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Abstract. The space QSymn(B) of B-quasisymmetric polynomials in 2 sets of n

variables was recently studied by Baumann and Hohlweg [7]. The aim of this work
is a study of the ideal 〈QSymn(B)+〉 generated by B-quasisymmetric polynomials
without constant term. In the case of the space QSymn of quasisymmetric poly-
nomials in 1 set of n variables, Aval, Bergeron and Bergeron [2, 3] proved that the
dimension of the quotient of the space of polynomials by the ideal 〈QSym+

n
〉 is given

by Catalan numbers Cn = 1
n+1

(

2n

n

)

. In the case of B-quasisymmetric polynomials,

our main result is that the dimension of the analogous quotient is equal to 1
2n+1

(

3n

n

)

,
the numbers of ternary trees with n nodes. The construction of a Gröbner basis for
the ideal, as well as of a linear basis for the quotient are interpreted by a bijection
with lattice paths. These results are finally extended to p sets of variables, and the

dimension is in this case 1
pn+1

(

(p+1)n
n

)

, the numbers of p-ary trees with n nodes.

Résumé. L’espace QSymn(B) des polynômes B-quasisymétriques en deux ensem-
bles de n variables a été récemment étudié par Baumann et Hohlweg [7]. Nous con-
sidérons ici l’idéal 〈QSymn(B)+〉 engendré par les polynômes B-quasisymétriques
sans terme constant. Dans le cas de l’espace QSymn des polynômes quasisymétri-
ques en 1 ensemble de n variables, Aval, Bergeron et Bergeron [2, 3] ont montré
que la dimension du quotient de l’espace des polynômes par l’idéal 〈QSym+

n
〉 est

donnée par les nombres de Catalan Cn = 1
n+1

(

2n

n

)

. Dans le cas des polynômes
B-quasisymétriques, notre principal résultat est que la dimension du quotient ana-
logue est ici 1

2n+1

(

3n

n

)

, à savoir le nombre d’arbres ternaires à n nœuds. Nous
construisons une base de Gröbner pour l’idéal, de même qu’une base du quotient,
toutes deux explicites et en bijection avec des chemins. Nous étendons enfin ces
résultats à p ensembles de variables, et montrons que dans ce cas la dimension est

1
pn+1

(

(p+1)n
n

)

, le nombre d’arbres p-aires à n nœuds.
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1. Introduction

To start with, we recall (a part of) the story of the study of ideals and quotients
related to symmetric or quasisymmetric polynomials. The root of this work is a result
of Artin [1]. Let us consider the set of variables Xn = x1, x2, . . . , xn. The space of
polynomials in the variables Xn with rational coefficients is denoted by Q[Xn]. The
subspace of symmetric polynomials is denoted by Symn. Symmetric polynomials
may be seen (cf. [18]) as invariants of the symmetric group Sn under the action
defined as follows: for σ ∈ Sn anf P ∈ Q[Xn],

σ · P (Xn) = P (xσ(1), xσ(2), . . . , xσ(n)).

Let V be a subset of the polynomial ring. We denote by 〈V+〉 the ideal generated
by elements of a V with no constant term. Artin’s result is given by:

(1.1) dim Q[Xn]/〈Sym+
n 〉 = n! .

Another, more recent, part of the story deals with quasisymmetric polynomials.
The space QSymn ⊂ Q[Xn] of quasisymmetric polynomials was introduced by Gessel
[15] as generating functions for Stanley’s P -partitions [23]. This is the starting point
of many recent works in several areas of combinatorics [10, 19, 14, 24]. Quasisymmet-
ric polynomials may also be seen as Sn-invariants under Hivert’s quasisymmetrizing
action ([17]), defined as follows.

Let I = {i1, . . . , ik} be a subset of {1, . . . , n} and a = (a1, . . . , ak) a sequence of
positive (> 0) integers, of the same cardinality. We define Xa

I = xa1
i1
· · ·xak

ik
, where

the elements of I are listed in increasing order. Hivert’s action is then defined on
monomials by

σ ∗ Xa
I = Xa

σ(I)

where σ(I) is the set {σ(i1), . . . , σ(ik)} arranged in increasing order.
In [2, 3], Aval et. al. study the problem analogous to Artin’s work in the case of

quasisymmetric polynomials. Their main result is that the dimension of the quotient
is given by Catalan numbers:

(1.2) dim Q[Xn]/〈QSym+
n 〉 = Cn =

1

n + 1

(

2n

n

)

.

An interesting axis of research is the extension of these results to 2 (or p ≥ 2) sets
of variables. In the case of two sets of variables, let An = A2

n denote the alphabet

An = x1, y1, x2, y2, . . . , xn, yn.

The diagonal action of Sn on Q[An] is defined as simultaneous permutation of
variables x’s and y’s:

σ · P (An) = P (xσ(1), yσ(1), . . . , xσ(n), yσ(n)).

Invariants associated to this action are called diagonally symmetric polynomials.
Their set is denoted by DSymn.The diagonal coinvariant space Q[An]/〈DSym+

n 〉 has
been studied extensively in the last 15 years by several authors [8, 9, 12, 13, 16]. A
great achievment in this area is Haiman’s proof of the following equality (cf. [16]):

dim Q[An]/〈DSym+
n 〉 = (n + 1)n−1 .
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In [5], the space DQSymn of diagonally quasisymmetric polynomials is defined
as the invariant space of the diagonal extension of Hivert’s action. This space was
originally introduced by Poirier [21], and, with generalizations, has been recently
studied in [20] and [7].

The coinvariant space Q[An]/〈DQSym+
n 〉 is investigated in [5], and conjectures are

stated. In particular, a conjectural basis for this quotient is presented.
To end this presentation, we introduce the space QSymn(B) of B-quasisymmetric

polynomials, which is the focus of this article. This space, whose definition appears
implicitly in [21], is studied with more details in [7]. A precise definition will be given
in the next section, and we only mention here that QSymn(B) is a subspace (and in
fact a subalgebra, cf. [7]) of DQSymn.

We now state the main result of this work, which appears as a generalization of
equation (1.2).

Theorem 1.1.

(1.3) dim Q[An]/〈QSymn(B)+〉 =
1

2n + 1

(

3n

n

)

.

Observe that in equations (1.2) and (1.3), the dimensions 1
n+1

(

2n

n

)

and 1
2n+1

(

3n

n

)

are respectively the numbers of binary and ternary trees (cf. [22]). This will be
generalized in the last section of this paper.

The content of this paper is divided into 5 main sections. After this introduc-
tion, the Section 2 defines the central objects of this work, the B-quasisymmetric
polynomials. Sections 3 and 4 are the proof of the Theorem 1.1. In Section 3 is
introduced a set G of polynomials, which is proved in Section 4 to be a Gröbner
basis for 〈QSymn(B)+〉. The Gröbner basis G, as well as the basis of the quotient
“deduced” from it, are interpreted in terms of plane paths. Finally, Section 5 gives
a generalization of this work for p sets of variables, where the equation analogous to
(1.3) replaces 1

2n+1

(

3n

n

)

by 1
pn+1

(

(p+1)n
n

)

, the number of p-ary trees.

2. QSym(B): definitions and notations

For these definitions, we follow [7], with some minor differences, for the sake of
simplicity of the computations we will have to make.

Let N and N̄ denote two occurrrences of the set of nonnegative integers. We shall
write N̄ = {0̄, 1̄, 2̄, . . . } and make no difference between the elements of N and N̄ in
any arithmetical expression. We distinguish N and N̄ for the ease of reading.

A bivector is a vector v = (v1, v2, . . . , v2k−1, v2k) such that the odd entries {c2i−1, i =
1..k} are in N, and the even entries {c2i, i = 1..k} are in N̄.

A bicomposition is a bivector in which there is no consecutive zeros, ie. no pattern
00̄ or 0̄0.

The integer k is called the size of v. The weight of v is by definition the couple
(|v|N, |v|N̄) = (

∑k
i=1 v2i−1,

∑k
i=1 v2i). We also set |v| = |v|N + |v|N̄.

For example (1, 0̄, 2, 1̄, 0, 2̄, 3, 0̄) is a bicomposition of size 4, and of weight (6, 3).
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To make notations lighter, we shall sometimes write bivectors or bicomposition as
words, for example 10̄21̄02̄30̄.

The fundamental B-quasisymmetric functions, indexed by bicompositions, are de-
fined as follows

Fc1c2...c2k−1c2k
(An) =

∑

xi1 · · ·xi|c|N
yj1 · · · yj|c|

N̄
∈ Q[An]

where the sum is taken over indices i’s and j’s such that

i1 ≤ · · · ic1 ≤ j1 ≤ · · · jc2 < ic1+1 ≤ · · · ic1+c3 ≤ jc2+1 ≤ · · · ≤ jc2+c4 < ic1+c3+1 ≤ · · ·

We give some examples:
F12̄ =

∑

i≤j≤k xiyjyk,

F02̄10̄ =
∑

i≤j<k yiyjxk.

It is clear from the definition that the bidegree (ie. the couple (degree in x, degree
in y)) of Fc in Q[An] is the weight of c. If the size of c is greater than n, we shall set
Fc(An) = 0.

The space of B-quasisymmetric functions, denoted by QSymn(B) is the vector
subspace of Q[An] generated by the Fc(An), for all bicompositions c.

Let us denote by I2
n the ideal 〈QSymn(B)+〉 generated by B-quasisymmetric func-

tions with zero constant term.

3. Paths and G-set

The aim of this section is to construct a set G of polynomials, which will be proved
in the next section to be a Gröbner basis of I2

n. These two sections are greatly
inspired from [2, 3].

Let v = (v1, v2, . . . , v2k−1, v2k) be a bivector of size n. We associate to v a path
π(v) in the plane N × N, with steps (0,1) or (2,0). We start from (0,0) and add for
each entry vi (read from left to right): vi steps (2,0), followed by one step (0,1).

As an example, the path associated to (1, 0̄, 1, 2̄, 0, 0̄, 1, 1̄) is

We have two kinds of path, regarding their position to the diagonal x = y. If
a path always remains above this line, we call it a 2-Dyck path, and say that the
corresponding vector is 2-Dyck. Conversely, if the path enters the region x < y, we
call both the path and the vector transdiagonal. For example, v = (0, 0̄, 1, 0̄, 0, 1̄, 1, 0̄)
is 2-Dyck, whereas w = (0, 0̄, 1, 1̄, 1, 0̄, 0, 0̄) is transdiagonal.
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(w)(v) π  π

A simple but important observation is that a vector v = (v1, v2, . . . , v2k−1, v2k) is
transdiagonal if and only if there exists 1 ≤ l ≤ k such that

(3.1) v1 + v2 + · · ·+ v2l−1 + v2l ≥ l.

Our next task is to construct a set G of polynomials, mentionned above. From
now on, unless otherwise indicated, vectors are of size n. For w a vector of size
k < n, w0∗ denotes the vector (of size n) obtained by adding the desired number
of 00̄ patterns. We shall define the length `(v) of a vector v as the integer k such
that v = v1 v2 . . . v2k−1 v2k 0∗ with v2k−1 v2k 6= 00̄. In the case of bicompositions, the
notions of size and length coincide.

For v a vector (of length n), we denote by Av
n the monomial

Av
n = xv1

1 yv2
1 · · ·xv2n−1

n yv2n

n .

To deal with leading terms of polynomials, we will use the lexicographic order
induced by the ordering of the variables:

x1 > y1 > x2 > y2 > · · · > xn > yn.

The lexicographic order is defined on monomials as follows: Av
n >lex Aw

n if and only
if the first non-zero entry of v − w (componentwise) is positive.

The set

G = {Gv} ⊂ I2
n

is indexed by transdiagonal vectors. Let v be a transdiagonal vector.
For v = c0∗ with c a non-zero bicomposition of length ≥ n (which implies that v

is transdiagonal), we define

Gv = Fc.

If v cannot be written as c0∗, the polynomial Gv is defined recursively. We look
at the rightmost occurrence of two consecutive zeros (on the left of a non-zero entry:
we do not consider the subword 0∗). Two cases are to be distinguished according to
the parity of the position of this pattern:

• if v = w00̄αβc0∗, with w a vector of size k − 1, α ∈ N (by definition non-zero),
β ∈ N̄, c a bicomposition, we define

(3.2) Gw00̄αβc0∗ = Gwαβc0∗ − xk Gw(α−1)βc0∗;
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• if v = wα0̄0βc0∗, with w a vector of size k − 1, α ∈ N, β ∈ N̄ (by definition
non-zero), c a bicomposition, we define

(3.3) Gwα0̄0βc0∗ = Gwαβc0∗ − yk Gwα(β−1)c0∗.

We easily check that both terms on the right of (3.2) and (3.3) are indexed by
vectors that are transdiagonal as soon as v is transdiagonal. We do it for (3.2) : let
us denote v′ = wαβc0∗ and v′′ = w(α − 1)βc0∗. Let l be the smallest integer such
that (3.1) holds for v. If l ≥ k − 1 then w is transdiagonal thus so are v ′ and v′′, and
if not:

v′
1 + v′

2 + · · · + v′
2l−3 + v′

2l−2 ≥ l and v′′
1 + v′′

2 + · · ·+ v′′
2l−3 + v′′

2l−2 ≥ l − 1.

Since v′ and v′′ are of length equal to `(v)−1, this defines any Gv for v transdiagonal
by induction on `(v).

It is interesting to develop an example, where we take n = 3.

G00̄10̄02̄ = G00̄12̄00̄ − y2 G00̄11̄00̄

= (G12̄00̄00̄ − x1 G02̄00̄00̄) − y2 (G11̄00̄00̄ − x1 G01̄00̄00̄)
= (F12̄ − x1 F02̄) − y2(F11̄ − x1 F01̄)
= (x1y

2
1 + x1y1y2 + x1y1y3 + x1y

2
2 + x1y2y3 + x1y

2
3 + x2y

2
2 + x2y2y3

+x2y
2
3 + x3y

2
3 − x1(y

2
1 + y1y2 + y1y3 + y2

2 + y2y3 + y2
3))

−y2(x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y3 − x1(y1 + y2 + y3))
= x2y

2
3 − y2x3y3 + x3y

2
3

The monomials of the result are ordered with respect to the lexicographic order
and we observe that the leading monomial (denoted LM) of G00̄10̄02̄ is A00̄10̄02̄

3 . The
following proposition shows that this fact holds in general for the family G.

Proposition 3.1. Let v be a transdiagonal vector. The leading monomial of Gv is

(3.4) LM(Gv) = Av
n.

The proof of this proposition is, as the definition of the Gv polynomials, inductive
on the length of v. First observe that the definitions of the Fc and of the lexicographic
order imply (3.4) when v = c0∗ with c a bicomposition. Now Proposition 3.1 is a
consequence of the following lemma.

We shall write An−k = xk+1, yk+1, . . . , xn, yn.

Lemma 3.2. Let w be a vector of size k, and c a bicomposition, then we have

(3.5) Gwc0∗(An) = Aw
k Fc(An−k) + (terms < Aw

k ).

Proof. If w is a bicomposition, then (3.5) is a consequence of the definition of the
polynomials F ’s. If not this is readily done by induction on `(w), by using the
recursive definition of the G’s.

We suppose that we are in the case of recursion (3.2), ie. w can be written w =
u00̄αβd with u a bivector of size l, α ∈ N, α > 0, β ∈ N̄, and d a bicomposition.

We first observe that the F polynomials obey to recursive relations. We suppose
we have a bicomposition γδg, with γ > 0. Then the definition of the fundamental
quasisymmetric polynomials implies:

(3.6) Fγδg(An) = Fγδg(An−1) + x1F(γ−1)δg(An)



IDEALS AND QUOTIENTS OF B-QUASISYMMETRIC FUNCTIONS 7

if γδ 6= 10̄, and

(3.7) F10̄g(An) = F10̄g(An−1) + x1Fg(An−1).

The same kind of equalities holds when γ = 0, with recursive terms multiple of y1.
We now prove (3.5). We have to distinguish two cases. We first suppose αβ 6= 10̄,

and use (3.2) and (3.6) to write:

Gu00̄αβdc0∗ = Guαβdc0∗ − xl+1 Gu(α−1)βdc0∗

= Au
l (Fαβdc(An−l) − xl+1F(α−1)βdc(An−l)) + (terms < Au

l )
= Au

l (Fαβdc(An−(l+1))) + (terms < Au
l )

= Au00̄αβdc0∗

n (Fc(An−k)) + (terms < Aw
n ).

Now if αβ = 10̄, the computation is almost the same:

Gu00̄10̄dc0∗ = Gu10̄dc0∗ − xl+1 Gu00̄dc0∗

= Au
l F10̄dc(An−l) + (terms < Au

l ) − xl+1Fdc(An−(l+1)) + (terms < Au00̄
l+1)

= Au
l Fαβdc(An−(l+1)) + (terms < Au

l )
= Au00̄10̄dc0∗

n (Fc(An−k)) + (terms < Aw
n ).

All this process can be done in the case of recurrence (3.3), and this completes the
proof. �

4. Proof of the main theorem

The aim of this section is to prove Theorem 1.1, by showing that the set G con-
structed in the previous section is a Gröbner basis for I2

n. This will be achieved in
several steps.

We introduce the notation Qn = Q[An]/I2
n and define

Bn = {Av
n / π(v) is a 2−Dyck path}.

Lemma 4.1. Any polynomial P ∈ Q[An] is in the span of Bn modulo I2
n. That is

(4.1) P (An) ≡
∑

Av
n∈Bn

cvA
v
n.

Proof. It clearly suffices to show that (4.1) holds for any monomial Av
n, with v trans-

diagonal. We assume that there exists Av
n not reducible of the form (4.1) and we

choose Aw
n to be the smallest amongst them with respect to the lexicographic order.

Let us write

Aw
n = LM(Gw)

= (Aw
n − Gw) + Gw

≡ Aw
n − Gw (mod I2

n).

All monomials in (Aw
n − Gw) are lexicographically smaller than Aw

n , thus they are
reducible. This contradicts our assuption and completes our proof. �

This lemma implies that Bn spans the quotient Qn. We will now prove its linear
independence. The next lemma is a crucial step.
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Lemma 4.2. If we denote by L[S] the linear span of a set S, then

(4.2) Q[An] = L[Av
nFc / Av

n ∈ Bn, |c| ≥ 0].

Proof. We have already obtained the following reduction for any monomial Aw
n in

Q[An]:

Aw
n ≡

∑

Av
n∈Bn

cvA
v
n (mod I2

n),

which is equivalent to

(4.3) Aw
n =

∑

Av
n∈Bn

cvA
v
n +

∑

|c|>0

QcFc.

We then apply the reduction (4.1) to each monomial of the Qc’s. Now we use the
algebra structure of QSym(B) (cf. Proposition 37 of [7]) to reduce products of funda-
mental B-quasisymmetric functions as linear combinations of Fc’s. We obtain (4.2)
in a finite number of operations since degrees strictly decrease at each operation,
because |c| > 0 implies deg Qc < |w|. �

Now we come to the final step in the proof. Before stating this lemma, we introduce
some notations, and make an observation.

For v = (v1, v2, v . . . , v2k−1, v2k) a bivector, let r(v) denote the reverse bivector:
r(v) = (v2k, v2k−1, . . . , v2, v1). In the same way, let R(A) denote the reverse alphabet
of A: R(A) = yn, xn, . . . , y1, x1. Then one has for any bicomposition c:

(4.4) Fc(R(A)) = Fr(c)(A).

Lemma 4.3. The set G is a linear basis of I2
n, i.e.

(4.5) I2
n = L[Gw / w transdiagonal].

Proof. The proof will be achieved in several steps. The first one is to use Lemma 4.2
and observation (4.4) to obtain:

(4.6) Q[A] = L[R(A)vFc / Av
n ∈ Bn, |c| ≥ 0].

We shall denote Cn = {R(A)v / Av
n ∈ Bn}.

Now we reduce the problem, using (4.6) and the algebra structure of QSymn(B)
to write:

I2
n = 〈Fc, |c| > 0〉Q[An] = L[Av

n Fc Fc′ / Av
n ∈ Cn, |c| > 0, |c′| ≥ 0]

= L[(A)v Fc′′/ Av
n ∈ Cn, |c′′| > 0].

Now we have to prove that for any monomial Av
n ∈ Cn and any non-zero bicompo-

sition c:

(4.7) Av
n Fc ∈ L[Gw /w transdiagonal].

Thanks to Lemma 4.1, any monomial of degree at least equal to n is in I2
n, thus we

can restrict to |v| + |c| < n.
We consider the product

(4.8) yv2n

n (xv2n−1
n (· · · (yv2

1 (xv1
1 Fc)))).
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To reduce (4.8), we use the following relations, where w denotes a bivector, d a
bicomposition, α and β elements of N and N̄, not simultaneously zero:

(4.9) xk Gwαβd0∗ = Gw(α+1)βd0∗ − Gw00̄(α+1)βd0∗

or

(4.10) xk Gw0∗00∗ = Gw0∗10∗ − Gw0∗00̄10∗

for the xk factors and:

(4.11) yk Gwαβd0∗ = Gwα(β+1)d0∗ − Gw00̄α(β+1)d0∗

or

(4.12) yk Gw0∗0̄0∗ = Gw0∗1̄0∗ − Gw0∗0̄01̄0∗

for the yk factors. All these equations are direct consequences of the recursive defi-
nition of the G polynomials.

The reduction of the product (4.8) is made possible because of the order of the
multiplications: the successive “shifts” are processed from left to right.

Our final task is to show that all vectors u generated in this process are transdi-
agonal and that their length never exceeds n.

Let us first check that the generated vectors are all transdiagonal. In the case of
relations (4.10) and (4.12), this is obvious. Now, let us consider, for example relation
(4.9). Let us denote u = wαβd0∗, u′ = w(α + 1)βd0∗ and u′′ = w00̄(α + 1)βd0∗.
Since u is transdiagonal, there exists 1 ≥ l ≥ `(u) such that

u1 + u2 + · · ·+ u2l−1 + u2l ≥ l.

If l > `(w), u′ and u′′ are clearly transdiagonal, and if not:

u′
1 + u′

2 + · · ·+ u′
2l−1 + u′

2l ≥ l + 1 ≥ l and u′′
1 + u′′

2 + · · ·+ u′′
2l+1 + u′′

2l+2 ≥ l + 1

whence u′ and u′′ are transdiagonal.
Let us now check that the length of the generated vectors never exceeds n. We

keep track of the couple e = u2`(u)−1, u2`(u). We distinguish two cases.
(1) e comes from c2`(c)−1, c2`(c) that is shifted to the right by relations (4.9) and/or

(4.11). It may be shifted at most |v| steps to the right, thus:

`(u) ≤ `(c) + |v| ≤ |c| + |v| ≤ n.

(2) e comes from a 10̄ or 01̄ generated by relation (4.10) or (4.12), then shifted to
the right (by any relations). We suppose it is created by a multiplication by xk

or yk, and we consider the vector

t = v2nv2n−1 . . . v2kv2k−10
∗.

Since Av
n is in Cn, the word t is 2-Dyck. Thus:

|t| < `(t) = n − k + 1.

This implies that the term 10̄ or 01̄ can be shifted at most to position

k + |t| ≤ k + n − k = n.

�
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To illustrate the recursive reduction of a product of the form (4.8), we give the
following example, where n = 5:

x1 y2 F10̄01̄ = y2(x1 F10̄01̄)
= y2(G20̄01̄00̄00̄00̄ − G00̄20̄01̄00̄00̄)
= y2 G20̄01̄00̄00̄00̄ − y2 G00̄20̄01̄00̄00̄

= G20̄02̄00̄00̄00̄ − G20̄00̄02̄ − G00̄21̄01̄00̄00̄ + G00̄20̄01̄01̄00̄.

Now we are able to complete the proof of Theorem 1.1. We can even state a more
precise result.

Theorem 4.4. A basis of the quotient Qn is given by the set

Bn = {Av
n / π(v) is a 2−Dyck path},

which implies

(4.13) dimQn =
1

2n + 1

(

3n

n

)

.

Since I2
n is bihomogeneous, the quotient Qn is bigraded and we can consider Hk,l(Qn)

the subspace of Qn consisting of polynomials of bidegree (k, l), then

(4.14) dim Hk,l(Qn) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.

Proof. By Lemma 4.1, the set Bn spans Qn. Assume we have a linear dependence:

P =
∑

Av
n∈Bn

av A
v
n ∈ I2

n.

By Lemma 4.3, the set G spans I2
n, thus

P =
∑

u transdiagonal

bu Gu.

This implies LM(P ) = Au
n, with u transdiagonal, which is absurd. Hence Bn is a

basis of the quotient Qn.
For the combinatorial part, we refer to [6], but we give a short proof of (4.13).
A ternary tree is a tree in which every internal node has exactly 3 sons. Ternary

trees are known [22] to be enumerated by

C3(n) =
1

2n + 1

(

3n

n

)

.

To conclude we observe that the depth-first search of a tree gives a bijection between
ternary trees and 2-Dyck paths ; we recall that we search recursively the left son,
then the right son, then the root, and associate to each external node (except the
leftmost one) a (0, 1) step, and to each internal node a (2, 0) step.

Below is given an illustration of this bijection, where we put in dashed lines the
final horizontal sequence, to coincide with our definition of 2-Dyck paths.
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Now if we denote by Dn,k,l the set of 2-Dyck paths with k horizontal steps at even
height (corresponding to x terms) and l horizontal steps at odd height (corresponding
to y terms), then the following equality is proven in [6]:

#Dn,k,l =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.

�

5. Quotient of polynomials by QSym(Gp)

Every results of this paper can be extended to p sets of variables. Because of the
great similarity to the previous sections, we shall only present here the result and a
short sketch of the proof.

We denote by Ap
n the alphabet of p × n variables:

Ap
n = x

(1)
1 x

(2)
1 . . . x

(p)
1 x

(1)
2 . . . x

(p)
2 . . . x(1)

n . . . x(p)
n .

We define p-vectors of size k as vectors of p × k integers. For the ease of reading,
we can write for example when p = 3: v = 01̇2̈10̇0̈20̇1̈. A p-composition is a p-vector
avoiding 3 consecutive zeros.

The set QSym(Gp) of Gp-quasisymmetric polynomials is the vector subspace of
Q[Ap

n] spanned by fundamental Gp-quasisymmetric polynomials, defined for a p-
composition c by:

Fc =
∑ ∏

x
(1)

i(1)
· · ·

∏

x
(p)

i(p)

with

i
(1)
1 ≤ · · · ≤ i(1)c1

≤ i
(2)
c1+1 ≤ · · · ≤ i

(2)
c1+c2

≤ · · · ≤ · · · ≤ i
(p)
c1+···+cp

< i
(1)
c1+···+cp+1 ≤ · · · .

We give an example (here p = 3 and we use letters x, y, z for the alphabets x(1), x(2),
x(3)):

F01̇0̈20̇1̈ =
∑

i<j≤k≤l

yi xj xk zl.

We define the ideal Ip
n = 〈QSym(Gp)+〉 and the quotient Qp

n = Q[Ap
n]/Ip

n. The result
which generalizes Theorem 4.4 is



12 J.-C. AVAL

Theorem 5.1. For p ≥ 1,

(5.1) dimQp
n =

1

pn + 1

(

(p + 1)n

n

)

.

Proof. We shall only give a brief description of the proof, which is very similar to the
one of Theorem 4.4.

We first associate to any monomial a plane path, as in Section 3, with the difference
that horizontal steps are of length p. Paths (and associated monomials) are said to
be p-Dyck if they stay above the diagonal, and transdiagonal if not.

The construction of the set G indexed by transdiagonal path is the same, with p
cases of recurrence. We prove that G is a Gröbner basis of Ip

n as in Section 4, and
conclude that a basis of the quotient Qp

n is given by the monomials associated to
p-Dyck paths.

To conclude, we observe that the depth-first search gives a bijection between p-ary
trees, enumerated by the right-hand side of (5.1), and p-Dyck paths.

�
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