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Abstract. We consider the partition function Z(N ;x1, . . . , xN , y1, . . . , yN ) of the square
ice model with domain wall boundary. We give a simple proof of the symmetry of Z with
respect to all its variables when the global parameter a of the model is set to the special
value a = exp(iπ/3). Our proof does not use any determinantal interpretation of Z and can
be adapted to other situations (for examples to some symmetric ice models).

1. Introduction

An alternating sign matrix (ASM) is a square matrix with entries in {−1, 0, 1} and such that
in any row and column: the non-zero entries alternate in sign, and their sum is equal to 1.
Their numbers appear in the so-called Razumov-Stroganov conjecture related to the O(1) loop
model (7; 8; 2). Their enumeration formula was conjectured by Mills, Robbins and Rumsey
(6), and proved by Zeilberger (12), and almost simultaneously by Kuperberg (4). Kuperberg
used a bijection between the ASM’s and the states of a statistical square ice model, for which
he studied and computed the partition function. He also used these tools in (5) to obtain many
enumeration or equinumeration results for various classes of symmetries of ASM’s, most of
them having been conjectured by Robbins (10). The same method was recently used to obtain
the enumeration of ASM’s invariant (9) or quasi-invariant (1) under a quarter-turn rotation.
A property useful in all these works, which was established by Stroganov (11), states that
the partition function Z(N ; x1, . . . , xN , y1, . . . , yN ) of the (unrestrited) square ice model with
domain wall boundary is symmetric in all its variables when the global parameter a of the model
is set to the special value a = exp(iπ/3). We give here another proof of this result. This proof
is somehow “elementary” since it does not use any determinantal interpretation. Moreover, it
can be adapted to other cases, for example to some symmetric models, to models in which there
can be lines that carry more than one spectral parameter, or in which some fixed oriented edges
are specified.

This paper is organized as follows: in Section 2, we recall the definitions of the ice models and
of their associated weights; in Section 3, we give and prove the main result, i.e. the symmetry
of Z; in the last section, we present how we can obtain in the same way symmetry properties
for other ice models.

2. Definitions

2.1. Notations. We recall here the main definitions and refer to (5) for details and many
examples.
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Let a ∈ C be a global parameter. For any complex number x different from zero, we denote
x = 1/x, and we define:

(1) σ(x) = x − x.

If G is a tetravalent graph, an ice state of G is an orientation of the edges such that every
tetravalent vertex has exactly two incoming and two outcoming edges.

A parameter x 6= 0 is assigned to any tetravalent vertex of the graph G. Then this vertex
gets a weight, which depends on its orientations, as shown on Figure 1.
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Figure 1. The 6 possible orientations, their associated weights, and the cor-
responding entries in ASM’s

It is sometimes easier to assign parameters, not to each vertex of the graph, but to the lines
that compose the graph. In this case, the weight of a vertex is defined as:

x

y

=
xy

When this convention is used, a parameter explicitly written at a vertex replaces the quotient
of the parameters of the lines.

The partition function of a given ice model is then defined as the summation over all its
states of the product of the weights of the vertices.

To simplify notations, we will denote by XN the vector of variables (x1, . . . , xN ). We use
the notation X\x to denote the vector X without the variable x.

2.2. ASM’s and square ice model. We give in Figure 2 the ice model corresponding to
(unrestricted) ASM’s and its partition functions. The bijection between ASM’s and states of the
square ice model with “domain wall boundary” is now well-known (cf. (5)). The correspondence
between orientations of the ice model and entries of ASM’s is given in Figure 1.

Z(N ; x1, . . . , xN , y1, . . . , yN) =

x1

x2

xN

y1 y2 yN

Figure 2. Partition function for ASM’s of size N
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2.3. Yang-Baxter equation. To deal with partition functions of ice models, the crucial tool
is Yang-Baxter equation, that we recall below.

Lemma 1. [Yang-Baxter equation] If xyz = a, then

(2)

x

y

z

=

x

y

z

.

3. Main result

The following result has been obtained by Stroganov (11).

Theorem 2. (Stroganov) When a = ω6 = exp(iπ/3), the partition function Z(N ; XN , YN ) is
symmetric in all its variables x1, . . . , xN , y1, . . . , yN .

To prove this result Stroganov (11) uses a determinantal interpretation of Z. We want here
to give a proof that only uses Yang-Baxter equation to study the partition function.

The method used was introduced by Kuperberg (5): observe that Z is a Laurent polynomial,
then give enough specialization of one of its variable to imply the desired property.

3.1. Laurent polynomial. Since the weight of any vertex is a Laurent polynomial in the
variables xi’s and yi’s, the partition function Z is a Laurent polynomial in these variables.
Moreover it is a centered Laurent polynomial, i.e. its lowest degree is the opposite of its
highest degree (called the half-width of the polynomial). Since any row and column of an ASM
has at least one non-zero entry, which corresponds to a constant σ(a2), we get the following
property.

Lemma 3. The partition function Z(N ; XN , YN ) is a Laurent polynomial in any of its variables
of half-width N − 1 and of parity the parity of N − 1.

3.2. Partial symmetry. The following lemma gives a (now classical) example of use of the
Yang-baxter equation.

Lemma 4.

(3)
x

y
. . . =

y

x
. . . .

Proof. We multiply the left-hand side by σ(az), with z = axy. We get

σ(az)
x

y
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y

x
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x
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As a consequence, we get the “partial symmetry” of Z, which is true whatever the value of
the global parameter a.

Lemma 5. The functions Z(N ; XN , YN ) is symmetric separately in the two sets of variables
XN and YN .

3.3. Specialization.

Lemma 6. [specialization of Z; Kuperberg] If we denote

A(y1, XN\x1, YN\y1) =
∏

2≤k≤N

σ(axky1)
∏

1≤k≤N

σ(a2y1yk),

A(y1, XN\x1, YN\y1) =
∏

2≤k≤N

σ(ay1xk)
∏

1≤k≤N

σ(a2yky1),

then we have:

Z(N ; ay1, XN\x1, YN ) = A(y1, XN\x1, YN\y1)Z(N − 1; XN\x1, Y \y1)(4)

Z(N ;ay1, XN\x1, YN ) = A(y1, XN\x1, YN\y1)Z(N − 1; XN\x1, YN\y1).(5)

Proof. We recall the method to prove equation (4). We observe that when x1 = āy1, the
parameter of the vertex at the crossing of the two lines of parameter x1 and y1 is ā. Thus the
weight of this vertex is σ(aā) = σ(1) = 0 unless the orientation of this vertex is the second one
on Figure 1. But this orientation implies the orientation of all vertices in the row x1 and in the
column y1, as shown on Figure 3. The fixed part gives the partition function Z in size N − 1,
without parameters x1 and y1, and the weights of the fixed part gives the factor A(. . . ).

x1 = ay1

xN

x2

y1 yN

x1 = ay1

xN

x2

y1 yN

Figure 3. Fixed edges for (4) on the left and (5) on the right

The case of (5) is similar, after using Lemma 5 to put the line x1 at the top of the grid.
�

3.4. Conclusion. We are now in a position to complete the proof of Theorem 2. From now
on we set the global parameter to thz special value a = exp(iπ/3). This special value of the
parameter implies the following equalities:

(6) σ(a) = σ(a2) σ(a2x) = −σ(āx) = σ(ax̄).



ON THE SYMMETRY OF THE PARTITION FUNCTION OF SOME SQUARE ICE MODELS 5

The proof of Theorem 2 is done by induction on N . We easily check the property for N = 1.
Now if N ≥ 2, because of Lemma 5, we want to obtain the symmetry of Z with respect to
x2, y2.

We use Lemma 3 to reduce the proof of Theorem 2 to the proof of the symmetry of Z in at
least N (independent) specializations of the variable x1. When x1 = ay1, Lemma 6 gives:

(7) Z(N ;ay1, XN\x1, YN ) = A(y1, XN\x1, YN\y1)Z(N − 1; XN\x1, YN\y1).

By recurrence, we have that Z(N − 1; XN\x1, YN\y1) is symmetric in x2, y2. The terms of
A(y1, XN\x1, YN\y1) involving the variables x2, y2 are:

σ(ax2ȳ1)σ(a2y1ȳ2).

We use equation (6) to write:

σ(ax2ȳ1)σ(a2y1ȳ2) = σ(ax2ȳ1)σ(ay2ȳ1)

which is clearly symmetric in the variables x2, y2. We obtain in the same way the symmetry
when x1 = āy1; and by Lemma 5 we get this symmetry for the 2(N−1) special values x1 = a±1yk

for k = 1, 3, . . . , N , which is more than enough to conclude the proof of Theorem 2.

4. Other ice models

The method used to prove the global symmetry of Z may be adapted to other ice models.
We illustrate this with half-turn symmetric ASM’s (HTASM’s). This example shows how our
method can be used to prove global symmetries, or partial symmetries (for example when a
line of the ice model carries two different spectral parameters -which breaks the homogeneity
of the partition function-, or when the orientation of an edge is fixed).

4.1. HTASM’s – notations and results. The ice models corresponding to HTASM’s were
introduced by Kuperberg (5) for the even size and by Razumov and Stroganov (9) for the odd
size. We recall these models on Figure 4. The spectral parameters on this figure are slightly
different from the original ones to better suit the proof. The dotted lines mean a change of
parameter: on one side the parameter is x, whereas on the other side it is y.

We will prove the following theorem, for the special value a = exp(iπ/3), and for the spe-
cialization x = y in the even case (which corresponds to the original definition of ZHT(2N).

Theorem 7. When the global parameter a is set to the special value = exp(iπ/3), the function
ZHT(2N ; XN−1, (xN , xN ), YN ) is symmetric with respect to all its 2N variables, and the function
ZHT(2N+1; XN , (x, y), YN ) is symmetric with respect to its 2N variables x1, . . . , xN , y1, . . . , yN .

The property on ZHT(2N + 1) may be deduced from the main result of (9). The assertion
about ZHT(2N) is new.

4.2. Proofs. Since the method is essentially the same as in the case of unrestricted ASM’s, we
shall give the main steps of the proof and only insist on the difference with the previous case.

4.2.1. Laurent polynomials. To deal with Laurent polynomials of given parity in the variable y,
and thus divide by two the number of required specializations of this variable, we shall group
together the states with a given orientation (indicated as subscripts in the following notations)
at the edge where the parameters x and y meet.

So let us consider the partition functions ZHT(2N ; XN−1, (x, y), YN ) and ZHT(2N ; XN−1, (x, y), YN ),
respectively parts with the parity of N − 1 and of N of ZHT(2N ; XN−1, (x, y), YN ) in y; and

ZHT(2N +1; XN , YN , (x, y)) and ZHT(2N +1; XN , YN , (x, y)), respectively parts with the parity
of N and of N − 1 of ZHT(2N + 1; XN , YN , (x, y)) in y.
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ZHT(2N ; x1, . . . , xN−1(, x, y), y1, . . . , yN) =

x1

xN−1

y
x

y1 yN

x1

x2

xN

x

y1 yN y

= ZHT(2N + 1; x1, . . . , xN , y1, . . . , yN , (x, y))

Figure 4. Partition functions for HTASM’s

Lemma 8. The functions ZHT(2N ; XN−1, (x, y), YN ), ZHT(2N ; XN−1, (x, y), YN ), ZHT(2N +

1; XN , YN , (x, y)) and ZHT(2N +1; XN , YN , (x, y)) are centered Laurent polynomials in the vari-
able y, odd or even, of respective half-widths N − 1, N , N − 1, and N .

4.2.2. Partial symmetries. Since Lemma 4 may be easily adapted to HTASM’s, we get:

Lemma 9. The functions ZHT(2N ; XN−1, (x, y), YN ), ZHT(2N ; XN−1, (x, y), YN ), ZHT(2N +

1; XN , YN , (x, y)) and ZHT(2N + 1; XN , YN , (x, y)) are symmetric separately in the variables xi

and in the variable yi.
Moreover if we specialize x = y = xN in the even case, we get the symmetry with respect to

the set XN .

We now have to deal with the symmetry in the couple (x, y), in the even case.
The easy transformation

(8) z =
(

σ(az) + σ(a2)
)

(

+
)

together with Yang-Baxter equation (2) gives the following lemma.

Lemma 10.

x

y
. . . =

σ(a2) + σ(xy)

σ(a2yx) y

x
. . .(9)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . .(10)

x

y
. . . =

σ(xy)

σ(a2yx) y

x
. . . +

σ(a2)

σ(a2yx) y

x
. . .(11)
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We deduce from this lemma the following property of pseudo-symmetry in (x, y) for the

functions ZHT(2N ; XN−1, (x, y), YN ) and ZHT(2N ; XN−1, (x, y), YN ).

Lemma 11. For ⋆ = , and � = , respectively, we have

(12) Z⋆

HT(2N ; XN−1, (x, y), YN ) =
1

σ(a2yx)
σ(a2)Z⋆

HT(2N ; XN−1, (y, x), YN )

+ σ(xy)Z�
HT(2N ; XN−1, (y, x), YN ).

4.2.3. Specializations. We now give specializations of the functions ZHT in the variable x or y.

Lemma 12. [specialization of ZHT] If we denote

A1
H(x1, XN\x1, YN ) =

∏

1≤k≤N

σ(a2x1xk)
∏

1≤k≤N

σ(aykx1)

A
1

H
(x1, XN\x1, YN ) =

∏

1≤k≤N

σ(a2xkx1)
∏

1≤k≤N

σ(ax1yk
)

A0
H(y1, XN−1, YN\y1) =

∏

1≤k≤N−1

σ(axky1)
∏

1≤k≤N

σ(a2y1yk)

A
0

H
(y1, XN−1, YN\y1) =

∏

1≤k≤N−1

σ(ay1xk)
∏

1≤k≤N

σ(a2yky1),

then for ⋆ = , and � = , respectively, we have

Z⋆

HT(2N + 1; XN , YN , (x,ax1)) =A1
H

(x1, XN\x1, YN )Z�

HT(2N ; XN\x1, (x1, x), YN )

(13)

Z�

HT(2N + 1; XN , YN , (x,ax1)) =A
1

H(x1, XN\x1, YN )Z⋆

HT(2N ; XN\x1, (x, x1), YN )

(14)

Z⋆

HT(2N ; XN−1, (x,ay1), YN ) =σ(axy1)A
0
H

(y1, XN−1, YN\y1)Z
�

HT(2N − 1; XN−1, YN\y1, (x, y1))

(15)

Z�

HT(2N ; XN−1, (ay1, y), YN ) =σ(ay1y)A
0

H
(y1, XN−1, YN\y1)Z

⋆

HT(2N − 1; XN−1, YN\y1, (y, y1))

(16)

Proof. The method is almost the same as the one used to prove Lemma 6. An extended proof
may be found in (1). �

4.2.4. Conclusion. We are now in a position to conclude the proof of Theorem 7. From now on
we set the global parameter a to the special value a = exp(iπ/3).

Lemma 9 allows us to reduce the proof of the theorem to the proof of the following assertion:
the functions ZHT(2N ; XN−1, (x, y), YN ), ZHT(2N ; XN−1, (x, y), YN ), ZHT(2N+1; XN , YN , (x, y))

and ZHT(2N + 1; XN , YN , (x, y)) are symmetric with respect to x2, y2.
The proof is done by induction on N . We easily check the property for small values of N .

We suppose the property true in size 2N , and we consider the odd case 2N + 1.
Because of Lemma 8, we have to check the property for enough specializations of the variable

y. We use Lemma 12: equations (13) and (13) give us the specializations y = a±1x1. As in the
case of Z, the recurrence gives us the symmetry of the factor ZHT(2N), and the symmetry of
the factor A is settled through (6) which implies:

σ(ax2ȳ1)σ(a2y1ȳ2) = σ(ax2ȳ1)σ(ay2ȳ1)

the right-hand being clearly symmetric in x2, y2.
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Using Lemma 9 we get 2(N − 1) specializations satisfying the symmetry, which is enough to
imply the symmetry in full generality as soon as N > 2.

Now we use the property in size 2N + 1 to prove it in size 2N + 2. The method is the
same, with the only difference that we have to use Lemma 10 because equation (16) gives a
specialization for the variable x.

The proof of Theorem 7 is now complete.
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