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Abstract. We introduce the notion of combinatorial inverse systems in non-

commutative variables. We give two important examples in this setting and
present some conjectures and results.

1. Introduction

Inverse systems [13] and Gröbner basis [15] are very useful tools to study finitely
generated commutative algebras. In practice we are given a presentation of an
algebra with generators and relations. That is the algebra is the quotient of a free
commutative algebra (a polynomial ring in finitely many variables) by the ideal of
relations. Inverse systems and Gröbner basis allow one to give explicit linear basis
and to extract all the properties of the quotient.

We are interested in the case where the ideals of relations are obtained from a
combinatorial construct of a family of algebras. More precisely, a combinatorial
inverse system is a family of inverse systems obtained from a family of ideal {In}
where In is generated by a combinatorial Hopf algebra [1] restricted to n variables.
There are several important examples of combinatorial inverse systems (for some
examples see [2, 4, 11, 12]). Coinvariants of the symmetric groups invariants are
particularly well studied [10, 17] and more recently the spaces of diagonal harmonics
[12] are still intensively studied.

For finitely generated non-commutative algebras, much less is known. In contrast
with the commutative case, we are not guarantied that the ideal of relations will be
finitely generated. This may cause many problems. In particular, the problem of
finding a Gröbner basis [15] is not decidable. A Gröbner basis in non-commutative
variable is in general infinite and the Buchberger algorithm may not stop. In the
non-commutative setting, even the inverse systems associated to the symmetric
groups invariants are not well understood.

In this paper we introduce in Section 2 the basic notion of non-commutative
inverse systems. We only consider homogeneous ideals since combinatorial inverse
systems are generated by homogenous elements. In Section 3 we define more pre-
cisely the notion of combinatorial inverse systems and give some examples in com-
mutative variables. We then return our attention to non-commutative combinato-
rial inverse systems. Section 4 is dedicated to the non-commutative combinatorial
inverse system for the symmetric polynomials in n non-commutative variables (sym-
metric groups invariants). It is not known if this system is finite for all n. We have
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computed this system for n = 1, 2, 3 and 4 and conjecture it is finite for all n.
This conjecture would guaranty that the non-commutative Buchberger algorithm
stops and that the ideals generated by non-commutative symmetric polynomials al-
ways have decidable finite Gröbner bases. We give some evidence of this and some
weaker conjectures. In Section 5 we present the non-commutative combinatorial
inverse system of Quasi-symmetric functions (Temperley-Lieb algebras invariants).
In recent work, we have shown that this inverse system is finite and gives us here
further evidence for our conjectures in Section 4.

2. Elements of Non-commutative Inverse Systems

Let R be the polynomials in non-commutating variables (or called an alphabet)
{x1, x2, . . . , xn}. That is

R = C〈x1, x2, . . . , xn〉.
For a ∈ {x1, x2, . . . , xn}, we define on R the operator da by

da · w =
{
u if w = au,
0 otherwise,

where w and u are monomials (or called words and a is refer to as a letter). We
think of this operator as a derivative but it does not satisfies Leibniz’s Rule. Let
u = u1u2 · · ·uk be a word of degree k with uj = xij for some 1 ≤ ij ≤ n. We
denote

←−u = ukuk−1 · · ·u1

and
du · w = (du1 · (du2 · (· · · (duk · w) · · · ))).

A pairing <,> on R is defined on the monomials (or words) by

< u, v >= δu,v = [d←−u · v]c.t.,

where [f ]c.t. means the constant term of f and

δu,v =
{

1 if u = v,
0 otherwise.

For each f ∈ R, we define
f(d) =

∑
w

cwdw,

when f =
∑
w cww, where cw ∈ C. Furthermore,
←−
f (d) =

∑
w

cwd←−w and < f, P >=
[←−
f (d) · P

]
c.t.
.

Each f ∈ R can be written as f = fn+fn−1 + · · ·+f0, where fi is the component
in f of degree i for all 0 ≤ i ≤ n. We say that I ⊆ R is a homogeneous ideal if
f = fn + fn−1 + · · · + f0 ∈ I implies fi ∈ I for all 0 ≤ i ≤ n. In fact, I is a
homogeneous ideal if and only if I is generated by homogeneous elements of R. For
any homogeneous ideal I we define

I⊥ = {P ∈ R : < f, P >= 0, ∀f ∈ I}.

If I is homogeneous clearly R = I ⊕ I⊥. In this case, we can compute I⊥ indepen-
dently in each (finite dimensional) homogeneous component of R.
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Lemma 2.1. Let I be a homogeneous ideal. Then

I⊥ = {P ∈ R :
←−
f (d) · P = 0, ∀f ∈ I}.

This means that I is the solution to a system of (differential) equations.

Proof. Let P ∈ R such that
←−
f (d) · P = 0 for all f ∈ I. Then

[←−
f (d) · P

]
c.t.

= 0.
So < f, P >= 0, for all f ∈ I. Hence P ∈ I⊥. Conversely, let P ∈ I⊥ and f ∈ I.
Then fu ∈ I for any word u. So

[
d←−u
←−
f (d) · P

]
c.t.

= 0, for all u. This implies that
←−
f (d) · P = 0. �

Lemma 2.2. Let I be a homogeneous ideal. Then I⊥ is closed under derivation,
i.e., du · P ∈ I⊥ for all P ∈ I⊥ and u.

Proof. Let P ∈ I⊥. Then < f, P >= 0 for all f ∈ I. For any f ∈ I,

< f, du · P > =
[←−
f (d)du · P

]
c.t.

= <←−u f, P >

= 0, since ←−u f ∈ I.
Hence du · P ∈ I⊥. �

Since R = I ⊕ I⊥, R/I ∼= I⊥. Thanks to Lemma 2.1 and Lemma 2.2, the
space I⊥ is the solution to a system of (differential) equations that is closed under
differentiation. This is what we will refer to as the noncommutative inverse system
of the homogeneous ideal I.

We are now interested in the relation between polynomials in commuting and
non-commuting variables. Let u = u1u2 · · ·uk be a word of length k with uj = xij
for some 1 ≤ ij ≤ n. Let σ ∈ Sn and π ∈ Sk. We define

σ ◦ u = xσ(i1)xσ(i2) · · ·xσ(ik)

and
u ◦ π = uπ(1)uπ(2) · · ·uπ(k).

For any nonnegative integer vector α = (α1, α2, . . . , αn), we define

xα = xα1
1 xα2

2 · · ·xαnn
and

α! = α1!α2! · · ·αn!.
Consider the maps

χ : C〈x1, x2, . . . , xn〉 −→ C[x1, x2, . . . , xn]
xi 7→ xi

and
ψ : C[x1, x2, . . . , xn] −→ C〈x1, x2, . . . , xn〉

defined by
ψ(xα) =

∑
π∈Sk

u ◦ π,

where k = α1 + α2 + · · ·αn and u is any word such that χ(u) = xα. This is well
defined since the letters of u in the definition of ψ are permuted in all possible
ways, hence it does not depend on the choice of u. We know that χ is an algebra
homomorphism. On the other hand, ψ is a linear injection but it does not preserve
products.
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We define ∂xα = ∂α1
1 ∂α2

2 · · · ∂αnn , where ∂i is the partial derivative operator over
xi, i.e., normally ∂

∂xi
, and the product of these operators means the composition

of them. For any Q ∈ χ(R) = C[x1, x2, . . . , xn], we define Q(∂) by replacing xi
in Q with ∂i. For P,Q ∈ C[x1, x2, . . . , xn], the standard pairing is < Q,P >=
[Q(∂) · P ]c.t. For an ideal J ⊆ χ(R) = C[x1, x2, . . . , xn], we define

J⊥ = {P ∈ χ(R) : < Q,P >= 0, ∀Q ∈ J}
= {P ∈ χ(R) : Q(∂) · P = 0, ∀Q ∈ J}.

This is the usual (commutative) inverse system for a (commutative) ideal.

Lemma 2.3. Let P ∈ χ(R) and f ∈ R. Then[←−
f (d) · ψ(P )

]
c.t.

=
[
χ(f)(∂) · P

]
c.t.
.

Proof. Let u and v be two words such that χ(u) = xα and χ(v) = xβ . First, we
show that [

d←−v · ψ(u)
]
c.t.

= α!δχ(u),χ(v) =
[
∂χ(v) · u

]
c.t.
.

[
d←−v · ψ(u)

]
c.t.

=
[
d←−v ·

∑
π∈Sk

u ◦ π
]
c.t.

=
∑
π∈Sk

[
d←−v · (u ◦ π)

]
c.t.

=
∑
π∈Sk

δv,u◦π

= #{π ∈ Sk : vi = uπ(i)}.

Clearly, #{π ∈ Sk : vi = uπ(i)} depends only on χ(v) and χ(u). So[
d←−v · ψ(u)

]
c.t.

= #{π ∈ Sk : v = u ◦ π}

=
{

0 if α 6= β
α! otherwise

= α!δχ(u), χ(v).

On the other side, [
∂χ(v) · u

]
c.t.

=
[
∂χ(v) · xα

]
c.t.

= α!δα,β .

Since ∂, d and [ ]c.t. are linear maps,[←−
f (d) · ψ(P )

]
c.t.

=
[
χ(f)(∂) · P

]
c.t.
.

�

Corollary 2.4. Let P ∈ χ(R) and I be any homogeneous ideal in R. Then

P ∈ χ(I)⊥ ⇔ ψ(P ) ∈ I⊥.
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Proof.

P ∈ χ(I)⊥ ⇔ ∀f ∈ I, < χ(f), P >= 0
⇔ ∀f ∈ I,

[
χ(f)(∂) · P

]
c.t.

= 0 by definition

⇔ ∀f ∈ I,
[←−
f (d) · ψ(P )

]
c.t.

= 0 from Lemma 2.3

⇔ ∀f ∈ I, < f, ψ(P ) >= 0 by definition

⇔ ψ(P ) ∈ I⊥.
�

Corollary 2.4 gives us a linear inclusion ψ : χ(I)⊥ ↪→ I⊥ of inverse systems and
a surjection of algebras χ : R/I → χ(R)/χ(I).

3. Combinatorial Inverse Systems (commutative)

A combinatorial Hopf algebra as defined in [1] is a pair (H, ζ) where H is a
graded connected Hopf algebra and ζ : H → C is an algebra morphism. The map ζ
serve as a measure for some desired combinatorial invariants and will not be used
here. For many examples, H is described with a homogeneous basis {bλ} such that
all algebraic structure constants are non-negative integers. In the commutative
case, H is realized as a subalgebra of C[[X]], the homogeneous series in countably
many variables X. Given this, we can restrict H to finitely many variables Xn

using an evaluation map H ↪→ C[[X]]→ C[Xn] where x = 0 for all x ∈ X −Xn. If
X1 ⊂ X2 ⊂ · · · and limn→∞Xn = X, we obtain a family of ideals In = 〈bλ(Xn)〉 ⊆
C[Xn] where bλ(Xn) denote the image of a basis element of H under the map
H → C[Xn] described above. We say that a family {I⊥n }n≥0 obtained in this way
is a combinatorial inverse system.

To motivate our definition we present three key examples along with their main
features.

Example 3.1. Symmetric functions: The Hopf algebra of symmetric functions [14]
is Sym = C[p1, p2, . . .] where the comultiplication is given by ∆(pk) = pk⊗1+1⊗pk.
The degree of pk is set to be k. There is an embeding Sym ↪→ C[[X]] with X =
x1, x2, . . ., given by

pk =
∑
i≥1

xki .

Taking Xn = x1, . . . , xn then Sym is a combinatorial Hopf algebra satisfying the
criteria above. We can thus construct its combinatorial inverse system. That is
the inverse systems Hn = {I⊥n }n≥1 corresponding to the ideals In = 〈pk(Xn) : k ≥
1〉 ⊆ C[Xn]. These spaces are central in mathematics and appear in a larger class
of spaces in invariant and coinvariant theory [10, 17]. Since Hn = {P ∈ C[Xn] :
φ(∂)P = 0,∀φ ∈ In} it consists of polynomials P that are solutions of the equation
pk(∂)P = 0, that is harmonic polynomials. The spaces Hn are also known as the
symmetric harmonics in n variables, they have been extensively studied in several
context and satisfy very fundamentals properties. Among them, for all n ≥ 1,

(1) Let ∆n =
∏

1≤i<j≤n(xi−xj) denote the VanDerMonde determinant. Then

Hn =
{
P (∂)∆n : P ∈ C[Xn]

}
;

(2) The dimension of Hn is n!;
(3) The space Hn is the left regular representation of the symmetric group Sn;
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(4) As an Sn-module,

Hn =

n(n−1)
2⊕

k=0

H(k)
n

is graded. The q-Frobenius characteristic is

Fq(Hn) =

n(n−1)
2∑

k=0

qkchar(H(k)
n ) = Hn(X; q)

where char(H(k)
n ) is the symmetric function associated with the represen-

tation H
(k)
n and Hn(X; q) is the Hall-Littlewood symmetric function [14].

Example 3.2. Diagonal invariants and Diagonal harmonics: The Hopf algebra of
MacMahon symmetric functions (also known as diagonal invariants) is DSym =
C[pa,b : (a, b) ∈ Z×Z] where p0,0 = 1 and the comultiplication is given by ∆(pa,b) =
pa,b ⊗ 1 + 1⊗ pa,b. This space is bigraded and the degree of pa,b is set to be (a, b).
There is an embeding Sym ↪→ C[[X;Y ]] with X;Y = x1, x2, . . . , y1, y2, . . ., given by

pa,b =
∑
i≥1

xai y
b
i .

Taking Xn;Yn = x1, . . . , xn, y1, . . . yn then DSym is a combinatorial Hopf alge-
bra satisfying the criteria above. We can thus construct its combinatorial inverse
system. That is the inverse system DHn = {I⊥n }n≥1 corresponding to the ideals
In = 〈pa,b(Xn;Yn) : (a, b) ∈ Z × Z〉 ⊆ C[Xn;Yn]. These spaces have been exten-
sively studied in recent years. Here is a list of some of the results for these spaces
[6, 12]. For all n ≥ 1,

(1) Let Ek =
∑n
i=1 y

k
i ∂xi . Then

DHn =
{
P (∂,E)∆n : P ∈ C[Xn;Yn]

}
,

where P (∂,E) denote the operator we get by setting the variables xk = ∂xk
and yk = Ek for 1 ≤ k ≤ n.

(2) The dimension of DHn is (n− 1)n+1;
(3) The space DHn is the so-called parking functions representation of the

symmetric group Sn;
(4) As an Sn-module,

DHn =
⊕
a,b

DH(a,b)
n

is bigraded. The q, t-Frobenius characteristic is

Fq,t(DHn) =
∑
a,b

qatbchar(DH(a,b)
n ) =< hn1 ,∇en >

where < hn1 ,∇en > is described in [6, 12] and is related to Macdonald
symmetric functions Hλ(X; q, t) of [14].

There are still many open problems regarding DHn. In particular it is not known
how to construct an explicit linear basis.

Example 3.3. Quasi-symmetric functions: The Hopf algebra of Quasi-symmetric
functions QSym plays a central role in the theory of combinatorial Hopf algebra in
[1]. It is natural to study it in the context of combinatorial inverse system. Less is
known about this system but some remarkable results have been obtained.
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A composition α |= n is a sequence of non-zero positive integer α = (α1, α2, . . . , αk)
where k ≥ 0 and n = α1 + α2 + · · ·+ αk. For n = 0 there is a unique composition
α = () the empty composition. The Hopf algebra of quasi-symmetric functions
QSym is the linear span of the functions {Mα : α |= n ≥ 0}. The multiplication is
given by quasishuffle

MαMβ =
∑

γ∈αgtt β
Mγ ,

where for α = (α1, α2, . . . , αk) and β = (β1, β2, . . . , βk) we define α t̃tβ recursively
as follow. If k = 0 or ` = 0 then α t̃tβ = α · β where · denote the concatenation of
lists. If not,

α t̃tβ = α1 ·
(
(α2, . . . , αk) t̃tβ

)
+ β1 ·

(
α t̃t (β2, . . . , βk)

)
+(α1 + β1) · ((α2, . . . , αk) t̃t (β2, . . . , βk)

)
.

The notation γ ∈ α t̃tβ indicate that γ is in the support of α t̃tβ. The comulti-
plication is defined by

∆(Mα) =
∑
β·γ=α

Mβ ⊗Mγ .

The unit is M() and the counit is ε : QSym → C where ε(f) is the coefficient of M()

in f . This space is graded by the size of α. That is the degree of Mα is n when
α |= n. Again there is an embeding QSym ↪→ C[[X]] with X = x1, x2, . . . given by

Mα =
∑

i1<i2<···<ik

xα1
i1
xα2
i2
· · ·xαkik .

Taking Xn = x1, . . . , xn then QSym is a combinatorial Hopf algebra satisfying the
criteria above and we can construct its combinatorial inverse system. The inverse
system corresponding to the ideals In = 〈Mα(Xn) : α |= n ≥ 1〉 ⊆ C[Xn] is denoted
SHn = {I⊥n }n≥1. These spaces have not been studied that much. Here is a list of
some of the partial results and open problems for these spaces [2, 4]. For all n ≥ 1,

(1) We conjecture that

SHn =
{
P (∂)Q : P ∈ C[Xn], Q ∈ Soc(SHn)

}
,

for some nice set Soc(SHn) of cardinality Cn−1, the (n − 1)-th Catalan
number;

(2) The dimension of SHn is Cn the n-th Catalan number;
(3) The space SHn seams to be related to the Temperley-Lieb algebre TLn,

yet it is not clear if this algebra acts or not on SHn.

These three examples have very rich combinatorial results. More (commutative)
combinatorial inverse systems are interesting to study and can be found in the
literature [3, 17]. It is also interesting to compute the full resolution of these
quotients (as in [9]) but we do not consider this here.

4. Symmetric Functions in Non-commuting Variables

To define non-commutative combinatorial inverse system, we start with a non-
commutative combinatorial Hopf algebra H. Let {bλ} be a homogeneous basis for
H and assume there is a realization of H as a subalgebra of C〈〈X〉〉 the homogeneous
series in countably many non-commuting variables X. Given this, we can restrict
H to finitely many variables Xn using an evaluation map H ↪→ C〈〈X〉〉 → C〈Xn〉
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where x = 0 for all x ∈ X −Xn. Here C〈Xn〉 is the free associative algebra finitely
generated by Xn. If X1 ⊂ X2 ⊂ · · · and limn→∞Xn = X, we obtain a family
of ideals In = 〈bλ(Xn)〉 ⊆ C〈Xn〉. The family {I⊥n }n≥0 obtained in this way is a
non-commutative combinatorial inverse system.

We trust that our motivating examples in the commutative case are convincing
enough to the reader and that combinatorial inverse system are interesting objects
to consider. We now want to look at non-commutative anologues of Example 3.1 and
Example 3.3. We start with the combinatorial Hopf algebra NCSym of symmetric
functions in non-commuting variables [7, 16, 18]. It is simpler to first describe the
embeding NCSym→ C〈〈X〉〉 for X = x1, x2, . . ..

A set partition Φ of k is a collection of nonempty subsets Φ1,Φ2, . . . ,Φn ⊆ [k] =
{1, 2, . . . , k} such that Φi ∩ Φj = {} for i 6= j and Φ1 ∪ Φ2 ∪ · · · ∪ Φn = [k].
We indicate that Φ is a set partition of k by Φ ` [k]. The subsets Φi are called
the parts of the set partition. The number of nonempty parts is referred to as
the length and is denoted by `(Φ). A monomial with variables in X is a word
w = w1w2 · · ·wk with wi ∈ X. The word w can be viewed as a function w : [k]→ X.
Let ∇(w) = {w−1(x) : x ∈ X}\{∅}. Clearly ∇(w) is a set partition of [k]. For
Φ ` [k] we define

MΦ(X) =
∑

∇(w)=Φ

w,

where the sum is over all w whose corresponding set partition is Φ. For empty
set partition, we define by convention M{} = 1. For example, when k = 4 and
Φ = 13.2.4 := {{1, 3}, {2}, {4}},

M13.2.4 = x1x2x1x3+x1x3x1x2+x2x1x2x3+x2x3x2x1+x3x1x3x2+x3x2x3x1+· · · .

The vector space NCSym has a linear basis {MΦ(X)}k≥0,Φ`[k]. The multiplication
is given by the multiplication in C〈〈X〉〉. The comultiplication is given by

∆(MΦ) =
∑

Ψ∪Ξ=Φ

MΨ ⊗MΞ.

Let Xn = x1, . . . , xn and let

In = 〈MΦ(Xn) : Φ ` [k], k > 0〉.

We are interested to compute Harn = I⊥. The space NCSymn linearly spanned
by {MΦ(Xn) : Φ ` [k], k ≥ 0} is known to correspond to the invariants of the
symmetric group Sn in non-commutative variable Xn [7, 16, 18]. From Lemma
2.1, in non-commuting variables ϕ ∈ Harn ⇔ {

←−−
MΦ(d)du · ϕ = 0}Φ6={} is a non-

commutative system of (differential) equations. For this reason we call Harn the
non-commuting Harmonic system.

Corollary 4.1. For a word w ∈ C〈Xn〉, define

∆w
def
=
∑
σ∈Sn

∑
π∈Sk

(−1)`(σ)σ ◦ w ◦ π. (4.1)

Then ∆w ∈ Harn if and only if ∆w = 0 or χ(w) = xρ, where ρ = (n − 1, n −
2, . . . , 1, 0).
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Proof. It is easy to see that χ(In) = 〈pk(Xn)〉 the ideal considered in Example 3.1.
Hence χ(In)⊥ = Hn. Let

Aα
def
=
∑
σ∈Sn

(−1)`(σ)σ ◦ xα.

Then ∆w = ψ(Aα) when χ(w) = xα. Using Corollary 2.4,

∆w ∈ Harn ⇔ Aα ∈ Hn.

Since Hn is isomorphic to the left regular representation of Sn (See Example 3.1),
there is only one occurrence of the sign representation obtained by taking Aρ. Hence
Aα ∈ Hn ⇔ α = ρ or Aα = 0. �

Thus du∆w ∈ Harn for all u and χ(w) = xρ. This gives us a copy of the left
regular representation in Harn. For n = 1 and 2, this is all of Harn. For n = 3,
we see more.

We have computed Harn for n = 1, 2, 3, 4 and the following surprising fact arises
dimHarn = 1, 2, 9, 946, . . . The Hilbert series of Harn is

HilbHarn(t) =
∞∑
d=0

dim(Har(d)
n )td,

where Har
(d)
n is the homogeneous component of degree d in Harn. We list the

following data obtained by computer
• n = 0, HilbHar0(t) = 1,
• n = 1, HilbHar1(t) = 1,
• n = 2, HilbHar2(t) = 1 + t,
• n = 3, HilbHar3(t) = 1 + 2t+ 3t2 + 3t3,
• n = 4, HilbHar4(t) = 1 + 3t+ 8t2 + 20t3 + 47t4 + 102t5 + 197t6 + 308t7 +

248t8 + 12t9,
• n = 5, HilbHar5(t) = 1 + 4t+ 15t2 + 55t3 + 199t4 + 712t5 + 2520t6 + · · ·

Conjecture 4.2. The non-commuting Harmonic system Harn is finite dimen-
sional for any n.

This conjecture would imply that In has a decidable Gröbner basis for all n.
This is a stricking fact on its own.

In the commutative examples it turned out that the multiplicity of the alternat-
ing representation has very combinatorial behavior. It is only natural to do the
same for Harn. We now study the inverse systems Harn intersecting alternating
functions.

A set composition A of a set [n] is a list A = (A1, A2, . . . , Ak) such that Ai 6= ∅
and {A1, A2, . . . , Ak} ` [n]. We denote this by A |= [n]. A function f in C〈Xn〉
is alternating if σ ◦ f = (−1)`(σ)f , for all σ ∈ Sn. Let Altn be the set of all
alternating functions in n non-commutating variables. We will construct a basis of
Altn which is given by {AΦ} indexed by set compositions Φ = (Φ1,Φ2, . . . ,Φk) with
min Φi < min Φi+1 and n − 1 ≤ k ≤ n. These set compositions may be identified
with set partitions of size n−1 ≤ k ≤ n where the parts are given in the prescribed
order.

Conjecture 4.2 would imply that

deg(Har(d)
n ∩Alt(d)

n ) = 0
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when d is big enough, where Alt(d)
n and Har(d)

n denote the respective homogeneous
component of degree d in in each space.

A generalized set composition A of [d] is a list of subsets (A1, A2, . . . , Ak), where
Ai ⊆ [d] = {1, 2, . . . , d} such that Ai ∩Aj = ∅ for i 6= j and A1 ∪A2 ∪ . . .∪Ak = [d]
(some parts may be empty). There is a one-to-one correspondence between words
and generalized set compositions w ↔ A. Since we use generalized set compositions
of d to decide the positions of variables in the corresponding words of degree d, we
assume k = n the number of variables. For example, let n = 3 and w = x1x3x1.
Then d = 3, the degree of w, and A = ({1, 3}, ∅, {2}). For convenience, we write
A = 13.∅.2.

Given a generalized set composition A = (A1, A− 2, . . . , An) |= [d] we define an
alternating function

AA =
∑
σ∈Sn

(−1)`(σ)σ ◦A,

where in the sum A is the corresponding word. For example, let d = 3, n = 3 and
A = 13.2.∅. Then

AA = x1x2x1 − x2x1x2 − x3x2x3 − x1x3x1 + x2x3x2 + x3x1x3.

If the number of empty sets in A is greater that one then AA = 0. Two properties
hold:

(1) AA = (−1)`(π)Aπ◦A for all π ∈ Sn, where π ◦A = (Aπ(1), Aπ(2), . . . , Aπ(n));
(2) AA = 0 if #{Ai : Ai = ∅} ≥ 2;

From (1) and (2) above, it is clear that any AA = ±AΦ for Φ = (Φ1,Φ2, . . . ,Φn)
a generalized set composition where at most Φn = ∅ and the non-empty parts are
ordered by min Φi < min Φi+1. For Φ as described, each AΦ has distinct support,
hence {AΦ : Φ |= [d] generalized, ordered, Φn−1 6= ∅} is a basis of Alt(d)

n .
For any generalized set composition A = (A1, A2, . . . , An) given a coloring func-

tion ε : [n]→ {±1} we get a two-colored generalized set composition

Aε = (Aε11 , A
ε2
2 , . . . , A

εn
n ),

where εi = ε(i). Let T = ε−1(1). Define

AAε =
∑
σ∈ST

(−1)`(σ)σ ◦Aε,

where in the sum Aε is the word corresponding to A and σ only permutes indices
given by T fixing the other parts. For convenience, we write 2.13.4.∅ instead of
21.13−1.41.∅−1. Then

A
2.13.4.∅ = x2x1x2x3 − x2x3x2x1.

Proposition 4.3. Let Ψ ` [k] be a set partition, A |= [`] be a generalized set
composition and Φ |= [d] be an ordered generalized set composition with at most
one ∅. Then

←−−
MΨ(d)d←−

A
· AΦ is 0 or ±AΘε for some two-colored generalized set

composition Θε.

Proof. We prove it case by case. Suppose that

A1 = A1 ∩ Φi1 , A2 = A2 ∩ Φi2 , . . . , An = An ∩ Φin (4.2)

for some distinct i1, i2, . . . , in. Hence, there are some terms in AΦ beginning with
the word corresponding to A. Choose a fixed sequence i1, i2, . . . , in and reorder
Φ as Φτ = (Φi1 ,Φi2 , . . . ,Φin), where τ is the permutation corresponds to this



ON NON-COMMUTATIVE COMBINATORIAL INVERSE SYSTEM 11

sequence. Then there is one word in the remaining terms in d←−
A
· AΦ corresponding

to st(Φτ \ A), where st(Φτ \ A) means deleting the numbers in A from Φτ then
standardizing it (that is subtracting ` from all the number in Φτ \ A). Define a
two-colored generalized set composition st(Φτ \ A)ε by εi = −1 if Ai 6= ∅ and 1,
otherwise. Then d←−

A
· AΦ = (−1)`(τ)Ast(Φτ\A)ε . If Equation (4.2) is not satisfied,

then there is no term in AΦ beginning with the word corresponding to A. Therefore,
d←−
A
· AΦ = 0.

Hence, we may assume that Equation (4.2) is satisfied and let Γ = st(Φτ \ A).
Then

←−−
MΨ(d)d←−

A
·AΦ = (−1)`(τ)←−−MΨ(d)·AΓε . The set partition Ψ = {Ψ1,Ψ2, . . . ,Ψr}

for some r ≤ n. Suppose

Ψ1 = Ψ1 ∩ Γi1 , Ψ2 = Ψ2 ∩ Γi2 , . . . , Ψr = Ψr ∩ Γin (4.3)

for some distinct i1, i2, . . . , ir. Since Ψ is a set, we can reorder the Ψi in any order
needed. For any monomial in MΨ there is a unique monomial in AΓε with the
appropriate sign which gives

←−−
MΨ(d) · AΓε = Ast(Γ\Ψ)ε . If Equation (4.3) is not

satisfied, then there is no term in Ast(Φτ\A)ε beginning with the word σ ◦Ψ for all
σ ∈ Sn/SL. Hence

←−−
MΨ(d) · Ast(Φτ\A)ε = 0.

In all cases, if any of Equation (4.2) or Equation (4.3) is not satisfied, then
←−−
MΨ(d)d←−

A
· AΦ = 0, Otherwise

←−−
MΨ(d)d←−

A
· AΦ = (−1)`(τ)Ast(st(Φτ\A)\Ψ)ε

We let Θ = st(st(Φτ \A) \Ψ) and the proof is completed. �

We remark that in the proof of Proposition 4.3 we could reorder A so that τ is
the identity. That is we can assume that A is an ordered generalized composition.
If we want to compute Har(d)

n ∩Alt(d)
n , we need to solve the equations

←−−
MΨ(d)d←−

A
· P = 0,∀Ψ, A

and P ∈ Alt(d)
n . It is easy to see that for fix A and Ψ, the possible Θε are all linearly

independent. This gives us a system of linear equations,

[
←−−
MΨ(d)d←−

A
· P ]AΘε = 0 (4.4)

where [f ]AΘε denote the coefficient of AΘε in f and

P =
∑

Φ|=[d] ordered

cΦAΦ.

The System (4.4) is explicit and may be more easy to handle than the full space
Harn. As a weaker conjecture we propose

Conjecture 4.4. The solution for the linear equations in the System (4.4) is all
of Alt(d)

n for large d.

5. Quasi-symmetric functions in non-commutative variables

A second example of non-commutative combinatorial inverse system is given
by quasi-symmetric functions in non-commutative variables [8]. We have recently
showed [5] that the associated inverse systems are finite. The proof does not give
the quotient, which is still an open problem. However, we present the result here as
another evidence that combinatorial inverse systems are special and also to partially
support the conjectures in Section 4.
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The combinatorial Hopf algebra NCQSym of quasi-symmetric functions in non-
commutative variables is the vector space freely generated by the set {MA : A |=
[d], d ≥ 0}. Again we let () be the unique set composition of [0]. The multiplication
is given by quasi-shuffle of set composition. That is, for A = (A1, A2, . . . , Ak) |= [d]
and B = (B1, B2, . . . , B`) |= [q] we define A t̃tB↑d recursively. The notation B↑d

means that we add d to each entry of B. If k = 0 or ` = 0 then A t̃tB↑d = A · B
where · denote the concatenation of lists. If not,

A t̃tB↑d = A1 ·
(
(A2, . . . , Ak) t̃tB↑d

)
+B↑d1 ·

(
A t̃t (B↑d2 , . . . , B↑dk )

)
+(A1 ∪B↑d1 ) · ((A2, . . . , Ak) t̃t (B↑d2 , . . . , B↑dk )

)
.

We then define
MAMB =

∑
C∈AgttB↑d

MC

where C ∈ A t̃tB↑d indicate that C is in the support of A t̃tB↑d. The comulti-
plication is defined by

∆(MA) =
∑

B·C=A

Mst(B) ⊗Mst(C).

Here, st(−) is the standardization map defined as follow. For B · C = A |= [d],
it means that B |= S and C |= T where S ∪ T = [d] and S ∩ T = ∅. For any
S ⊆ [d], there is a unique order preserving map φ : {1, 2, . . . , |S|} → S. For any
B |= S, we let st(B) |= {1, 2, . . . , |S|} the unique set composition we obtain using
φ, in other words st(B) = φ∗B. The space NCQSym is graded by deg(MA) = d
when A |= [d].

As seen in [8], there is an embeding QSym ↪→ C〈〈X〉〉 with X = x1, x2, . . . given
by

MA =
∑

∇̃(w)=A

w,

where ∇̃(w) = (w−1(xi))∞i=1 \ ∅. In other words, the infinite sequence (w−1(xi))∞i=1

has only finitely many non-empty parts. After removing the empty parts, we obtain
a set composition denoted ∇̃(w).

Taking Xn = x1, . . . , xn then NCQSym is a combinatorial Hopf algebra satisfy-
ing the criteria above and we can construct its combinatorial inverse system. The
inverse system SHarn = {I⊥n }n≥1 corresponding to the ideals In = 〈MA(Xn) :
A |= [d] ≥ 1〉 ⊆ C〈Xn〉. These spaces have not been studied that much. The only
know theorem is the following

Theorem 5.1. dim(SHarn) <∞.

This is shown in [5]. In parallel with the commutative case, we believe that the
non-commutative combinatorial inverse system will prove themselves to be very
rich objects to study. It would not be surprising to discover that they all have very
special Gröbner basis.
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