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Abstract. Catalan numbers C(n) = 1
n+1

(

2n

n

)

enumerate binary trees and Dyck
paths. The distribution of paths with respect to their number k of factors is given
by ballot numbers B(n, k) = n−k

n+k

(

n+k

n

)

. These integers are known to satisfy sim-
ple recurrence, which may be visualised in a “Catalan triangle”, a lower-triangular
two-dimensional array. It is surprising that the extension of this construction to
3 dimensions generates integers B3(n, k, l) that give a 2-parameter distribution of
C3(n) = 1

2n+1

(

3n

n

)

, which may be called oder-3 Fuss-Catalan numbers, and enumer-

ate ternary trees. The aim of this paper is a study of these integers B3(n, k, l). We
obtain an explicit formula and a description in terms of trees and paths. Finally,
we extend our construction to p-dimensional arrays, and in this case we obtain a
(p− 1)-parameter distribution of Cp(n) = 1

(p−1)n+1

(

pn

n

)

, the number of p-ary trees.

1. Catalan triangle, binary trees, and Dyck paths

We recall in this section well-known results about Catalan numbers and ballot
numbers.

The Catalan numbers

C(n) =
1

n + 1

(

2n

n

)

are integers that appear in many combinatorial problems. These numbers first arose
in the work of Catalan as the number of triangulations of a polygon by mean of non-
intersecting diagonals. Stanley [13, 14] maintains a dynamic list of exercises related
to Catalan numbers, including (at this date) 127 combinatorial interpretations.

Closely related to Catalan numbers are ballot numbers. Their name is due to
the fact that they are the solution of the so-called ballot problem: we consider an
election between two candidates A and B, which respectively receive a > b votes.
The question is: what is the probability that during the counting of votes, A stays
ahead of B? The answer will be given below, and we refer to [5] for Bertrand’s first
solution, and to [1] for André’s beautiful solution using the “reflection principle”.

Since our goal here is different, we shall neither define ballot numbers by the
previous statement, nor by their explicit formula, but we introduce integers B(n, k)
for (n, k) ∈ N × N defined by the following recurrence:

• B(1, 0) = 1

• ∀n > 1 and 0 ≤ k < n, B(n, k) =
∑k

i=0 B(n − 1, i)
• ∀k ≥ n, B(n, k) = 0.
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Observe that the recursive formula in the second condition is equivalent to:

(1.1) B(n, k) = B(n − 1, k) + B(n, k − 1).

We shall present the B(n, k)’s by the following triangular representation (zero
entries are omitted) where moving down increases n and moving right increases k.

1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42

The crucial observation is that computing the horizontal sums of these integers
give : 1, 2, 5, 14, 42, 132. We recognize the first terms of the Catalan series, and
this fact will be proven in Proposition 1.1, after introducing combinatorial objects.

A binary tree is a tree in which every internal node has exactly 2 sons. The number
of binary trees with n internal nodes is given by the n-th Catalan number.

A Dyck path is a path consisting of steps (1, 1) and (1,−1), starting from (0, 0),
ending at (2n, 0), and remaining above the line y = 0. The number of Dyck paths of
length 2n is also given by the n-th catalan number. More precisely, the depth-first
search of the tree gives a bijection between binary trees and Dyck paths: we associate
to each external node (except the left-most one) a (1, 1) step and to each internal
node a (1,−1) step by searching recursively the left son, then the right son, then the
root. As an example, we show below the Dyck path corresponding to the binary tree
given above.

An inportant parameter in our study will be the length of the right-most sequence
of (1,−1) of the path. This parameter equals 2 in our example. Observe that under
the correspondence between paths and trees, this parameter corresponds to the length
of the right-most string of right sons in the tree. We shall use the expressions last

down sequence and last right string, for these parts of the path and of the tree.
Now we come to the announced result. It is well-known and simple, but is the

starting point of our work.
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Proposition 1.1. We have the following equality:

n−1
∑

k=0

B(n, k) = C(n) =
1

n + 1

(

2n

n

)

.

Proof. Let us denote by Cn,k the set of Dyck paths of length 2n with a last down
sequence of length equal to n − k.

We shall prove that B(n, k) is the cardinality of Cn,k.
The proof is done recursively on n. If n = 0, this is trivial. If n > 0, let us suppose

that B(n − 1, k) is the cardinality of Cn−1,k for 0 ≤ k < n − 1. Let us consider an
element of Cn,k. If we erase the last step (1, 1) and the following step (1,−1), we
obtain a Dyck path of length 2(n − 1) and with a last decreasing sequence of length
n − l ≥ n − k. If we keep track of the integer k, we obtain a bijection between Cn,k

and ∪l≤kCn−1,l. We mention that this process is very similar to the ECO method [3].
This is a combinatorial proof of Proposition 1.1. �

Remark 1.2. In fact ballot numbers are given by the explicit formula:

(1.2) B(a, b) =
a − b

a + b

(

a + b

a

)

.

This expression can be obtained shortly by checking the recurrence (1.1). We can
alternatively use the reflection principle (see [9] for a clear presentation), or the cyclic
lemma (cf. [6]), which will be used in the next sections to obtain a formula in the
general case.

The expression (1.2) constitutes a solution of the ballot problem. Indeed, the
integer

(

a+b

a

)

can be seen as the number of different countings of votes, and we use
the interpretation in terms of paths: we represent a vote for A by an up step, and
a vote for B by a down step, and erase the last down sequence. Then B(a, b) is the
number of those countings for which A stays ahead of B, thus a−b

a+b
is the required

probability.
Of course , we could have used expression (1.2) to prove Proposition 1.1 by a simple

computation, but our proof explains more about the combinatorial objects and can
be adapted to ternary trees in the next section.
Remark 1.3. Our Catalan array presents similarities with Riordan arrays, but it is
not a Riordan array. It may be useful to explicit this point. We recall (cf. [11]) that
a Riordan array M = (mi,j) ∈ CN×N is relative to 2 generating functions

g(x) =
∑

gnx
n and f(x) =

∑

fnxn

and is such that
Mj(x) =

∑

n≥0

mn,jx
n = g(x)f(x)j.

We easily observe that a Riordan array with the first two columns M0(x) and M1(x)
of our Catalan array is relative to g(x) = 1

1−x
and f(x) = x

1−x
, which gives the Pascal

triangle.
In fact, the Riordan array relative to g(x) = C(x) =

∑

C(n)xn and f(x) = xC(x)
gives the ballot numbers, but requires to know the Catalan numbers.
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2. Fuss-Catalan tetrahedron and ternary trees

2.1. Definitions. This section, which is the heart of this work, is the study of a
3-dimensional analogue of the Catalan triangle of the previous section. That is we
consider exactly the same recurrence, and let the array grow, not in 2, but in 3
dimensions. More precisely, we introduce the sequence B3(n, k, l) indexed by integers
n, k and l, and defined recursively by:

• B3(1, 0, 0) = 1
• ∀n > 1, k + l < n, B3(n, k, l) =

∑

0≤i≤k,0≤j≤l B3(n − 1, i, j)

• ∀k + l ≥ n, B3(n, k, l) = 0.

Observe that the recursive formula in the second condition is equivalent to:

(2.1) B3(n, k, l) = B3(n−1, k, l)+B3(n, k−1, l)+B3(n, k, l−1)−B3(n, k−1, l−1)

and this expression can be used to make some computations lighter, but the presen-
tation above explains more about the generalization of the definition of the ballot
numbers B(n, k).

Because of the planar structure of the sheet of paper, we are forced to present the
tetrahedron of B3(n, k, l)’s by its sections with a given n.

n = 1 −→
[

1
]

n = 2 −→

[

1 1
1

]

n = 3 −→





1 2 2
2 3
2





n = 4 −→









1 3 5 5
3 8 10
5 10
5









n = 5 −→













1 4 9 14 14
4 15 30 35
9 30 45

14 35
14













It is clear that B3(n, k, 0) = B3(n, 0, k) = B(n, k). The reader may easily check
that when we compute

∑

k,l B3(n, k, l), we obtain: 1, 3, 12, 55, 273. These integers

are the first terms of the following sequence (cf. [12]):

C3(n) =
1

2n + 1

(

3n

n

)

.

This fact will be proven in Proposition 2.1.
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2.2. Combinatorial interpretation. Fuss1-Catalan numbers (cf. [7, 9]) are given
by the formula

(2.2) Cp(n) =
1

(p − 1)n + 1

(

pn

n

)

,

and C3(n) appear as order-3 Fuss-Catalan numbers. The integers C3(n) are known
[12] to count ternary trees, ie. trees in which every internal node has exactly 3 sons.

Ternary trees are in bijection with 2-Dyck paths, which are defined as paths from
(0, 0) to (3n, 0) with steps (1, 1) and (1,−2), and remaining above the line y = 0.
The bijection between these objects is the same as in the case of binary trees, ie. a
depth-first search, with the difference that here an internal node is translated into
a (1,−2) step. To illustrate this bijection, we give the path corresponding to the
previous example of ternary tree:

We shall consider these paths with respect to the position of their down steps. Let
Dn,k,l denote the set of 2-Dyck paths of length 3n, with k down steps at even height
and l down steps at odd height. By convention, the last sequence of down steps is
not considered (the number of these steps is by definition equal to n − k − l).

Proposition 2.1. We have

∑

k,l

B3(n, k, l) = C3(n) =
1

2n + 1

(

3n

n

)

.

Moreover, B3(n, k, l) is the cardinality of Dn,k,l.

Proof. Let k and l be fixed. Let us consider an element of Dn,k,l. If we cut this path
after its (2n−2)-th up step, and complete with down steps, we obtain a 2-Dyck path
of length 3(n− 1) (see figure below). It is clear that this path is an element of Dn,i,j

for some i ≤ k and j ≤ l. We can furthermore reconstruct the original path from the
truncated one, if we know k and l. We only have to delete the last sequence of down
steps (here the dashed line), to draw k− i down steps, one up step, l− j down steps,

1Nikolai Fuss (Basel, 1755 – St Petersburg, 1826) helped Euler prepare over 250 articles for
publication over a period on about seven years in which he acted as Euler’s assistant, and was from
1800 to 1826 permanent secretary to the St Petersburg Academy.
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one up step, and to complete with down steps. This gives a bijection from Dn,k,l to
∪0≤i≤k,0≤j≤lDn−1,i,j, which implies Proposition 2.1.

�

Remark 2.2. It is interesting to translate the bi-statistic introduced on 2-Dyck
paths to the case of ternary trees. As previously, we consider the depth-first search
of the tree, and shall not consider the last right string. We define Tn,k,l as the set of
ternary trees with n internal nodes, k of them being encountered in the search after
an even number of leaves and l after and odd number of leaves. By the bijection
between trees and paths, and Proposition 2.1, we have that the cardinality of Tn,k,l

is B3(n, k, l).
Remark 2.3. It is clear from the definition that:

B3(n, k, l) = B3(n, l, k).

But this fact is not obvious when considering trees or paths, since the statistics
defined are not clearly symmetric. To explain this, we can introduce an involution on
the set of ternary trees which sends an element of Tn,k,l to Tn,l,k. To do this, we can
exchange for each node of the last right string its left and its middle son, as in the
following picture. Since the number of leaves of a ternary tree is odd, every “even”
node becomes an odd one, and conversely.

2.3. Explicit formula. Now a natural question is to obtain explicit formulas for the
B3(n, k, l). The answer is given by the following proposition.

Proposition 2.2. The intergers B3(n, k, l) are given by

(2.3) B3(n, k, l) =

(

n + k

k

)(

n + l − 1

l

)

n − k − l

n + k

Proof. We use a combinatorial method to enumerate Dn,k,l. The method is a variation
of the cyclic lemma [6] (called “penetrating analysis” in [10]).

If we forget the condition of “positivity” (ie. the path remains above the line
y = 0), and cut the last down sequence, a path consists in:

• at even height: n up steps, and k down steps;
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• at odd height: n up steps and l down steps.

An important remark is to remember that an element of Dn,k,l has an up step just be-
fore the last sequence down steps! If we suppose that all these steps are distinguished,
we obtain:

•
(n+k)!

n!k!
choices for even places;

•
(n−1+l)
(n−1)!l!

choices for odd places (we cannot put any odd down steps after the

last odd step).

Now we group in this set P the paths which are “even permutations” of a same path
P . By even permutations, we mean cyclic permutations which preserves the parity
of the steps.

We now want to prove that in any even orbit, the proportion of elements of Dn,k,l

is n−k−l
n+k

.

We suppose first that the path P is acyclic (as a word). It is clear that such a path
gives n + k different even permutations. Now we have to keep only those which give
elements of Dn,k,l. To do this we consider the concatenation of P and P ′, which is a
duplicate of P .

The cyclic permutations of P (not necessarily even) are the connex parts of P +P ′

of horizontal length 2n + k + l. The number of such paths that remain above the
horizontal axis, and ends with an up step, is the number of (up) steps of P in the
light of an horizontal light source coming from the right. The only transformation is
to put the enlighted up step at the end of the path. The number of enlighted up steps
is 2n − 2k − 2l, since every down steps put 2 up steps in the shadow. Among these
2n − 2k − 2l permutations, only the half is an even one (observe that the heights of
the enlighted steps are connex). Thus n − k − l paths among the n + k elements of
the orbit are in Dn,k,l.

Now we observe that if P is p-cyclic, then its orbit has p times less elements, and
we obtain p times less different paths, whence the proportion of elements of elements
of Dn,k,l in this orbit is:

(n − k − l)/p

(n + k)/p
=

n − k − l

n + k
.

Finally, we obtain that the cardinality of Dn,k,l is

(n + k)!

n!k!

(n − 1 + l)

(n − 1)!l!

n − k − l

n + k
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which was to be proved.
�

Remark 2.5. The equation (2.3) is of course symmetric:
(

n + k

k

)(

n + l − 1

l

)

n − k − l

n + k
=

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.

Remark 2.6. I made the choice to present a combinatorial proof of Proposition 2.2.
The interests are to show how these formulas are obtained, and to allow easy gener-
alizations (cf. the next section). It is also possible to check directly the recurrence
(2.1).

2.4. Generating functions. Let F denote the generating functions of the B3’s:

(2.4) F (t, x, y) =
∑

0≤k+l<n

B3(n, k, l)tnxkyl.

We also introduce

(2.5) G(t, x, y) =
∑

0≤k+l<n

B3(n, k, l)tnxn−lyl,

ie. G is the generating functions of Dyck paths with respect to their length, to the
number of down steps at height even (including the last down sequence), and to the
number of down steps at odd height.

To obtain equations that verify F and G, we decompose a non-empty 2-Dyck path
by looking at two points: α, defined as the last return on the axis (except the final
point (3n, 0)), and β defined as the last point at height one after α. This gives the
following decomposition of a 2-Dyck path

P = P1 (up) P2 (up) P3 (down),

with P1, P2, P3 any 2-Dyck path (maybe empty).

    α
 β

By observing that the up steps after α and β change the parity of the height, this
gives the two following equations :

(2.6) F (t, x, y) = 1 + G(t, x, y) × G(t, y, x) × t.F (t, x, y)

and in the same way

(2.7) G(t, x, y) = 1 + G(t, x, y) × G(t, y, x) × t.G(t, x, y).

By permuting the variables x and y in (2.7), we obtain

(2.8) G(t, y, x) = 1 + G(t, y, x) × G(t, x, y) × t.G(t, y, x)

and we can eliminate G(t, y, x) from (2.7) and (2.8) to obtain the following result.
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Proposition 2.3. The generating function F of the B3’s is given by:

F (t, x, y) =
1

1 − tG(t, x, y)G(t, y, x)

with G(t, x, y) solution of the algebraic equation

tx2G3 + (y − x)G2 + (x − 2y)G + y = 0.

An alternate approach to the generating function is to use formula 2.3 to obtain
what MacMahon called a “redundant generating function “ (cf. [8]), since it contains
terms other than those which are combinatorially significant.

To do this we extend the recursive definition of B3(n, k, l) as follows: we define
B′

3(n, k, l) for nonnegative integers n, k, l by:

(2.9) B′
3(n, k, l) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.

Of course when k + l > n, the integer B ′
3(n, k, l) is negative.

As an example, here is the “section” of the array of B ′
3(n, k, l) with n = 3.

















1 2 2 0 −5 · · ·

2 3 0 −10 −30 · · ·

2 0 −12 −40 −90 · · ·

0 −10 −40 −100 −200 · · ·

−5 −30 −90 −200 −375 · · ·
...

...
...

...
...

. . .

















The equation (2.9) is equivalent to the following recursive definition: ∀n ≥ 0 or
k, l < 0, B′

3(n, k, l) = 0 and

B′
3(n, k, l) = B′

3(n−1, k, l)+B′
3(n, k−1, l)+B′

3(n, k, l−1)−B′
3(n, k−1, l−1)+c(n, k, l)

with c(n, k, l) =























+1 if(n, k, l) = (1, 0, 0)
−1 if(n, k, l) = (0, 1, 0)
−1 if(n, k, l) = (0, 0, 1)
+2 if(n, k, l) = (0, 1, 1)

0 otherwise.

The interest of this presentation is to give a simple (rational!) generating series.
Indeed, it is quite simple to deduce from the recursive definition of B ′

3(n, k, l)’s that:

(2.10)
∑

n,k,l

B′
3(n, k, l)tnxkyl =

t − x − y + 2xy

1 − t − x − y + xy
.

This formula encloses the B ′
3(n, k, l) since ∀k + l < n, B3(n, k, l) = B′

3(n, k, l).

3. Fuss-Catalan p-simplex and p-ary trees

The aim of this final section is to present an extension of the results of Section
2 to p-dimensional recursive sequences. In the same spirit, we define the sequence
Bp(n, k1, k2, . . . , kp−1) by the recurrence:
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• Bp(1, 0, 0, . . . , 0) = 1
• ∀n > 1 and 0 ≤ k1 + k2 + · · ·+ kp−1 < n,

Bp(n, k1, k2, . . . , kp−1) =
∑

0≤i1≤k1,...,0≤ip−1≤kp−1

B(n − 1, i1, i2, . . . , ip−1)

• ∀k1 + k2 + · · ·+ kp−1 ≥ n, Bp(n, k1, k2, . . . , kp−1) = 0.

Every result of Section 2 extends to general p. We shall only give the main results,
since the proofs are straight generalizations of the proofs in the previous section.

Proposition 3.1.

∑

k1,...,kp−1

Bp(n, k1, . . . , kp−1) = Cp(n) =
1

(p − 1)n + 1

(

pn

n

)

The integer Cp(n) are order-p Fuss-Catalan numbers and enumerate p-ary trees,
or alternatively p-Dyck paths (the down steps are (1,−p)). In this general case, the
recursive definition of Bp(n, k1, k2, . . . , kp−1) gives rise p− 1 to statistics on trees and
paths analogous to the one defined in section 3.
Remark 3.2. By the same method as in the previous section, it is possible to obtain
an explicit formula for these multivariate Fuss-Catalan numbers:

Bp(n, k1, k2, . . . , kp−1) =

(

p−1
∏

i=1

(

n + ki − 1

ki

)

)

n −
∑p−1

i=1 ki

n
.

Comment. The numbers B3(n, k, l) first arose in a question of algebraic combi-
natorics (cf. [2]). Let In be the ideal generated by B-quasisymmetric polynomials in
the 2n variables x1, . . . , xn and y1, . . . , yn (cf. [4]) without constant term. We denote
by Qn the quotient Q[x1, . . . , xn, y1, . . . , yn]/In and by Qk,l

n the bihomogeneous com-
ponent of Qn of degree k in x1, . . . , xn and degree l in y1, . . . , yn. It is proven in [2]
that:

dimQk,l
n = B3(n, k, l) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.
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