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Séries Formelles et Combinatoire Algébrique
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Abstract. We study the ideal generated by constant-term free B-quasisymmetric polynomials, and prove

that the quotient of the polynomial ring by this ideal has dimension given by 1

2n+1

`

3n

n

´

, the number of

ternary trees, or Fuss-Catalan number of order 3. This leads us to introduce and study multivariate Fuss-
Catalan numbers, whose combinatorial interpretation is given by some statistics on ternary trees and plane
paths.

Résumé. Nous étudions l’idéal engendré par les polynômes B-quasisymétriques (sans terme constant), et

prouvons que le quotient de l’anneau des polynômes par cet idéal est de dimension 1

2n+1

`

3n

n

´

, le nombre

d’arbres ternaires, ou nombre de Fuss-Catalan d’ordre 3. Nous en profitons pour introduire et étudier com-
binatoirement certains nombres de Fuss-Catalan multivariés, ce qui fait apparâıtre une bi-statistique sur les
arbres ternaires et certains chemins du plan.

1. Introduction

To start with, we recall a small part of the story of the study of ideals and quotients related to symmetric
or quasisymmetric polynomials. The root of this work is a result of Artin [1]. Let us consider the set of
variables Xn = x1, x2, . . . , xn. The space of polynomials in the variables Xn with rational coefficients is
denoted by Q[Xn]. The subspace of symmetric polynomials is denoted by Symn. If V is a subset of the
polynomial ring, we denote by 〈V+〉 the ideal generated by elements of a V with no constant term. Artin’s
result is given by:

(1.1) dim Q[Xn]/〈Sym+
n 〉 = n! .

Another, more recent, part of the story deals with quasisymmetric polynomials. The space QSymn ⊂
Q[Xn] of quasisymmetric polynomials was introduced by Gessel [13] as generating functions for Stanley’s
P -partitions [21]. This is the starting point of many recent works in several areas of combinatorics [9, 12,

16, 17, 22].
In [4, 5], Aval et. al. study the problem analogous to Artin’s work in the case of quasisymmetric

polynomials. Their main result is that the dimension of the quotient is given by Catalan numbers:

(1.2) dim Q[Xn]/〈QSym+
n 〉 = Cn =

1

n + 1

(

2n

n

)

.

An interesting axis of research is the extension of these results to 2 sets of variables. Let An denote the
alphabet

An = x1, y1, x2, y2, . . . , xn, yn.

Since symmetric (resp. quasisymmetric) polynomials may be seen as Sn-invariants under the action
that permutes variables (resp. under Hivert’s action [16]), one can define diagonal analogues by letting Sn
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act simulaneously on the x’s and y’s. We then obtain the space DSymn (resp. DQSymn) of diagonally
symmetric (resp. quasisymmetric) functions.

The diagonal coinvariant space Q[An]/〈DSym+
n 〉 has been studied extensively in the last 15 years by

several authors [8, 11, 14]. A great achievment in this area is Haiman’s proof of the following equality (cf.
[14]):

dim Q[An]/〈DSym+
n 〉 = (n + 1)n−1 .

The space DQSymn was introduced in [19], then recently studied in [7], [18], and [6], where the coinvariant
space is investigated, and a conjectural basis is presented.

To end this presentation, we introduce the space QSymn(B) of B-quasisymmetric polynomials, which is
the focus of this article. This space, whose definition appears implicitly in [19], is studied with more details
in [7]. A precise definition will be given in the next section, and we only mention here that QSymn(B) is a
subspace (and in fact a subalgebra, cf. [7]) of DQSymn.

We now state the main result of this work, which appears as a generalization of equation (1.2).

Theorem 1.1.

(1.3) dim Q[An]/〈QSymn(B)+〉 =
1

2n + 1

(

3n

n

)

.

Observe that in Equations (1.2) and (1.3), the dimensions 1
n+1

(

2n
n

)

and 1
2n+1

(

3n
n

)

are respectively the

numbers of binary and ternary trees (cf. [20]). Since we deal with polynomials in two alphabets (and
since the ideal 〈QSymn(B)+〉 is homogeneous), we can study the bigraded version of Equation (1.3). More
precisely, we look at the subspace of Q[An]/〈QSymn(B)+〉 of polynomials of degree k in x1, . . . , xn and
degree l in y1, . . . , yn, and consider its dimension, which we denote by B(n, k, l). It appears that these
numbers present their own interest, which led us to study them.

Let us now give the plan of this article. We have decided to deal first with the combinatorial part,
i.e. the study of the numbers B(n, k, l), which is the subject of the next section, and the algebraic part is
developped in the last section of this paper.

Remark. This paper is the extended abstract of our work. More details and the complete proofs (here are
ony given the sketches of some proofs) can be found in [2, 3].

2. Multivariate Fuss-Catalan numbers

2.1. Catalan triangle, binary trees, and Dyck paths. The Catalan numbers

C(n) =
1

n + 1

(

2n

n

)

are integers that appear in many combinatorial problems. These numbers first arose in the work of Catalan
as the number of triangulations of a polygon by mean of non-intersecting diagonals. Stanley [21, 23]
maintains a dynamic list of exercises related to Catalan numbers, including (at this date) 127 combinatorial
interpretations.

Closely related to Catalan numbers are ballot numbers. To serve our purpose, we shall neither state the
so-called ballot problem, nor give an explicit formula, but we introduce integers B(n, k) for (n, k) ∈ N∗ × N

defined by the following recurrence:

• B(1, 0) = 1

• ∀n > 1 and 0 ≤ k < n, B(n, k) =
∑k

i=0 B(n − 1, i)
• ∀k ≥ n, B(n, k) = 0.

Observe that the recursive formula in the second condition is equivalent to:

(2.1) B(n, k) = B(n − 1, k) + B(n, k − 1).

We shall present the B(n, k)’s by the following triangular representation (zero entries are omitted) where
moving down increases n and moving right increases k.
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1
1 1
1 2 2
1 3 5 5
1 4 9 14 14
1 5 14 28 42 42

The crucial observation is that computing the horizontal sums of these integers give : 1, 2, 5, 14, 42, 132.
We recognize the first terms of the Catalan series, and this fact will be proven in Proposition 2.1, after
introducing combinatorial objects.

A binary tree is a tree in which every internal node has exactly 2 sons. The number of binary trees with
n internal nodes is given by the n-th Catalan number.

A Dyck path is a path consisting of steps (1, 1) and (1,−1), starting from (0, 0), ending at (2n, 0), and
remaining above the line y = 0. The number of Dyck paths of length 2n is also given by the n-th Catalan
number. More precisely, the depth-first search of the tree gives a bijection between binary trees and Dyck
paths: we associate to each external node (except the left-most one) a (1, 1) step and to each internal node a
(1,−1) step by searching recursively the left son, then the right son, then the current node. As an example,
we show below the Dyck path corresponding to the binary tree given above.

An inportant parameter in our study will be the length of the right-most sequence of (1,−1) of the path.
This parameter equals 2 in our example. Observe that under the correspondence between paths and trees,
this parameter corresponds to the length of the right-most string of right sons in the tree. We shall use the
expressions last down sequence and last right string, for these parts of the path and of the tree.

Now we come to the announced result. It is well-known and simple, but is the starting point of our
work.

Proposition 2.1. We have the following equality:

n−1
∑

k=0

B(n, k) = C(n) =
1

n + 1

(

2n

n

)

.

Proof. Let us denote by Cn,k the set of Dyck paths of length 2n with a last down sequence of length
equal to n − k.

We shall prove that B(n, k) is the cardinality of Cn,k.
The proof is done recursively on n. If n = 0, this is trivial. If n > 0, let us suppose that B(n − 1, k)

is the cardinality of Cn−1,k for 0 ≤ k < n − 1. Let us consider an element of Cn,k. If we erase the last step
(1, 1) and the following step (1,−1), we obtain a Dyck path of length 2(n − 1) and with a last decreasing
sequence of length n − l ≥ n − k. If we keep track of the integer k, we obtain a bijection between Cn,k and
∪l≤kCn−1,l. �

2.2. Fuss-Catalan tetrahedron and ternary trees. This subsection, which is the heart of this part
of the work, is the study of a 3-dimensional analogue of the Catalan triangle presented in the previous
section. We consider exactly the same recurrence, and let the array grow, not in 2, but in 3 dimensions.
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More precisely, we introduce the sequence B3(n, k, l) indexed by integers n, k and l, and defined recursively
by:

• B3(1, 0, 0) = 1
• ∀n > 1, k + l < n, B3(n, k, l) =

∑

0≤i≤k,0≤j≤l B3(n − 1, i, j)

• ∀k + l ≥ n, B3(n, k, l) = 0.

Observe that the recursive formula in the second condition is equivalent to:

(2.2) B3(n, k, l) = B3(n − 1, k, l) + B3(n, k − 1, l) + B3(n, k, l − 1) − B3(n, k − 1, l − 1)

and this expression can be used to make some computations lighter, but the presentation above explains
more about the generalization of the definition of the ballot numbers B(n, k).

Because of the planar structure of the sheet of paper, we are led to present the tetrahedron of B3(n, k, l)’s
by its sections with a given n.

n = 1 −→
[

1
]

n = 2 −→

[

1 1
1

]

n = 3 −→





1 2 2
2 3
2





n = 4 −→









1 3 5 5
3 8 10
5 10
5









n = 5 −→













1 4 9 14 14
4 15 30 35
9 30 45

14 35
14













It is clear that B3(n, k, 0) = B3(n, 0, k) = B(n, k). The reader may easily check that when we compute
∑

k,l B3(n, k, l), we obtain: 1, 3, 12, 55, 273. These integers are the first terms of the following sequence

(cf. [20]):

C3(n) =
1

2n + 1

(

3n

n

)

.

2.3. Combinatorial interpretation. Fuss1-Catalan numbers (cf. [15]) are given by the formula

(2.3) Cp(n) =
1

(p − 1)n + 1

(

pn

n

)

,

and C3(n) appear as order-3 Fuss-Catalan numbers. The integers C3(n) are known [20] to count ternary

trees, i.e. trees in which every internal node has exactly 3 sons.

Ternary trees are in bijection with 2-Dyck paths, which are defined as paths from (0, 0) to (3n, 0) with
steps (1, 1) and (1,−2), and remaining above the line y = 0. The bijection between these objects is the
same as in the case of binary trees, i.e. a depth-first search, with the difference that here an internal node

1Nikolai Fuss (Basel, 1755 – St Petersburg, 1826) helped Euler prepare over 250 articles for publication over a period on
about seven years in which he acted as Euler’s assistant, and was from 1800 to 1826 permanent secretary to the St Petersburg
Academy.
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is translated into a (1,−2) step. To illustrate this bijection, we give the path corresponding to the previous
example of ternary tree:

We shall consider these paths with respect to the position of their down steps. Let Dn,k,l denote the
set of 2-Dyck paths of length 3n, with k down steps at even height and l down steps at odd height. By
convention, the last sequence of down steps is not considered (the number of these steps is by definition
equal to n − k − l). In the previous example, n = 9, k = 5 and l = 2.

Proposition 2.2. We have

∑

k,l

B3(n, k, l) = C3(n) =
1

2n + 1

(

3n

n

)

.

Moreover, B3(n, k, l) is the cardinality of Dn,k,l.

Proof. Let k and l be fixed. Let us consider an element of Dn,k,l. If we cut this path after its (2n−2)-th
up step, and complete with down steps, we obtain a 2-Dyck path of length 3(n − 1) (see figure below). It
is clear that this path is an element of Dn,i,j for some i ≤ k and j ≤ l. We can furthermore reconstruct
the original path from the truncated one, if we know k and l. We only have to delete the last sequence of
down steps (here the dashed line), to draw k − i down steps, one up step, l − j down steps, one up step,
and to complete with down steps. This gives a bijection from Dn,k,l to ∪0≤i≤k,0≤j≤lDn−1,i,j , which implies
Proposition 2.2.

�

Remark 2.1. It is interesting to translate the bi-statistics introduced on 2-Dyck paths to the case of
ternary trees. As previously, we consider the depth-first search of the tree, and shall not consider the last
right string. We define Tn,k,l as the set of ternary trees with n internal nodes, k of them being encountered
in the search after an even number of leaves and l after and odd number of leaves. By the bijection between
trees and paths, and Proposition 2.2, we have that the cardinality of Tn,k,l is B3(n, k, l).

Remark 2.2. It is clear from the definition that:

B3(n, k, l) = B3(n, l, k).

But this fact is not obvious when considering trees or paths, since the statistics defined are not clearly
symmetric. To explain this, we can introduce an involution on the set of ternary trees which sends an
element of Tn,k,l to Tn,l,k. To do this, we can exchange for each node of the last right string its left and its
middle son, as in the following picture. Since the number of leaves of a ternary tree is odd, every “even”
node becomes an “odd” one, and conversely.
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2.4. Explicit formula. Now a natural question is to obtain explicit formulas for the B3(n, k, l). The
answer is given by the following proposition.

Proposition 2.3. The intergers B3(n, k, l) are given by

(2.4) B3(n, k, l) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n

Proof. [SKETCH] The proof is a variation of the cycle lemma [10], used to enumerate Dn,k,l. It is also
possible, once we have the formula (2.4), to check the recurrence (2.2). �

3. Ideals of B-quasisymmetric functions

3.1. Definitions, notations and results. For these definitions, we follow [7], with some minor dif-
ferences, for the sake of simplicity of the computations we will have to make.

Let N and N̄ denote two occurrrences of the set of nonnegative integers. We shall write N̄ = {0̄, 1̄, 2̄, . . .}
and make no difference between the elements of N and N̄ in any arithmetical expression. We distinguish N

and N̄ for the ease of reading.
A bivector is a vector v = (v1, v2, . . . , v2k−1, v2k) such that the odd entries {c2i−1, i = 1..k} are in N,

and the even entries {c2i, i = 1..k} are in N̄.
A bicomposition is a bivector in which there is no consecutive zeros, i.e. no pattern 00̄ or 0̄0.
The integer k is called the size of v. The weight of the vector v is by definition the couple (|v|N, |v|N̄),

where |v|N =
∑k

i=1 v2i−1 and |v|N̄ =
∑k

i=1 v2i. We also set |v| = |v|N + |v|N̄.
For example (1, 0̄, 2, 1̄, 0, 2̄, 3, 0̄) is a bicomposition of size 4, and of weight (6, 3).
To make notations lighter, we shall sometimes write bivectors or bicomposition as words, for example

10̄21̄02̄30̄.

The fundamental B-quasisymmetric functions, indexed by bicompositions, are defined as follows

Fc1c2...c2k−1c2k
(An) =

∑

xi1 · · ·xi|c|N
yj1 · · · yj|c|

N̄

∈ Q[An]

where the sum is taken over indices i’s and j’s such that

i1 ≤ · · · ic1
≤ j1 ≤ · · · jc2

< ic1+1 ≤ · · · ic1+c3
≤ jc2+1 ≤ · · · ≤ jc2+c4

< ic1+c3+1 ≤ · · ·

We give some examples:
F12̄ =

∑

i≤j≤k xiyjyk,

F02̄10̄ =
∑

i≤j<k yiyjxk.

It is clear from the definition that the bidegree (i.e. the couple (degree in x, degree in y)) of Fc in Q[An]
is the weight of c. If the size of c is greater than n, we shall set Fc(An) = 0.

The space of B-quasisymmetric functions, denoted by QSymn(B) is the vector subspace of Q[An] gen-
erated by the Fc(An), for all bicompositions c.

Let us denote by I2
n the ideal 〈QSymn(B)+〉 generated by B-quasisymmetric functions with zero constant

term.
With these notations, our goal is to prove

(3.1) dim Q[An]/〈QSymn(B)+〉 =
1

2n + 1

(

3n

n

)

.
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3.2. Paths and G-set. The aim of this subsection is to construct a set G of polynomials, which will be
proved in the next section to be a Gröbner basis of I2

n. This part of the work is greatly inspired from [4, 5].
Let v = (v1, v2, . . . , v2k−1, v2k) be a bivector of size n. We associate to v a path π(v) in the plane N×N,

with steps (0,1) or (2,0). We start from (0,0) and add for each entry vi (read from left to right): vi steps
(2,0), followed by one step (0,1).

As an example, the path associated to (1, 0̄, 1, 2̄, 0, 0̄, 1, 1̄) is

We have two kinds of path, regarding their position to the diagonal x = y. If a path always remains
above this line, we call it a 2-Dyck path, and say that the corresponding vector is 2-Dyck. Conversely,
if the path enters the region x < y, we call both the path and the vector transdiagonal. For example,
v = (0, 0̄, 1, 0̄, 0, 1̄, 1, 0̄) is 2-Dyck, whereas w = (0, 0̄, 1, 1̄, 1, 0̄, 0, 0̄) is transdiagonal.

(w)(v) π  π

A simple but important observation is that a vector v = (v1, v2, . . . , v2k−1, v2k) is transdiagonal if and
only if there exists 1 ≤ l ≤ k such that

(3.2) v1 + v2 + · · · + v2l−1 + v2l ≥ l.

Our next task is to construct a set G of polynomials, mentionned above. From now on, unless otherwise
indicated, vectors are of size n. For w a vector of size k < n, w0∗ denotes the vector (of size n) obtained
by adding the desired number of 00̄ patterns. We shall define the length `(v) of a vector v as the integer k
such that v = v1 v2 . . . v2k−1 v2k 0∗ with v2k−1 v2k 6= 00̄. In the case of bicompositions, the notions of size
and length coincide.

For v a vector (of size n), we denote by Av
n the monomial

Av
n = xv1

1 yv2

1 · · ·xv2n−1

n yv2n

n .

To deal with leading terms of polynomials, we will use the lexicographic order induced by the ordering
of the variables:

x1 > y1 > x2 > y2 > · · · > xn > yn.

The lexicographic order is defined on monomials as follows: Av
n >lex Aw

n if and only if the first non-zero
entry of v − w (componentwise) is positive.

The set

G = {Gv} ⊂ I2
n

is indexed by transdiagonal vectors. Let v be a transdiagonal vector.
For v = c0∗ with c a non-zero bicomposition of length ≥ n (which implies that v is transdiagonal), we

define

Gv = Fc.
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If v cannot be written as c0∗, the polynomial Gv is defined recursively. We look at the rightmost
occurrence of two consecutive zeros (on the left of a non-zero entry: we do not consider the subword 0∗).
Two cases are to be distinguished according to the parity of the position of this pattern:

• if v = w00̄αβc0∗, with w a vector of size k − 1, α ∈ N (by definition non-zero), β ∈ N̄, c a
bicomposition, we define

(3.3) Gw00̄αβc0∗ = Gwαβc0∗ − xk Gw(α−1)βc0∗ ;

• if v = wα0̄0βc0∗, with w a vector of size k − 1, α ∈ N, β ∈ N̄ (by definition non-zero), c a
bicomposition, we define

(3.4) Gwα0̄0βc0∗ = Gwαβc0∗ − yk Gwα(β−1)c0∗ .

We easily check that both terms on the right of (3.3) and (3.4) are indexed by vectors that are transdi-
agonal as soon as v is transdiagonal. We do it for (3.3) : let us denote v′ = wαβc0∗ and v′′ = w(α− 1)βc0∗.
Let l be the smallest integer such that (3.2) holds for v. If l ≥ k − 1 then w is transdiagonal thus so are v′

and v′′, and if not:

v′1 + v′2 + · · · + v′2l−3 + v′2l−2 ≥ l and v′′1 + v′′2 + · · · + v′′2l−3 + v′′2l−2 ≥ l − 1.

Since v′ and v′′ are of length equal to `(v) − 1, this defines any Gv for v transdiagonal by induction on
`(v).

It is interesting to develop an example, where we take n = 3.

G00̄10̄02̄ = G00̄12̄00̄ − y2 G00̄11̄00̄

= (G12̄00̄00̄ − x1 G02̄00̄00̄) − y2 (G11̄00̄00̄ − x1 G01̄00̄00̄)
= (F12̄ − x1 F02̄) − y2(F11̄ − x1 F01̄)
= (x1y

2
1 + x1y1y2 + x1y1y3 + x1y

2
2 + x1y2y3 + x1y

2
3 + x2y

2
2 + x2y2y3

+x2y
2
3 + x3y

2
3 − x1(y

2
1 + y1y2 + y1y3 + y2

2 + y2y3 + y2
3))

−y2(x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y3 − x1(y1 + y2 + y3))
= x2y

2
3 − y2x3y3 + x3y

2
3

The monomials of the result are ordered with respect to the lexicographic order and we observe that the
leading monomial (denoted LM) of G00̄10̄02̄ is A00̄10̄02̄

3 . The following proposition shows that this fact holds
in general for the family G.

Proposition 3.1. Let v be a transdiagonal vector. The leading monomial of Gv is

(3.5) LM(Gv) = Av
n.

Proof. [SKETCH] It is done by induction on the length of v. �

3.3. Proof of the main theorem. The aim of this subsection is to prove Theorem 1.1, by showing
that the set G constructed in the previous section is a Gröbner basis for I2

n. This will be achieved in several
steps.

We introduce the notation Qn = Q[An]/I2
n and define

Bn = {Av
n / π(v) is a 2−Dyck path}.

Lemma 3.1. Any polynomial P ∈ Q[An] is in the span of Bn modulo I2
n. That is

(3.6) P (An) ≡
∑

Av
n
∈Bn

cvA
v
n.

Proof. It clearly suffices to show that (3.6) holds for any monomial Av
n, with v transdiagonal. We

assume that there exists Av
n not reducible of the form (3.6) and we choose Aw

n to be the smallest amongst
them with respect to the lexicographic order. Let us write

Aw
n = LM(Gw)

= (Aw
n − Gw) + Gw

≡ Aw
n − Gw (mod I2

n).

All monomials in (Aw
n −Gw) are lexicographically smaller than Aw

n , thus they are reducible. This contradicts
our assuption and completes the proof. �
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This lemma implies that Bn spans the quotient Qn. We will now prove its linear independence. The
next lemma is a crucial step.

Lemma 3.2. If we denote by L[S] the linear span of a set S, then

(3.7) Q[An] = L[Av
nFc / Av

n ∈ Bn, |c| ≥ 0].

Proof. We have the following reduction for any monomial Aw
n in Q[An]:

(3.8) Aw
n =

∑

Av
n
∈Bn

cvA
v
n +

∑

|c|>0

QcFc, Qc ∈ Q[An].

We then apply the reduction (3.6) to each monomial of the Qc’s. Now we use the algebra structure of
QSym(B) (cf. Proposition 37 of [7]) to reduce products of fundamental B-quasisymmetric functions as
linear combinations of Fc’s. We obtain (3.7) in a finite number of operations since degrees strictly decrease
at each operation, because |c| > 0 implies deg Qc < |w|. �

Now we come to the final step in the proof. Before stating this lemma, we introduce some notation,
and make an observation. For v = (v1, v2, v . . . , v2k−1, v2k) a bivector, let r(v) denote the reverse bivector:
r(v) = (v2k, v2k−1, . . . , v2, v1). In the same way, let R(An) denote the reverse alphabet of An: R(An) =
yn, xn, . . . , y1, x1. Then one has for any bicomposition c:

(3.9) Fc(R(An)) = Fr(c)(An).

Lemma 3.3. The set G is a linear basis of I2
n, i.e.

(3.10) I2
n = L[Gw / w transdiagonal].

Proof. [SKETCH] We use Lemma 3.2, observation (3.9), and the algebra structure of QSymn(B) to
write:

I2
n = 〈Fc, |c| > 0〉Q[An] = L[Av

n Fc Fc′ / R(An)v ∈ Bn, |c| > 0, |c′| ≥ 0]

= L[Av
n Fc′′/ R(An)v ∈ Bn, |c′′| > 0].

Then we prove that we can reduce any term Av
n Fc′′ using the G polynomials, and we illustrate this on

an example, where n = 5:

x1 y2 F10̄01̄ = y2(x1 F10̄01̄)
= y2(G20̄01̄00̄00̄00̄ − G00̄20̄01̄00̄00̄)
= y2 G20̄01̄00̄00̄00̄ − y2 G00̄20̄01̄00̄00̄

= G20̄02̄00̄00̄00̄ − G20̄00̄02̄ − G00̄21̄01̄00̄00̄ + G00̄20̄01̄01̄00̄.

�

Now we are able to complete the proof of Theorem 1.1. We can even state a more precise result.

Theorem 3.4. A basis of the quotient Qn is given by the set

Bn = {Av
n / π(v) is a 2−Dyck path},

which implies

(3.11) dimQn =
1

2n + 1

(

3n

n

)

.

Since I2
n is bihomogeneous, the quotient Qn is bigraded and we can consider Hk,l(Qn) the subspace of Qn

consisting of polynomials of bidegree (k, l), then

(3.12) dimHk,l(Qn) =

(

n + k − 1

k

)(

n + l − 1

l

)

n − k − l

n
.
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Proof. By Lemma 3.1, the set Bn spans Qn. Assume we have a linear dependence:

P =
∑

Av
n
∈Bn

av A
v
n ∈ I2

n.

By Lemma 3.3, the set G spans I2
n, thus

P =
∑

u transdiagonal

bu Gu.

This implies LM(P ) = Au
n, with u transdiagonal, which is absurd. Hence Bn is a basis of the quotient Qn.

The expressions (3.11) and (3.12) are consequences of Section 2’s results.
�

Remark. This work admits direct generalization. We can define quasisymmetric polynomials in p sets
of variables. In this case, the quotient of the polynomial ring by the ideal generated by p-quasisymmetric

polynomials (without constant term) has dimension given by 1
pn+1

(

(p+1)n
n

)

. These numbers are Fuss-Catalan

numbers, which enumerate (p + 1)-ary trees. The combinatorial part corresponds to let the “Catalan recur-
rence” grow in (p + 1) dimensions, and we obtain multivariate Fuss-Catalan numbers of order (p + 1). All
details can be found in [2, 3].

Acknowledgement. The author thanks C. Hohlweg for introducing him to B-quasisymmetric polynomials,
and for valuable comments and explanations.
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