
Performance Tuning of x86 OpenMP Codes with
MAQAO

Denis BARTHOU1, Andres CHARIF RUBIAL2, William JALBY2, Souad KOLIAI2, and
Cédric VALENSI2

1 University of Bordeaux, LaBRI/INRIA, France
2 University of Versailles Saint-Quentin, LRC ITACA, France

Abstract. Failing to find the best optimization sequence for a given application
code can lead to compiler generated codes with poor performances or inappro-
priate code. It is necessary to analyze performances from the assembly generated
code to improve over the compilation process. This paper presents a tool for the
performance analysis of multithreaded codes (OpenMP programs support at the
moment). MAQAO relies on static performance evaluation to identify compiler
optimizations and assess performance of loops. It exploits static binary rewriting
for reading and instrumenting object files or executables. Static binary instrumen-
tation allows the insertion of probes at instruction level. Memory accesses can be
captured to help tune the code, but such traces require to be compressed. MAQAO
can analyze the results and provide hints for tuning the code. We show on some
examples how this can help users improve their OpenMP applications.
Keywords : code optimization, performance analysis, static analysis, dynamic
analysis, binary rewriting

1 Introduction

Modern processors rely on many complex hardware mechanisms in order to reach
high levels of performance. In particular, the use of all levels of parallelism and
the appropriate use of the memory hierarchy to hide large memory latencies are
both required to obtain the full computing capacity of processors. This road to
high performance is paved with many complex compiler optimizations, using,
according to the code, prefetching mechanism, vectorization, loop transforma-
tions for better cache usage or data layout restructuring. While many optimizing
compilers are able to perform all these transformations, they have a poor knowl-
edge of the application context and must be conservative in their transformations.
Failing to find the best optimization sequence for a given application code, this
leads to compiler generated codes with poor performance, or with inappropriate
code.
The performance tuning process therefore implies to guide the compiler, through
pragmas, compilation flags, or source to source restructuring, to the generation of
better code. Many approaches to performance tuning have been proposed, getting
feedback from the application either by collecting execution traces through in-
strumentation (with Dyninst[4] or Pin [19] for single processors, with Scalasca[20]
for multi-node systems) or hardware counters values (such as Intel Vtune or PTU
for instance). Hardware counter-based techniques show how the architecture be-
haves with the considered code and input set. However, it is difficult to make the

connection between hardware event counts and source code, since both source
code and compiler optimizations have an impact on the resulting hardware events.
Moreover, there is no direct link between hardware counters and the quality of
the compiler generated code. To have feedback from the compilation process, it
is necessary to analyze performance from the assembly generated code.
In this paper, we describe how our MAQAO [6] tool (Modular Assembly Quality
Analyzer and Optimizer) handles performance analysis and memory tracing for
OpenMP programs. Although in this paper, our target architecture is Core2, the
tool can be easily retargeted to other x86 architectures essentially by changing
the performance models used. Targeting other architectures requires more work
(dealing with different instruction sets) but the main principles can be adapted
fairly easily: an earlier version of MAQAO was targeting IA64 architectures
which are very different from X86. This tool combines static analysis of compiler-
generated assembly code with the analysis of execution traces and binary instru-
mentation. Static performance evaluation provides hints on how to improve the
compilation process, and assess the amount of performance that could be obtained
through optimization. This estimation is performed on the sequential codes exe-
cuted by threads. Improving unicore performance (both in sequential and parallel
part of the codes) contributes to improving global performance and efficiency
of the code. Dynamic, thread-wise traces, in particular compact memory traces,
show how to improve interactions between threads, and detect false sharing situ-
ations, for instance. We show in particular how static performance evaluation is
achieved on Core 2 architecture and how compact memory traces can be used to
help tune OpenMP code performance.

2 Static Performance Evaluation

MAQAO relies on static performance evaluation to identify compiler optimiza-
tions (or lack of), patterns of codes that are not efficient, and assess performance
of loops. The performance model and its use for x86 architecture is described in
this section. We first recall how MAQAO analyzes and restructures codes.

2.1 Code restructuring

MAQAO exploits static binary rewriting for reading and instrumenting object
files or executables. Static binary rewriting refers to the post-link time manipu-
lation of binary executables. This approach has the advantage, compared to ap-
proaches requiring compiler interaction (analysis of assembly code) or inclusion
of libraries (for heap monitoring for instance), to obviate the need of recom-
piling or relinking. The API for reading and manipulating static binary files is
defined by MADRAS [18], a generic disassembler and instrumenter generator.
MADRAS takes a grammar associating binary expressions to assembly instruc-
tions, similarly to yacc grammars, and generates a corresponding disassembler,
using a linear-sweep method (similar to objdump). This disassembler for x86 is
then used by MAQAO.
The disassembled binary code is restructured: call graphs and control flow graphs,
loops and dependence graphs on registers are built (Fig. 2). The call graph con-
struction uses labels found in the binary, if any. Both call and control flow graphs
are limited in the presence of indirect jumps and self-rewriting codes. So far,

Fig. 1. The MAQAO user interface

Fig. 2. Data dependency graph of a loop

there is no (partial) interpretation of the code in order to resolve indirect jumps
and self-rewriting of codes. While the first limitation may prevent MAQAO from
finding correct control flow, the later may lead to incorrect disassembling. Natural
loops are built using a fast algorithm [9].

There is a direct link between each assembly statement and a source code state-
ment provided the debugging information is present (usually given when compil-
ing with -g flag). This link allows the detection of some compiler optimizations,
such as multiple versioning, inlining and unrolling to some extent. Innermost as-
sembly loops are grouped by source line so that users can visualize the generated
assembly loops for a given source loop (Fig. 3).

Fig. 3. Project - Files - Functions - Loops Hierarchy and corresponding source

Fig. 4. Core2 execution unit overview

2.2 Performance Model

The performance model of MAQAO computes performance estimates based on
the assembly code. It evaluates the cycles required for executing innermost loops.
The reason for considering only the innermost loops is that they usually constitute
the most time consuming part of the code. The x86 architecture model we con-

(a) MAQAO statistics (b) MAQAO reports

Fig. 5. MAQAO interface details.

sider takes into account the front-end pipeline (decoding, permanent register file
allocation, special microcoded instructions), the different ports for the execution
units, and the latencies of instructions. For memory instructions, several latencies
are considered, according to the location of the data in memory hierarchy. For
other instructions, latencies are tabulated, either coming from microbenchmarks
or from Agner documentation [8]. Note that the evaluation only provides an opti-
mistic bound, meaning that the real code may execute in more cycles due to some
extra latency not taken into account by our model.
Among different metrics that MAQAO can produce, we focus on the following
five key metrics:

1. Vectorization Report Analysis: This report, shown in Fig. 5(b), provides
us with individual (load, store, add, multiply) reports on vector instruction
usage: for example a vector ratio of 1 for multiply operations means that all
of multiply operations have been vectorized by the compiler. This ratio is
computed taking into account only floating point operations and full length
packed vector operations. These metrics are essential to evaluate the quality
of the vectorizing capabilities of the compiler and possibly to palliate some
of its deficiencies by inserting appropriate pragmas.

2. Execution port usage: For each execution port (Fig. 4), MAQAO computes
an estimation of the number of cycles spent on each port. Our performance
estimates takes into account the special case of instructions which are split
into different micro-operations to be executed on multiple ports [8]. When
an instruction (or a micro operation) can be executed on different ports (a
common example is simple integer instructions which can be assigned indif-

ferently to P0, P1 and P5), the less saturated port is chosen. Figure 5(a) shows
the report presented by MAQAO Since all of the ports can operate in paral-
lel, this metric is essential to measure the amount of parallelism exploitable
between the key functional units: add, multiply, load and store units. This
provides a first estimate of a best performance case (assuming all operands
are in L1) and also of the potential imbalance between the port usage. For
example, this allows to quickly detect whether a code is memory bound and
to get a first quantitative estimate of how much a code is memory bound.
The number of cycles spent on every port gives us an accurate ranking on
the potential bottlenecks of the code difference in cycles between first order
and second order bottlenecks).

3. Performance estimation in L1: Taking into account all of the limitations
of the pipeline front end and of the pipeline back end, MAQAO provides us
with an estimate of the cycles necessary to execute one loop iteration assum-
ing all operands are in L1. The limitations that we are taking into account
are: instruction predecoding, instruction decoding, permanent register file
allocation, special microcoded instructions. As mentioned earlier, in most
cases this bound is only useful as a lower bound.

4. Performance estimations in L2/RAM: Relying on memory access patterns
detected at the assembly level and micro benchmarking results on the same
memory patterns, MAQAO computes an estimate for the execution time of
a loop iteration, assuming all operands are in a given level of the memory
hierarchy (L2 or RAM) and are accessed with stride 1. The memory patterns
used for the pattern matching have previously been determined by systematic
hierarchical microbenchmarking: first simple “Load X” (resp. “Store Y”)
kernels (performing a single read stream through an array X, resp. a simple
writing stream through an array Y) are measured under various conditions
(unrolling, instruction used, etc ..). Then more complex patterns “Load X
Store Y”, “Load X Load Y”, “Load X Load Y Store Z”, etc ... are measured
to quantify the interaction between Load streams and Stores streams. We ex-
perimentally observed that beyond 4 array streams, most of the performance
measured could be deduced from simpler patterns. Therefore this simple set
of patterns is used for our performance prediction [10]. The L2 estimate
constitutes a reasonable performance objective while the RAM estimate is
a stride 1 worst case. The drawback of both of these estimates is that they
ignore the stride problem (which in RAM will be essential) and, second, that
they do not take into account the mixture of hits and misses which is typical
for real applications. However, it should be noted that micro benchmarking
already accounts for some typical mixture of hits/miss resulting from spatial
locality usage. For stride 1 memory access, micro benchmarking does not
distinguish between primary misses (occurring for the first word access to
a cache line) and secondary misses/hits (occurring when subsequent words
in the cache line are requested), it provides an estimate of the average time
for accessing a memory location in a stride 1 access mode (array stored in
contiguous memory). The stride problem can be easily corrected when the
memory tracing analysis is performed, because for each load/store, the strid-
ing pattern will be then determined. Then a revised more accurate L2/RAM
estimate can be generated. Again incorporating this extra information en-
ables MAQAO to produce better performance estimates.

5. Performance projections for full vectorization: In cases where the code is
partially or not vectorized, MAQAO computes performance estimations as-
suming a full vectorization. This is performed by replacing the scalar opera-
tions by their vector counterparts and updating the timing estimate due to the
use of these instructions. This is particularly useful to guide the optimization
process and to avoid useless efforts: for example, indirect access to arrays
cannot be vectorized due to the lack of vector scatter/gather instructions in
the current SSE instruction sets. However, in most loops, these indirect ac-
cesses are followed by floating point operations (adds or multiplies) which
could be vectorized. The MAQAO performance projection gives us quickly
an estimate of whether trying to vectorize these operations will pay off or
not.

2.3 Applying MAQAO to real-world Applications

To illustrate the interest of these metrics, we performed a static analysis using
MAQAO on two high performance codes from the ParMA project [16]: RECOM-
AIOLOS from RECOM, and ITRLSOL from Dassault-Aviation. Two code frag-
ments are shown in Fig. 6. The Intel C and Fortran Compilers (ifort and icc v11.0)
are used to generate the assembly codes analysed by MAQAO. They are also used
to generate OpenMP parallel regions when appropriate and also all of the perfor-
mance measurements have been carried out using these compilers.

DO IDO=1,NREDD
INC = INDINR(IDO)
HANB = AM(INC,1)*PHI(INC+1) &
+ AM(INC,2)*PHI(INC-1) &
+ AM(INC,3)*PHI(INC+INPD) &
+ AM(INC,4)*PHI(INC-INPD) &
+ AM(INC,5)*PHI(INC+NIJ) &
+ AM(INC,6)*PHI(INC-NIJ) &
+ SU(INC)
DLTPHI = HANB/AM(INC,7)-PHI(INC)
PHI(INC) = PHI(INC) + DLTPHI
RESI = RESI + ABS(DLTPHI)
RSUM = RSUM + ABS(PHI(INC))

(a) RECOM-AIOLOS analyzed code fragment

DO cb=1,ncbt
igp = isg isg = icolb(icb+1) igt = isg igp

c$OMP PARALLEL DO DEFAULT(NONE)
c$OMP SHARED(igt,igp,nnbar,vecy,vecx,ompu,ompl)
c$OMP PRIVATE(ig,e,i,j,k,l)

DO ig=1,igt
e = ig + igp
i = nnbar(e,1)
j = nnbar(e,2)

cDEC$ IVDEP
DO k=1,ndof

cDEC$ IVDEP
DO l=1,ndof
vecy(i,k) = vecy(i,k) + ompu(e,k,l)*vecx(j,l)
vecy(j,k) = vecy(j,k) + ompl(e,k,l)*vecx(i,l)

(b) ITRLSOL analyzed code fragment

Fig. 6. Two examples of codes. The IVDEP pragma tells the compiler to vectorize the loops.

The different execution ports P0 to P5 in the Core2 architecture correspond to
(Fig. 4):

– P0-P1-P5: computation units port
– P2: memory read port
– P3-P4: memory write ports

Depending on the number of cycles spent in each port, this information allows to
detect if the code is memory bound (P2, P3-P4) or compute bound (P0-P1-P5).

The 3D-combustion modeling software RECOM-AIOLOS is a tailored applica-
tion for the mathematical modelling of industrial firing systems ranging from
several hundred kW to more than 1000 MW. In-depth validation using measure-
ments from industrial power plants, the extension of chemical reaction models
and the rapid development of computer technology have made RECOM-AIOLOS
a well proven and reliable tool for the prediction equations on a 10-15 million
cells finite volume grid, leading to high computational demands. Originally be-
ing designed for high-performance computing on parallel vector-computers and
massively parallel systems, the software has been ported to low-cost multi-core
systems to expand the hardware base [17].
The most time consuming subroutine in RECOM-AIOLOS is RBgauss, which
implements a red-black iterative solver. The choice of the red-black algorithm
allows for easy parallelization with, for example, OpenMP. The RBgauss sub-
routine contains two loops (denoted Red and Black loop) with a communication
between them using MPI. The static analysis with MAQAO is performed on the
Red loop as both loops are the same. It gives the following values:

– Vectorization report: all the ratios of vectorization are equal to 0%. The com-
piler has not vectorized the loop.

– Execution units usage (format is PORT NUMBER:CYCLES SPENT): P0:8
/ P1:10 / P2:19 / P3:1 / P4:1 / P5:4.

– L1 prediction: 19 cycles.
– L2 prediction: 28.77 cycles.
– RAM prediction: 70.66 cycles.
– Vectorization prediction (assuming data in L1): 7 cycles.

Thanks to the static analysis of MAQAO, we can notice that the code is memory
bound on Core 2, since it takes 19 cycles to execute all read instructions. This
corresponds to the largest number of cycles on any given port.
The memory traces achieved using MAQAO allowed to detect that there are two
arrays (AM and PHI) in the code which are accessed with a stride 2 with some
gaps from time to time.
Moreover, the large number of reads and the stride 2 access imply that the code
is very sensitive to cache misses [12].
Since the major bottleneck for this routine is data access from RAM combined
with low spatial locality (stride 2 access), various optimizing transformations are
performed, but only the following has a significant impact on performance: re-
shaping array AM for getting rid of the stride 2 access. More precisely, the array
AM is split into two distinct arrays still with indirect access but stride 1. This is
equivalent to reshaping an array of complex numbers by splitting it into arrays,
one containing the real part, the other one containing the imaginary part.
Thanks to this optimization, the cache misses are almost half what they used to
be (Fig. 7(b)). Single core performance has been improved by speedups between
1.2 and 1.3 (Fig. 7(a)) thanks to this code transformation. Multicore performance
has been improved by speedups between 1.3 and 1.4 (Fig. 8).

The ITRLSOL (ITeRative Linear SOLver) application provided by Dassault-
Aviation is the linear solver kernel of AeTHER, a larger Computational Fluid Dy-

Fig. 7. RBgauss code optimization on unicore.

Fig. 8. RBgauss speedups on multicore.

namics (CFD) simulation code for the solution of Navier-Stokes equations, dis-
cretized on unstructured meshes. The most time-consuming subroutine in ITRLSOL
is EUFLUXm, which implements a sparse matrix-vector product. The EUFLUXm
subroutine contains two groups of quadruply nested loops (2 identical quadruply
nested loops in each group). For the considered 4-level loop nest in this code, the
report provides the following information:

Fig. 9. EUFLUXm code optimization on unicore.

– Vectorization report: all the ratios of vetorization are equal to 0%. The com-
piler has not vectorized any loop, despite the presence of pragmas.

– Execution units usage (format is PORT NUMBER:CYCLES SPENT): P0:3
/ P1:3 / P2:6 / P3:2 / P4:2 / P5:3

– L1 prediction: 6 cycles.
– L2 prediction: 9.08 cycles.
– RAM prediction: 37.04 cycles.
– Vectorization prediction (assuming data in L1): 3 cycles.

The static analysis with MAQAO shows that the code is dominated by memory
accesses. The memory traces achieved with MAQAO allow us to detect that the
inner most loops are accessing the arrays in the wrong dimension which leads to
a poor spatial locality [12].
To improve the spatial locality, a transformation is done by interchanging the
second loop on ig and the two innermost loops (the ig loop becomes the inner-
most loop). All of the arrays are now accessed column-wise. This optimization
improves sequential performance by speedup of 2.5 (Fig. 9(a), Fig. 9(b)).
In a multicore environment the same optimization is applied. It gives a speedup
of up to 2.5 (Fig. 10).
Thanks to the information collected from the static analysis with MAQAO, we
detect that both applications RECOM-AIOLOS and ITRLSOL are not vector-
ized and memory bound. Using this information and applying MAQAO mem-
ory traces and PTU [3] (for performance tuning) allows us to find the perfor-
mance bottleneck (stride 2 access for RECOM-AIOLOS and poor spatial locality
for ITRLSOL) in these codes.

3 Memory Traces for OpenMP Codes

Memory traces represent information of crucial importance for performance tun-
ing of multithreaded codes. Indeed, traces can help detect important inefficiencies
(false sharing) or opportunities for optimizations (setting thread affinity accord-
ing to reuse among threads). The major issue of memory traces is the amount of

Fig. 10. ITRLSOL speedups on multicore.

data they represent. We first describe how the tracing is achieved in MAQAO,
which algorithm we use to compress the traces and how they are used in order to
tune performance.

3.1 Static Binary Instrumentation

The static binary instrumentation is achieved using MADRAS [18]. It allows in-
struction level instrumentation, inserting probes either provided by MAQAO (for
iteration counts) or user-defined ones in libraries.
Figure 11 shows how easy it is to use this API to build an instrumenter module.
The two for loops walk through all blocks and all instructions of the loop with id
1. For each load and store instruction, the mt store function is called from the
libmaqaotrace library which contains the implementation of the trace com-
pression algorithm mentioned earlier taking into account multithreading. This
function builds a compact trace of memory accesses. MADRAS performs instru-
mentation statically, through binary rewriting, allowing the instrumented program
to be run without additional overhead.

3.2 Memory Traces

Memory accesses can dramatically slow down the execution time of a program,
particularly when it is memory bound. Capturing the memory behavior of a pro-
gram can help tune the code, using prefetching or transforming the code for a
better reuse of data. However, tracing memory accesses (load, store, prefetch) by
simply dumping all address streams would lead to many Terabytes of data on

Fig. 11. MADRAS API available through MAQAO (LUA scripting interface)

real applications. The memory space for these traces is a major concern in ev-
ery trace-profiling application. We first detail the compression algorithm used in
MAQAO and then describe how this method has been adapted to MAQAO for
tracing multithreaded codes (OpenMP programs support at the moment).

Compression algorithm The compression is ensured by an on-the-fly incre-
mental algorithm called loop nested recognition and developed by Ketterlin and
Clauss [11]. We recall in this section the main steps of this method.
Their technique represents memory address streams as union of Z-polytopes which
are represented by (nested) loops. The idea of using loops to characterize an ac-
cessed region has first been introduced by Elnozahy [7]. Simpler representations
have been proposed using triplets (starting addresses, stride, number of refer-
ences) and their extension to multidimensional triplets [13]. This is a natural
approach since the majority of time execution of a program is spent in loops,
and memory accesses are regular. Figure 12 shows the parallel between a typical
example of program loop and its representation.

Fig. 12. Source code loop and its corresponding nested loop representation

The algorithm takes into account two types of access patterns:

– regular patterns obtained by regular or irregular accesses
– irregular patterns due to random accesses. There is no easy way to deal with

this kind of pattern. Existing approaches fall back on lossy algorithms.
Each memory stream is assigned an internal stack that stores either regular and
irregular patterns. Regular patterns are stored in the loop format described above.
Irregular patterns, which correspond to a sequence of numbers without any affin-
ity, are kept as it is. The stack size management is controlled by three factors:

– the maximum stack size (length)
– the maximum number of terms within the loop body representation (breadth)
– the number of elements to throw when the size limit is reached

The algorithm is lossless as long as the stack is large enough to store all memory
streams. On some huge programs it may be necessary to voluntarily limit the
stack in order to prevent consuming all the available memory. In this case the
algorithm is lossy.

Multithread and Performance Issues We have adapted the previous method
to a multicore execution context and extended it by taking into account static
analysis information. Adaptation to multicore execution boils down to reimple-
menting the original method as a thread-safe method. Traces are saved for each
memory access, for each thread independently.
Instrumenting a code for memory traces usually generates a large overhead, and
most methods (such as Metric[13]) use sampling in order to reduce this weight
on the execution time. Another approach is to use static analysis in order to infer
fragments of traces from the assembly code. Indeed, tracking down the induction
variable of inner loops makes it possible to capture the stride of memory streams.
The value may appear in the code as a numerical constant or as a parametric
constant (invariant in the loop). But in both cases we only need this value and the
iteration count to extract the loop representation (usually found in some register).
Thus this saves a large part of the overhead due to instrumentation.
Our design still suffers from a lack of information about temporal locality. This
could be alleviated by using a simplified cache simulator. Its integration in MAQAO
is left for future work.

3.3 Using Traces for OpenMP Performance Issues

Once trace collection is done, the results are analyzed (manually at the moment)
and some hints are provided to the user to help tune the code. We provide there-
after a number of scenarii reflecting performance issues that can be detected using
this trace framework.

– Potential bank/load store queue conflicts: this type of conflicts can be easily
detected by comparing addresses accessed by ”neighbor” instructions. On
Xeon architecture a store on address A followed by a load on address B can
generate pipeline stalls if address A and B have the same low order 12 bits
(same offset within a page). The performance impact will depend upon the
execution distance (how many cycles apart) between the load and store in-
structions. Detection of this intra-thread issue consists in finding successive
load/store patterns accessing different addresses sharing the same low order
12 bits.

– False Sharing: Two threads share some cache line, while they do not share
any data. However, performance is impacted due to cache coherency issues.
Patterns that lead to false sharing can be tracked down by comparing ad-
dresses read and written by different threads (loads and stores). Coherence
issues increase with the number of cores and the memory access is not uni-
form (case of Intel architectures).

– Prefetch distance: Prefetch distances can be found or guessed based on the
accessed regions of memory. The memory region found by our trace mech-
anism helps the user to determine if prefetch causes potential false sharing
issues, depending on the prefetch distance.

– OpenMP work distribution scheme: Based on the memory pattern accesses,
we can recover OpenMP work distribution scheme (different static, dynamic
and guided modes) and evaluate which mode is the more appropriate for the
application;

– Reuse degree between loads: Multiple loads on the same, shared data give us
temporal locality hints. The user could, if possible, reorder some statements
to take advantage of cached data at some point;

– Strided accesses: Depending on the programming language, data is stored by
column or by row in memory. One possible optimization is to assess which
configuration is the most efficient. Moreover, structure of arrays or arrays
of structures are usual choices that impact performance, in particular due to
vectorization. Evaluation from traces of the opportunity to vectorize memory
accesses is an important task in the code tuning phase.

To illustrate one of these scenarii, consider the code shown in Fig. 12. This code
could match for instance to a matrix multiplication code. The i loop can be paral-
lelized with OpenMP, and different load balancing methods can be chosen, among
which STATIC and DYNAMICmethods. Tracing memory writes reveals that with
a STATIC load balancing method and 8 threads, there is no false sharing occur-
ring. For the DYNAMIC method, as shown in Fig. 13, some false sharing occurs,
resulting in increased memory latency due to cache coherency mechanism (false
sharing for write accesses).

Thread 1
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255b0 + 1024*i0

Thread 2
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255b8 + 1024*i0

Thread 3
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255c0 + 1024*i0

Thread 4
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255d8 + 1024*i0

Thread 5
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255d0 + 1024*i0

Thread 6
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255a8 + 1024*i0

Thread 7
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255c8 + 1024*i0

Thread 8
for i0 = 0 to 127
for i1 = 0 to 127
val 0x45255a0 + 1024*i0

Fig. 13. Partial traces corresponding to memory writes in a DGEMM code, where the i loop is
parallelized with DYNAMIC load balancing strategy. This solution is not efficient due to the false
sharing between threads (for instance, threads 1 and 2 access the same cache line).

4 Related Work

There are few performance tools dealing with parallel (multithreaded) codes op-
timization.
Intel VTune [5] relies on the Thread Profiler application to determine the number
of cores that are being used, show the distribution of work to threads but does not
take into account memory accesses.
Acumem [1] rely on cache related statistics to predict performance bottlenecks.
MAQAO uses (memory accesses) tracing rather than sampling in order to provide
the user with very accurate results and detect unusual behaviours.
HPCToolkit [2] also works at binary level for language independence, collects
and correlates multiple performance metric, computes derived metrics to aid anal-
ysis. However it uses profiling rather than adding code instrumentation. MAQAO
supports code instrumentation to enable users inserting probes and concentrate
on specific parts of an application.
PIN [19] and DynInst [4] are two tools allowing modification of an executable for
the purpose of instrumentation. Both perform dynamic instrumentation, operating
on the executable while it is loaded in memory and running.
PIN traces an executable during its execution (acting as a ”just-in-time” compiler)
and monitors various parameters. It allows to transfer control flow to external
functions, effectively inserting calls to these functions, and to modify the mem-
ory, all of this while the executable is being executed. It is also possible with PIN
to insert probes in the executable while it is loaded in memory but not yet run-
ning, which actually redirects the execution flow to another function. This mode
does not work on multi-threaded applications and does not check the destinations
of jump instructions. PIN is also able to perform some static analysis of a file
(like identifying functions arguments).
DynInst [4] allows dynamic updating of code, a process labeled runtime injection.
It proceeds by directly updating a program in memory to insert jumps pointing
to the added sections of code which reside somewhere else in memory. A recent
update also allows DynInst to perform some binary rewriting.
Instrumentation by MADRAS is not accomplished at runtime by another thread,
as it is performed statically. The instrumented program can then be run without
additional overhead but the calls to the instrumented functions. No special envi-
ronment is required.
The integration of the MADRAS library allowed us to introduce the memory
tracing feature.
Valgrind [14] is a dynamic binary instrumentation and analysis framework which
uses a simulated CPU to analyse programs (in particular on cache and memory
use) and offer instrumentation options. The simulated CPU causes an important
slowdown of the analysed program and requires more memory space.
METRIC [13] uses dynamic instrumentation to capture memory accesses and
scope changes.
PSnAP [15] also uses dynamic instrumentation to generate memory stream pro-
files on a per loop basis as MAQAO does.
Ketterlin & Clauss [11] propose a more sophisticated compression technique that
we are using in our memory tracing library.
To our best knowledge, there is no existing technique for memory tracing of par-
allel (multithreaded) codes.

5 Conclusions and future work

MAQAO is a tool for performance tuning that relies on both static analysis of
binaries and on data collected through instrumentation. We have shown in this
paper how the performance model for x86 processors is designed inside MAQAO
and how memory tracing for OpenMP programs is achieved.
The static analysis is combined with the hint mechanisms of MAQAO, helping
the user to locate easily in the application source code the code fragments that ex-
hibit poor performance. Moreover, this analysis provides a rough estimate of the
possible performance gains that could be expected by an efficient vectorization.
The memory tracing method we propose relies on two mechanisms: a new binary
instrumentation framework, MADRAS, where each assembly instruction can be
instrumented individually, and a compact memory trace representation [11], ex-
tended for multithreaded programs. We have shown, through multiple scenarii,
how the multithreaded trace information can be used to detect performance is-
sues specific to multicore machines.
For future work, we plan to improve the trace representation in order to capture
partially some scheduling information (associating time stamps with memory ad-
dresses). In future versions, trace results will be analysed automatically. MAQAO
still needs the assembly code for building its analysis and will rely only on the
data extracted from the disassembled binary in the next release (the disassembled
binary from MADRAS being used in correlation with it to retrieve the instruc-
tions addresses).

References

1. Acumum AB. Acumem SlowSpotter and Acumem ThreadSpotter, 2009.
http://www.acumem.com/content/view/133/182/.

2. L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for performance analysis
of optimized parallel programs. Technical Report TR08-06, Rice University,
2008.

3. A. Alexandrov, S. Bratanov, J. Fedorova, D. Levinthal, I. Lopatin, and
D. Ryabtsev. Parallelization Made Easier with Intel Performance-Tuning
Utility, 2007. http://www.intel.com/technology/itj/2007/v11i4/.

4. B. Buck and J. K. Hollingsworth. An API for Runtime Code Patching. Intl.
Journal of High Performance Computing Applications, 14:317–329, 2000.

5. Intel Corporation. Intel VTune Performance Analyzer 9.1, 2009.
http://software.intel.com/en-us/intel-vtune/.

6. L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J-T. Acquaviva, and
W. Jalby. Exploring Application Performance: a New Tool For a Static/-
Dynamic Approach. In Los Alamos Computer Science Institute Symp., Santa
Fe, NM, October 2005.

7. E. N. Elnozahy. Address trace compression through loop detection and re-
duction. SIGMETRICS Perform. Eval. Rev., 27(1):214–215, 1999.

8. Agner F. Software optimization resources, 2009.
http://www.agner.org/optimize/.

9. L. Georgiadis, R. F. Werneck, R. E. Tarjan, S. Triantafyllis, and D. I. August.
Algorithms - ESA, 3221:677–688, 2004.

10. W. Jalby, C. Lemuet, and X. Le Pasteur. A New Set of Microbenchmarks
to Explore Memory System Performance for Scientific Computing, 2004.
International Journal of High Performance Computing Applications.

11. A. Ketterlin and Ph. Clauss. Prediction and Trace Compression of Data Ac-
cess trough Nested Loop Recognition. In ACM/IEEE Int. Symp. on Code
Optimization and Generation, 2008.

12. S. Koliai, S. Zuckerman, E. Oseret, M. Ivascot, T. Moseley, D. Quang, and
W. Jalby. A Balanced Approach to Application Performance Tuning. In
Proc. of LCPC, LNCS, Delaware, USA, October 2009. Springer.

13. J. Marathe, F. Mueller, T. Mohan, B. R. de Supinski, S. A. McKee, and
A. Yoo. METRIC: Tracking Down Inefficiencies in the Memory Hierar-
chy via Binary Rewriting. ACM/IEEE Int. Symp. on Code Optimization and
Generation, 0:289, 2003.

14. N. Nethercote and J. Seward. Valgrind: A Framework for Heavyweight Dy-
namic Binary Instrumentation. 2007. Proceedings of ACM SIGPLAN 2007
Conference on Programming Language Design and Implementation (PLDI
2007), San Diego, California, USA, June 2007.

15. C. Mills Olschanowsky, M. Tikir, L. Carrington, and A. Snavely. PSnAP:
Accurate Synthetic Address Streams Through Memory Profiles. In Int. Work-
shop on Languages and Compilers for Parallel Computing, 2009.

16. ParMA ITEA2 Project: Parallel Programming for Multicore Architectures.
http://www.parma-itea2.org/.

17. B. Risio, A. Berreth, S. Zuckerman, S. Koliai, M. Ivascot, W. Jalby, B. Kram-
mer, B. Mohr, and T. William. How to Accelerate an Application: a Practical
Case Study in Combustion Modelling. In Proc. of ParCo, Lyon, France,
2009.

18. C. Valensi and D. Barthou. MADRAS: Multi-Architecture Disassembler and
Reassembler, 2009. http://maqao.prism.uvsq.fr/wiki/wiki/MadrasDownload.

19. S. Wallace and K. Hazelwood. SuperPin: Parallelizing Dynamic Instrumen-
tation for Real-Time Performance. In ACM/IEEE Int. Symp. on Code Opti-
mization and Generation, pages 209–217, San Jose, CA, March 2007.

20. F. Wolf, B.J.N. Wylie, E. Ábrahám, D. Becker, W. Frings, K. Fürlinger,
M. Geimer, M.-A. Hermanns, B. Mohr, S. Moore, M. Pfeifer, and
Z. Szebenyi. Usage of the SCALASCA Toolset for Scalable Performance
Analysis of Large-Scale Parallel Applications. In Proc. of the 2nd HLRS
Parallel Tools Workshop, pages 157–167, Stuttgart, Germany, July 2008.
Springer. ISBN 978-3-540-68561-6.

