’s and s many 1’s. Define

Nara(r,s)n,m (q, t) :=
∑

P∈Polyo(r,s)n,m

tarea(P )qdinv(P ),

so that Naran,m(q, t) is the sum over all r and s of Nara(r,s)n,m (q, t).

These polynomials satisfy the same recursion satisfied by the Ñara
(r,s)

m,n (q, t)’s:

Theorem 5.2. For all m,n, r and s with 1 ≤ r ≤ n and 0 ≤ s ≤ m− 1, we
have the recursion

Nara(r,s)n,m (q, t) = tm+n−1qr
n−r∑
h=1

m−s−1∑
k=0

qs
[
s+ r − 1

s

]
q

[
s+ h− 1

h

]
q

Nara
(h,k)
n−r,m−s(q, t),
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with initial conditions

Nara(n,s)n,m (q, t) =

{
(qt)m+n−1[m+n−2

m−1

]
q

if s = m− 1

0 if s < m− 1,

and Nara
(r,0)
n,1 (q, t) = 0 for r < n.

Proof. Given an element of Polyo(r,s)
n,m with h many 2’s and k many 2’s, we

construct an element of Polyo
(h,k)
n−r,m−s by subtracting 1 from all the letters in

the area word, then removing all the resulting 0’s and 0’s and replacing the
only −1 (which comes from the only 0) by 0.

For example, if we start with the word 0111221222111, which is an
element of Polyo

(3,4)
6,7 with 3 many 2’s and 2 many 2’s, then we first get

−1000110111000, and hence we finally get 011111, which is an element of
Polyo

(3,2)
6−3,7−4 = Polyo

(3,2)
3,3 .

Now the area of this new element is clearly m+ n− 1 less than the area
of the original polyomino, since we subtracted 1 from all the letters of the
area word different from 0. This is taken care of by the factor tm+n−1.

The dinv of the original polyomino is equal to the dinv of this smaller
polyomino, plus the dinv coming from the original 0 and the 1’s, which is
taken care of by the factor qr, the dinv coming from the 1’s and the 1’s,
which is counted by the factor qs

[
s+r−1
s

]
q

(the 1’s and the 1’s form a word

which always starts with 1), and the dinv coming from the 1’s and the 2’s,
which is counted by the factor

[
s+h−1
h

]
q

(as before, the 1’s and the 2’s form

a word which always starts with 1, but the dinv coming from this first letter
is already counted by the 0 that we insert in the new area word!).

This explains the recursion.

As already mentioned, these recursions give immediately Nara(r,s)n,m (q, t) =

Ñara
(r,s)

m,n (q, t), and hence another proof of the identity Naram,n(q, t) = Ñaran,m(q, t).

6. Symmetric functions interpretation

In this section we will use some tools from the theory of Macdonald
polynomials. For a quick survey of what we need (and more), we refer to the
book [2], in particular Chapters 3 and 9. In what follows we will recall only
some basic facts, mostly to fix the notation.
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Let Λ =
⊕

n≥0 Λn be the space of symmetric functions with coefficients in
C(q, t), where q and t are variables, with its natural decomposition in com-
ponents of homogeneous degree. Recall the fundamental bases of symmet-
ric functions: elementary {eµ}µ∈P , homogeneous {hµ}µ∈P , power {pµ}µ∈P ,
monomial {mµ}µ∈P and Schur {sµ}µ∈P , where P is the set of all partitions.

A scalar product is defined on Λ by declaring the Schur basis to be or-
thonormal:

〈sλ, sµ〉 = χ(λ = µ),

where χ is the indicator function, which is 1 when its argument is true, and 0
otherwise. Another fundamental basis of Λ is {H̃µ}µ, the modified Macdonald
polynomial basis.

The fundamental ingredient of the theory is the nabla operator ∇ acting
on Λ. This is an homogeneous invertible operator introduced by Bergeron
and Garsia in the study of the diagonal harmonics DHn of Sn. In fact, it
turns out that ∇en gives precisely the bigraded Frobenius characteristic of
DHn.

The so-called shuffle conjecture predicts a combinatorial interpretation of
∇en in terms of parking functions. Special cases of this conjecture have been
proven by several authors. In particular, Haglund [5] proved the combina-
torial interpretation of 〈∇en, hjhn−j〉 for 1 ≤ j ≤ n predicted by the shuffle
conjecture.

Surprisingly, this same polynomial provides the symmetric functions in-
terpretation of our q, t-Narayana numbers. More precisely, we have the fol-
lowing theorem, which is the main result of this paper.

Theorem 6.1. For m,n ≥ 1 we have

Naram,n(q, t) = (qt)m+n−1 · 〈∇em+n−2, hm−1hn−1〉.

Before proving this theorem, we give here an immediate corollary.

Theorem 6.2. For all m ≥ 1 and n ≥ 1, we have

Naram,n(q, t) = Naram,n(t, q)

and
Naram,n(q, t) = Naran,m(q, t).

Moreover, we have
Naram,n(q, t) = Ñaram,n(q, t).
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Proof of the Theorem 6.2. The symmetry in q and t comes from a general
property of the nabla operator, which is an immediate consequence of the
well-known identity [2, Equation (9.8)]: nabla applied to any Schur function
is symmetric in q and t.

The second equation, symmetry in m and n, is obvious from the formula
in Theorem 6.1. Finally, the fact that Naram,n(q, t) = Ñaram,n(q, t) is a direct
consequence of the symmetries and of Theorem 4.1.

6.1. Proof of Theorem 6.1

In order to prove Theorem 6.1, we need to make use of Haglund’s combi-
natorial interpretation of 〈∇em+n−2, hm−1hn−1〉. To do this we first require
some definitions.

For us a Dyck path of order k will be given by an area word which is a
sequence of non-negative integers b1b2 · · · bk such that b1 = 0, and bi+1 ≤ bi+1
for all 1 ≤ i < k. A domino is a pair of values (a, b) written as the first above

the second a
b .

A parking function PF of size k is a sequence of k dominoes
a1 a2 · · · ak
b1 b2 · · · bk

such that b1b2 · · · bk is the area word of a Dyck path of order k, and the ai’s
are a permutation of the integers {1, . . . , k} with the property ai < ai+1 if
bi < bi+1 (and hence bi = bi+1 − 1).

Example 6.1. PF =
5 11 1 9 6 8 3 4 7 10 2
0 1 1 2 0 1 0 1 2 3 3

is a parking function

of size 11.

Remark 6.1. Parking functions are often represented by a diagram like the
one in Figure 11. In this diagram the red path represents the underlying
Dyck path, where the number of the squares between the vertical steps of
the Dyck path and the (green) diagonal are given by the lower numbers in
the dominoes. The numbers that label the vertical steps of the Dyck path in
the diagram are simply the upper numbers in the dominoes.

Given a parking function, we can reorder its dominoes by comparing first
the bottom numbers, from the biggest to the smallest, and then, we place
the dominoes with the same bottom number in order as we read them from
right to left in the parking function.

The reading word σ(PF) associated to a parking function PF is the permu-
tation that we obtain by reading the upper entries of this reordered sequence
of dominoes.
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Figure 11: The parking function PF =
5 11 1 9 6 8 3 4 7 10 2
0 1 1 2 0 1 0 1 2 3 3

.

Example 6.2. If PF =
5 11 1 9 6 8 3 4 7 10 2
0 1 1 2 0 1 0 1 2 3 3

then we reorder

the dominoes as

2 10 7 9 4 8 1 11 3 6 5
3 3 2 2 1 1 1 1 0 0 0

,

and the corresponding reading word is σ(PF) = 2 10 7 9 4 8 1 11 3 6 5.

Given a parking function PF =
a1 a2 · · · ak
b1 b2 · · · bk

, we define its area to be

area(PF) = b1 + . . .+ bk, and its dinv dinv(PF) as the number of pairs (i, j)
with 1 ≤ i < j ≤ k such that either bi = bj and ai < aj, or bi = bj + 1 and
ai > aj. For example the area of the parking function of Example 6.2 is 14,
while its dinv is 8.

Given two disjoint sequences of numbers A and B, we denote by A� B
the set of shuffles of A and B, i.e. the sequences consisting of the numbers
from A ∪ B in which all the elements of A and B appear in their original
order, so that |A�B| =

(|A|+|B|
|A|

)
.

For any a and b in N, we call Parka,b the set of parking functions PF of
size a+ b such that σ(PF) ∈ (1, 2, . . . , a)� (a+ 1, a+ 2, . . . , a+ b). Finally,
we set

Paraa,b(q, t) :=
∑

PF∈Parka,b

tarea(PF)qdinv(PF).
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We may state now the result of Haglund (see [5] for a proof, and [6] for the
necessary background).

Theorem 6.3 (Haglund). For all m ≥ 1 and n ≥ 1, we have

〈∇em+n−2, hm−1hn−1〉 = Paran−1,m−1(q, t).

This theorem reduces the problem of proving Theorem 6.1 to proving the
following:

Naram,n(q, t) = (qt)m+n−1Paran−1,m−1(q, t). (6.1)

In order to show the validity of this equation we do as follows. For 0 ≤ r < n,
0 ≤ s < m with r + s ≥ 1, let Park

(r,s)
n−1,m−1 be the set of parking functions

PF of size m+ n− 2 such that

σ(PF) ∈ A�B, |D0(PF) ∩ A| = r, and |D0(PF) ∩B| = s,

where A = (1, 2, . . . , n − 1), B = (n, n + 1, . . . ,m + n − 2), and D0(PF) is
the set of upper numbers of dominoes of PF whose bottom numbers equal 0.
Define the polynomial

Para
(r,s)
n−1,m−1(q, t) :=

∑
PF∈Park(r,s)n−1,m−1

tarea(PF)qdinv(PF),

and set Para
(0,0)
n−1,m−1(q, t) = 0. Clearly the sum of all these polynomials as r

and s range over their possible values is equal to Paran−1,m−1(q, t). With this
new generalization in mind, it is clear that equation 6.1 holds true if

(qt)m+n−1Para
(r,s)
n−1,m−1(q, t) = Nara(s+1,r)

m,n (q, t).

Our proof of this identity is similar to what Haglund did in [5].

We will show that (qt)m+n−1Para
(r,s)
n−1,m−1(q, t) also satisfies the recursion

in Theorem 5.2, with the 4-tuple (m,n, r, s) replaced with (n,m, s+1, r), i.e.

Para
(r,s)
n−1,m−1(q, t) =

tm+n−r−s−2
n−r−1∑
h=0

m−s−1∑
k=1

[
r + s

r

]
q

[
r + k − 1

k

]
q

Para
(h,k−1)
n−r−1,m−s−2(q, t). (6.2)
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The initial conditions are

Para
(r,m−1)
n−1,m−1(q, t) =

Nara(m,r)m,n (q, t)

(qt)m+n−1 =

{[
m+n−2
n−1

]
q

if r = n− 1,

0 if r < n− 1,

and

Para
(r,s)
0,m−1(q, t) =

Nara
(s+1,0)
m,1 (q, t)

(qt)m
= 0 for s < m− 1.

In order to see how the recursion (6.2) works for parking functions, we
first make a simplification. It follows immediately from the definitions that,
since the reading word of the parking functions we are interested in is a shuffle
of the sequences A = (1, 2, . . . , n − 1) and B = (n, n + 1, . . . , n + m − 2),
the pairs of dominoes with both upper numbers in A or both in B do not
contribute to the dinv. The only pairs that contribute are the ones where one
of the upper numbers is in A and the other is in B. Since all the elements of
A are smaller than all the elements of B, we can simply consider dominoes
in which the upper number is 1 (if the corresponding element was in A) or 2
(if the corresponding element was in B), with the dinv defined in the same
way.

For example the parking function PF ∈ Park
(3,1)
9,9

3 13 6 15 8 7 16 12 5 14 9 2 11 1 10 4
0 1 1 2 2 2 3 1 1 2 0 0 1 0 1 1

,

whose reading word is

σ(PF) = 16 14 7 8 15 4 10 11 5 12 6 13 1 2 9 3,

would correspond to

1 2 1 2 1 1 2 2 1 2 2 1 2 1 2 1
0 1 1 2 2 2 3 1 1 2 0 0 1 0 1 1

,

whose reading word is

σ(PF) = 2 2 1 1 2 1 2 2 1 2 1 2 1 1 2 1.

In both cases the dinv is 32, and the area is 18.
Using this identification, we do as follows: given an element PF of Park

(r,s)
n−1,m−1,

we remove the dominoes whose lower number is 0, and we decrease the lower
number of the remaining dominoes by 1, keeping them in the given order.
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In our example, applying this procedure to PF we get

2 1 2 1 1 2 2 1 2 2 2 1
0 0 1 1 1 2 0 0 1 0 0 0

.

In doing this, observe that we will always get a parking function which starts

with a domino 2
0 , which is always followed by a domino with lower entry

0, since PF cannot contain a sequence of three consecutive dominoes with
strictly increasing lower numbers. This first domino contributes 0 to both
area and dinv and we can therefore remove it. In doing this we get an element

of Park
(h,k−1)
n−r−1,m−s−2, where h is the number of 1

1 dominoes in PF, and k is

the number of 2
1 dominoes in PF.

Remark 6.2. Conversely, given an element of Park
(h,k−1)
n−r−1,m−s−2, we can prepend

it with a 2
0 domino, increase all the lower numbers by 1, and then insert r

1
0 dominoes and s 2

0 dominoes. This gives us an element of Park
(r,s)
n−1,m−1.

In doing so, we are forced to put a 1
0 in front of the first 2

1 which we just

prepended. Other inserted dominoes must satisfy the following constraints:

a 1
0 domino is followed by a domino in

{
1
0 ,

2
0 ,

2
1

}
, if any, and a 2

0 domino is

followed by a domino in
{

1
0 ,

2
0

}
, if any.

Let us now look at how the area and the dinv change with respect to the
operation that we have just described. The area of the new parking function
is equal to the area of PF minus (n − 1 − r) + (m − 1 − s), which is taken
care of by the factor tn−r+m−s−2 on the right hand side of (6.2).

The dinv is going to be the dinv of PF minus the dinv created by the
dominoes that we have removed. First of all, there are the pairs of dominoes
2
0 and 1

0 in PF, whose relative position creates dinv: this dinv is taken care

of by the factor
[
r+s
r

]
q

on the right hand side of (6.2). Then there is the dinv

created by the dominoes 2
1 in PF with the dominoes 1

0 in PF: this is taken

care by the factor
[
r+k−1
k

]
q
, since the first domino 2

1 is necessarily preceded

by a 1
0 .

The initial conditions are obvious. This completes the proof of Theorem
6.1.
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Remark. The link between parallelogram polyominoes and Macdonald poly-
nomials seems to be deep as suggested by recent investigations on labelled
parallelogram polyominoes [1], in which it appears that the Frobenius char-
acteristic, valued by area, may be conjecturally expressed through a ∇-like
operator.
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