
Loop Optimization using Hierarchical Compilation and Kernel Decomposition

Denis Barthou 1 Sebastien Donadio 2 3 Patrick Carribault 2 3 Alexandre Duchateau 3

William Jalby 1 3

1 PRiSM Laboratory, Université de Versailles Saint-Quentin, France
2 Bull SA, Les Clayes sous Bois, France

3 LRC ITACA, CEA/DAM and Université de Versailles Saint-Quentin, France

Abstract

The increasing complexity of hardware features for re-

cent processors makes high performance code genera-

tion very challenging. In particular, several optimiza-

tion targets have to be pursued simultaneously (minimizing

L1/L2/L3/TLB misses and maximizing instruction level par-

allelism). Very often, these optimization goals impose dif-

ferent and contradictory constraints on the transformations

to be applied.

We propose a new hierarchical compilation approach

for the generation of high performance code relying on

the use of state-of-the-art compilers. This approach is

not application-dependent and do not require any assembly

hand-coding. It relies on the decomposition of the origi-

nal loop nest into simpler kernels, typically 1D to 2D loops,

much simpler to optimize.

We successfully applied this approach to optimize dense

matrix muliply primitives (not only for the square case but

to the more general rectangular cases) and convolution.

The performance of the optimized codes on Itanium 2 and

Pentium 4 architectures outperforms ATLAS and in most

cases, matches hand-tuned vendor libraries (e.g. MKL).

1. Introduction

The increasing complexity of hardware features incorpo-

rated in modern processors makes high performance code

generation very challenging. One of the key difficulties in

the code optimization process is that several issues have to

be simultaneously addressed: for example maximizing in-

struction level parallelism (ILP) and optimizing data reuse

across multilevel memory hierarchies. Moreover, very of-

ten, a code transformation will be beneficial to one aspect

while it will be detrimental to the other one. The whole

problem worsens because the issues are tackled by different

levels of the compiler chain: most of the ILP is optimized by

the backend while data locality optimization is performed at

a higher level.

A good example for highlighting all of these problems is

the simple dense matrix multiply operation. Although the

code is fairly simple, none of the recent production com-

pilers is really able to generate performance close to hand-

coded routines.

To deal with this problem,Whaley et al. [20] have devel-

oped a specialized and iterative code generator (ATLAS).

ATLAS generated libraries outperform codes produced by

most of the compilers. Recently, the cost of the iterative

compilation in ATLAS has been reduced by replacing the

iterative search by a cost model, while still generating codes

with nearly the same performance[23]. But even with these

recent improvements, vendor [9, 17] or hand-tuned BLAS3

[12] still outperforms ATLAS generated codes. So what are

ATLAS and compilers still missing in order to reach this

level of performance?

In this paper, we propose an automatic method to close

this performance gap. The starting point is to decouple

the two issues: locality optimization and ILP optimization.

Tiling is first performed to produce a tile code operating on

subarrays that fit in cache. Tiling constraints, ensuring that

the subarrays accessed within the tile fit in cache, do not

define a single tile size but rather a set of tile sizes. We

use this degree of freedom to search for the best perform-

ing tile code and choose the tile size according to the con-

straints on this code. Then, to optimize the tile code, we

use a bottom up approach combined with systematic explo-

ration. In general, the multiply-nested loop structure of the

tile code will still be too complex to be correctly optimized

by a compiler even if the operands are in cache. Therefore,

from the multiply-nested loop, we systematically generate

several kernels, using interchange, strip mining, and partial

unrolling. These kernels have a simpler control structure

(1 or 2 dimensional loops), the loop body containing sev-

eral statements resulting from unrolling surrounding loops.

Additionally, to simplify the compiler task, loop trip counts

are set to constants, and multidimensional array accesses

are simplified. The main constraint on these kernels is to



be simple enough so that a decent compiler can generate

high performance code. Then, the performance of all of

these kernels is systematically measured. From these ker-

nels, different variants of the original tile code can be easily

rebuilt. And finally, taking into account tile size constraints,

a specific version of the tile code is selected and the whole

code is produced.

As we will demonstrate in this paper, such an approach

offers several key advantages: first it generates very high

performance codes competitive with existing libraries and

hand-tuned codes. Second, it relies on existing compilers

and source-to-source transformations. Third, it is extremely

flexible, i.e. capable of accommodating arbitrary rectangu-

lar iteration space.

The proposed approach is demonstrated on BLAS3

codes but can be applied to other codes. Unlike ATLAS,

we did not a priori select a given code that is further tuned.

On the contrary, we consider a large number of variants,

which are automatically produced. Each of these variants

correspond to the application of a given set of transforma-

tions/optimizations to the original tile code. Generation and

exploration of these optimization sequences and their pa-

rameters are achieved with a meta-compilation language,

X-language.

The approach described in this paper applies to regular

linear algebra codes. More specifically, the codes consid-

ered are static control programs[10]: loop bounds have to

depend linearly on other loop iteration counters or on read-

only variables. Array indices also have to depend linearly

on loop indices.

The main contributions of the proposed approach are:

• Automate the process of generating high performance

code optimizing simultaneously ILP and data locality.

The main contribution here is that our approach allows

to find the best tradeoff between these two optimiza-

tion targets

• Achieve performance similar to hand coded routines

• Rely on flexibility (different versions) of the code

generated to match varying data locality properties.

For example, the real difficulty is not generating a

matrix multiply code achieving high performance on

square matrices, but a general matrix multiply code

that will obtain high performance for arbitrary rect-

angular shaped matrices (where locality properties on

each array can be very different)

• Reduce the cost of the optimization phase. Most of the

search phase and experimentation phase are done on

the kernels (which are mostly one dimensional loops)

and not on the whole code

The paper is organized as follows: Section 2 describes

the hierarchical kernel decomposition and the kernel opti-

mization, Section 3 gives implementation details and ex-

perimental results obtained on different linear algebra codes

comparing our approach with ATLAS and MKL, Section 4

describes related work and Section 5 provides some future

directions.

1.1. Motivating Example

The histograms in both Figure 1 and Figure 2 compare

the performance of two versions of a square matrix multi-

ply primitive (DGEMM): one is generated by ATLAS (grey

bars) and the other one is from the Intel MKL library (white

bars). The target machine is an Itanium 2 running at 1.575

Ghz with a peak performance of 6.3 GFlops. MKL version

clearly outperforms ATLAS version and gets performance

numbers very close to peak.

Trying to understand the performance gap, we mea-

sured L2 and L3 misses for each code. The results in

Figure 1 (resp. Figure 2) represent the average num-

ber of bytes fetched outside of L2 (resp. L3) per

FMA (Fused Multiply Add). These metrics are simply

computed according to the following formula: (128 ×

number of L2 misses)/number of FMA (resp. (128 ×

number of L3 misses)/number of FMA). Surprisingly
enough, MKL is performing on average 3 times more L2

misses than ATLAS and between 1.5 and 2 times more L3

misses (for matrices larger than 900×900). We checked that
the number of prefetch instructions is similar in both cases

and we also looked at the impact of TLB misses: again in

both cases the impact is negligible meaning that both AT-

LAS and MKL have done an excellent job at minimizing

TLB misses. It should be noted that although the stress im-

posed by MKL routines on L2 bandwidth (resp. on memory

bandwidth) is much higher, this is still below the sustained

bandwidth achievable by L2 cache: 24 GB/s (resp. by mem-

ory system: 6.4 GB/s). Similar experiments performed on

Pentium 4 lead to similar observations.

What conclusions should be drawn from this example?

• Minimizing L2, L3 and TLB misses should not be the

only goals;

• Furthermore, increasing L2, L3 and TLBmiss rate (but

still staying under the hardware bounds) can be the

right path to reach peak performance;

• The real key to achieve peak performance is to achieve

the right tradeoffs between ILP optimization and data

locality optimization.

It should be noted that our results are fundamentally dif-

ferent from those obtained by Chen et al.[3] that are essen-

tially focused on data locality optimization across all of the

memory hierarchy levels.



In the sequel of this paper, we will show how our ap-

proach succeeds in achieving a well balanced optimization

of all of these metrics, resulting in performance levels close

and even superior to MKL.

Figure 1. DGEMM performance and L2 be-

havior for ATLAS and MKL on Itanium 2

Figure 2. DGEMM performance and L3 be-
havior for ATLAS and MKL on Itanium 2

1.2. X-language Framework

In order to generate multiple versions of a code, we

resort to a two-stage compilation framework. Source-to-

source transformations are expressed in a meta-compilation

language and are applied on the code after the first compi-

lation stage. The second stage corresponds to a usual com-

pilation phase. We used X-language[8], a language of prag-

mas, to describe these sequences of transformations. X-

language pragmas enable to:

• Specify code fragments (scope) on which X-

language transformations apply, using #pragma

xlang begin and #pragma xlang end direc-

tives around selected code;

• Trigger source-to-source transformations on code frag-
ment using pragma directives, such as

#pragma xlang transform tile(i,II,STRIDE)

#pragma xlang transform unroll(II,UNROLL)

The first directive tiles the loop i with a stride

STRIDE into a new loop II. The second one partially

unrolls II by a factor of UNROLL. Available transfor-

mations include unrolling, tiling, fission, fusion, inter-

change, scalar promote, . . . The rule-based transforma-

tion engine of X-language enables more transforma-

tions.

The main advantage of X-language is that the user can

apply very precisely desired source-to-source transforma-

tions. However, long optimization sequences are tedious to

write with pragmas. Furthermore, there is no real search

mechanism for optimization sequences and there is no

feed-back from the compiler.

2. Hierarchical Kernel Decomposition

This section presents the detailed method for hierarchical

kernel decomposition. Algorithm (Figure 3) sums up the

main steps of the approach, further detailed in the following

sections.

The code is first tiled for data locality. At this stage, the

exact tile sizes are not selected yet, they are still parameters

(Step 1 of Algorithm in Figure 3). But we assume that tile

sizes are such that the whole array regions accessed in the

tile fit into cache. The code associated with a tile is called

the tile code.

On the resulting tile code, various code transformations

are applied resulting in a large number of versions (Step

2). Then the loops of these versions are decomposed into

simpler computational kernels: for example, for a multiply-

nested do loop, tiling the innermost loop for 100 iterations
generates a simple kernel with one loop of 100 iterations.
More complex kernels can be obtained by tiling the two in-

nermost and so on (Step 3a). We choose to bound the explo-

ration of these new tile sizes to some given constants. Note

that this tiling level is not directly linked to memory reuse

concerns. Its purpose is to define some code fragments in-

dependent of the application that will be executed and their

performance measured. In order to avoid any unnecessary

tail code, the loop must have an iteration count multiple of

the tile size (Step 3b), for example a multiple of 100 itera-
tions.

Array accesses can then be optimized by scalar promo-

tion (boiling down to loop invariant removal): array regions

are copied into temporary scalars or arrays before the newly

created tile code, and then copied out from these tempo-

raries after the tile (Step 3c). The new tile code itself is

called a kernel. An important point to note here is that when

these copies are hoisted at the entry and exit of the tile code



Algorithm Optimized tile code generation

Input: A linear algebra code P

Output: A set T of optimized tile codes and K of kernels.

1. Tile P for data reuse. Tile sizes are kept parametric.

Let T denote the tile code. If there is no reuse, T = P.

2. Apply various code transformations to generate multi-

ple versions of T.

3. For each version V generated in Step 2:

For each loop nest L of V:

(a) Tile any number of inner loops of Lwith constant

loop sizes. Tile code is denoted K.

(b) Add the following constraint to V: the tile size

of V must be a multiple of the size of K (no tail

code).

(c) Apply scalar promotion to array accesses in K,

adding possible copy-in/out of array sections

into/from array temporaries.

(d) Hoist all copies to entry/exit of T.

(e) Add the resulting tile code K to K and the result-

ing copies to K.

Add the tiled V into V , for all possible tilings of Step

3a.

4. For each K ∈ K:

Measure performance of K for all array alignments

5. For each V ∈ V :

Estimate the performance of V by multiplying perfor-

mance of its kernels/copies by their surrounding loop

trip counts. Let p(V) denote the performance estima-
tion of V.

If p(V) > maxU s.t. V<U p(U), then add V to T and
remove from T all versions such that V < U.

Figure 3. Optimized tile code generation

(Step 3d), as the working set fits into the cache, these copy

operations fill the cache with the data used by kernels and

these kernels will execute with data already in cache. More-

over, as there is a copy for each array accessed by a kernel,

it is possible to choose precisely the array alignments that

minimize cache bank conflicts inside kernel code. Thus,

the performance of kernels is evaluated independently of

the application context, with a working set already in cache

and for different values of array alignment (Step 4). Note

that the execution step is limited to kernel execution. As we

can choose to consider only kernels with only one single

loop, independently of the application, this makes the exe-

cution step rather cheap, compared to the execution of the

whole tile code. Copies are considered as kernels and are

benchmarked too (data comes from memory in this case).

Finally, the best tile code is composed of of kernels and

copies. All different versions of tile codes are evaluated

with a simple cost model relying on kernel measured per-

formance (Step 5). There is no execution involved in this

performance evaluation step. If a tile code U has size con-

straints that can be checked by another tile code V, for ex-

ample when V must have a loop trip count multiple of 200
and U must have a loop trip count multiple of 100, then we
note U < V. When U < V and U outperforms V, then we

keep only U (Step 5). For example, if the performance of

U is 3 GFlops and the tile size must be a multiple of 100
whereas the performance of V reaches 2 GFlops and the tile
size must be a multiple of 200, then V is outperformed by
U, whatever the matrix or vector sizes. On the contrary, if

the performance U is 1.5 GFlops instead, then V is chosen
for sizes multiple of 200 and U for the size 100. According
to the size constraints coming from each kernel, the best tile

code adapted to the input matrix/vector size is easily found.

Each step is presented in detail in the following sections.

We will use the standard matrix multiply code given in Fig-

ure 4 to illustrate our method step by step.

for (i = 0; i < N ; i++)

for (j = 0; j < N ; j++)

for (k = 0; k < N ; k++)

c[i][j] += a[i][k] * b[k][j];

Figure 4. Naive DGEMM.

// copy B into b by blocks of width NJ

for (i = 0; i < N ; i += NI)

// copy A into a by block of width NK

for (j = 0; j < N ; j += NJ)

// copy C into c

for (k = 0; k < N ; k += NK)

// Tile for memory reuse

for (ii = 0; ii < NI; ii++)

for (jj = 0; jj < NJ; jj++)

for (kk = 0; kk < NK; kk++ )

c[ii][jj] += a[ii][kk] * b[kk][jj];

Figure 5. Tiled DGEMM.

2.1. Loop Tiling

The main goal of loop tiling[21, 5, 15, 14] is to reduce

memory traffic by enhancing data reuse. Upon entry in the

tile, data layout (the array organization) is restructured in

particular to reduce TLB misses. Indeed, all copies are

hoisted at the entry/exit of the tile by Step 3d, to generate



contiguous array sections which will minimize cache inter-

ferences and TLB misses.

At this stage, the only constraints imposed on tile sizes is

that they should be chosen such that the working set used in

the tile fits into the cache. For matrix multiply, computing

the working set is fairly obvious: it amounts to sum up the

size of the three subarrays accessed by the tile code. In

more general cases, the exact evaluation of the working set

can be done but can be fairly complex [4]. For our purpose,

in most cases a simple method based on rectangular array

subsections (derived from the tile sizes) will be sufficient.

In particular, we do not limit our search to square tiles.

While using general rectangular tiles will increase the num-

ber of parameters to deal with, it provides much more de-

grees of freedom. First, it allows to cope more efficiently

with the case where the original loop iteration space is rect-

angular (allowing for example to deal with the general rect-

angular matrix multiply problem). Second, it allows even to

deal efficiently with more arbitrarily shaped iteration space

such as triangular ones.

The tiling is classically obtained through strip mining

of all loops, followed by a search using loop permutation,

skewing, reversal and loop distribution.

The tiling applied on DGEMM is presented in Figure 5.

The tile code (the 3 innermost loops) corresponds to a mini-

MMM according to ATLAS terminology. The copy-out of

c is not included.

2.2 Loop Transformations

The loop transformations we considered in Step 2 are

loop interchange, partial unroll, and loop fusion. The goal

of these transformations is to increase the parallelism in-

side some loops (by unrolling or fusion), to give opportu-

nities for higher instruction parallelism and vectorization.

The optimization space is described by the range of un-

rolling factors for each loop, through X-language pragmas.

The optimization sequences considered are all possible in-

terchange, followed by any combination of other transfor-

mations. Note that after these source-to-source transforma-

tions, the compiler achieves other loop transformations on

its own: unrolling, loop vectorization, software pipelining,

versioning (for alignment).

If the number of unrolling factors used for each loop is

U , a perfect loop nest with n loops fully permutable gener-
ates n!Un different versions. This is not an issue since the

maximum loop depth is usually lower than 4.

2.3 Data-Layout Optimization

Loop tiling followed by scalar promotion are used to

generate kernels (Steps 3a, 3c). The kernels are the tile

codes generated by this tiling step. Tiling is applied only

to inner loops, from the innermost loop (for 1D kernel) to

all loops. The complexity of the kernels depends highly on

the number of loops considered for this tiling. Kernels with

only one loop (1D kernels) have several advantages: com-

pilers usually generate good quality codes for single loops,

and the experimental step takes linear time with respect to

the number of experiments performed (Step 4). In our study,

we consider also kernels with up to 3 loops.

Data-layout transformations are applied to simplify array

structures accessed by kernel. The optimization is focused

on:

• locality optimization: higher locality and regular

strides give more opportunities for the compiler to

generate high performance memory accesses (better

prefetch, fewer instructions to describe the address

stream, vectorization,...)

• register usage optimization.

These are standard scalar promotion/blocking techniques.

The first goal can be reached by transforming the arrays

so that they contain only the working set accessed by

the kernel. This can be achieved by using well known

techniques[16, 2, 18]. Our implementation is based on

scalar promotion techniques, and all arrays are resized to

the size of kernel loops. Array dimensions that are only in-

dexed by constants or loop counters not present in the ker-

nel are removed (and arrays are renamed correspondingly).

This may require the use of memory copy operations.

Figure 6 presents three mini-MMM optimizations

achieved by our method. The first column gives the

optimization sequence used and the resulting code is in

the second column. From these codes, the kernels in

the third column are generated by tiling of the inner-

most loop and scalar promotion. Scalar promotion cre-

ates new arrays. For the first example, the mapping be-

tween array elements of the first optimized version and

array elements used in its 1D kernel is the following:

c1=c[ii], a1=a[ii][kk], b1=b[kk], c2=c[ii+1] and

a2=a[ii+1], where all arrays of the kernel have ni ele-

ments. In C, this implies that there is no need for copy at all.

For the second optimized mini-MMM of Figure 6, the map-

ping is: c1=c[ii][jj], a1=a[ii], b1[.]=b[.][jj],

c2=c[ii][jj+1], b2[.]=b[.][jj+1], etc. Note that

array b has to be transposed before entering this ker-

nel. For the third optimized mini-MMM, the mapping is:

c1[.]=c[.][jj], a1[.]=a[.][kk], b1=b[kk][jj],

c2[.]=c[.][ii+1] and b2=b[kk][jj+1]. This means

that the arrays a and c have to be transposed. Compared

with the first version, even if the kernel is the same, this

decomposition is likely to be less efficient.

Concerning the mini-MMM code for DGEMM, enumer-

ating all optimizations and generating all kernels leads to

5 different kernels, 4 of them are presented in Figures 7,



Optimization Optimized mini-mmm 1D Kernel

for (ii = 0; ii < NI ; ii+=2)

for (kk = 0; kk < NK ; kk++)

interchange jj,kk;

partial unroll ii.

for (jj = 0; jj < NJ ; jj++)

c[ii][jj] += a[ii][kk] * b[kk][jj];

c[ii+1][jj] += a[ii+1][kk] * b[kk][jj];

9

=

;

⇒

for (i = 0; i < ni ; i++)

c1[i] += a1 * b1[i];

c2[i] += a2 * b1[i];

for (ii = 0; ii < NI ; ii+=4)

for (jj = 0; jj < NJ ; jj+=4)

partial unroll jj, fac-

tor 4; partial unroll ii,

factor 4

for (kk = 0; kk < NK ; kk++)

c[ii][jj] += a[ii][kk] * b[kk][jj];

c[ii][jj+1] += a[ii][kk] * b[kk][jj+1];

...

c[ii+3][jj+3] += a[ii+3][kk] * b[kk][jj+3];

9

>

>

>

=

>

>

>

;

⇒

for (i = 0; i < ni ; i++)

c1 += a1[i] * b1[i];

c2 += a1[i] * b2[i];

...

c16 += a4[i] * b4[i];

for (kk = 0; kk < NK ; kk++)

for (jj = 0; jj < NJ ; jj+=2)

interchange ii,kk;

partial unroll jj.

for (ii = 0; ii < NI ; ii++)

c[ii][jj] += a[ii][kk] * b[kk][jj];

c[ii][jj+1] += a[ii][kk] * b[kk][jj+1];

9

=

;

⇒

for (i = 0; i < ni ; i++)

c1[i] += a1[i] * b1;

c2[i] += a1[i] * b2;

Figure 6. Several transformed mini-mmm and their corresponding 1D kernel. The first is a kernel of

2 daxpys, the second is 16 dot products and the third is the same as the first (modulo commutativity

of the multiplication and renaming).

8, 9, 10. The remaining 3D kernel is the DGEMM itself.

The values k, l correspond to the unrolling factor of the sur-
rounding loops. For instance, daxpy k,l corresponds to

daxpys accumulating in k different vectors, l daxpys shar-
ing the same destination vector.

The method described here corresponds to a systematic

enumeration of all possible optimization sequences (at the

opposite of a selective search). A bound on the total num-

ber of kernels studied (which in fact correspond to the size

of the search space) can be easily assessed. For perfect loop

nests of depthn, for a given tile size, there are n!×Un possi-

ble kernels consisting exactly of p loops, taking into consid-
eration loop transformations. This is an upper bound since

in practice, some dependences can forbid the use of some

permutations. Moreover, the same kernels can be obtained

by different transformations. Therefore an upper bound on

the total number of kernels with at most p loops and explor-
ing t different tile size values is n!×Un×p× tp where n is
the depth of the initial loop nest and U the number of differ-
ent unroll factors explored. Using existing search methods

will be required when other transformations are considered.

When some variations are not handled (such as commu-

tativity, as expressed in Figure 6), there are more kernels

generated. The compilation step helps to detect these simi-

larities, as explained in the following section.

2.4. Kernel Micro-optimization and Execu-
tion

Once kernels have been generated, they are optimized,

compiled and evaluated separately, outside of the appli-

cation context (Step 4 of Algorithm 3). While standard

iterative compilation usually compiles and measures per-

formance of the whole code, our approach focuses on

smaller code fragments (the kernels) which are systemati-

cally benchmarked. This leads to substantial saving in com-

putational time: for example testing a whole matrix multi-

ply of size n will cost n3 operations while testing a simple

daxpy 10,1 of size n will cost 10 ∗ n operations. Moreover,
kernel optimizations and evaluations can be easily reused

from one code to the other, when the same kernels appear.

For the evaluation of kernels, two key parameters are ex-

plored:

• Loop bounds: they correspond to tile sizes. First, loop

bounds impact directly the working set, and therefore

forcing to use other levels of cache. Second, mech-

anisms such as prefetching may be influenced by the

actual value of the bound and loop overheads. Fi-

nally, pipelines with large MAKESPAN or large un-

rolling factors can take advantage of larger iteration

counts. The span of the loop bound sampling can be

user-defined through X-language pragmas.

• Array alignments: the code generated may be unstable

with respect to the alignment of the array starting ad-

dresses. Important performance gains can be obtained

by finding the best alignment[13]. Testing the differ-

ent possible alignments reveals performance stability.

If stability is an issue, it is then possible to copy part of

the arrays necessary for the tile with the specific align-

ments that enable the best performance.

The quality of the final code depends on the capacity of the

compiler to take advantage of the parallelism expressed in

the kernel. In particular, the generator has to perform the

following operations appropriately:



for(i = 0 ; i < ni ; i++)

c11 += a1[i] * b1[i];

...

c1l += a1[i] * bl[i];

c21 += a2[i] * b1[i];

...

ckl += ak[i] * bl[i];

Figure 7. 1D Kernel: dot product k,l

for(i = 0 ; i < ni ; i++){

c1[i] += a11 * b1[i];

...

c1[i] += a1l * bl[i];

c2[i] += a2l * b1[i];

...

ck[i] += akl * bl[i];

Figure 8. 1D Kernel: daxpy k,l
for (i = 0; i < ni ; i++)

for (j = 0; j < nj ; j++)

c1[j] += a1[j] * b[i][j];

...

ck[j] += ak[j] * b[i][j];

Figure 9. 2D Kernel: dgemv k

for (i = 0; i < ni ; i++)

for (j = 0; j < nj ; j++)

c[i][j] += a1[i] * b1[j];

...

c[i][j] += ak[i] * bk[j];

Figure 10. 2D Kernel: outer product k

• Dependence analysis: failure to detect independence

of statements degrades schedule latencies, ILP and im-

pacts many other optimizations.

• Register allocation. Depending upon the architecture,

this is more or less critical and failure to correctly al-

locate registers introduce dependencies, impacting la-

tencies. Source-to-source transformations can help the

compiler by using single assignment form codes.

• Vectorization: this can bememory access vectorization

(Itanium, Pentium for instance) or computation vector-

ization (Pentium with SSE instruction set). Some code

generators rely on pattern matching in order to decide

whether or not to perform vectorization. Enumerating

different versions of kernels helps in finding the appro-

priate code that can be matched by these rules.

• Constant propagation and use of static information: the

compiler can take advantage for instance of the loop

bounds values (which are explicitly provided) for the

computation of the prefetch distance. Failure to do this

means that the compiler optimizes in the same manner

loops of different sizes.

Exploration space and executions can be limited by static

evaluation and comparison of the assembly codes. Tools

such as MAQAO[7] potentially detect inefficient codes

from the assembly and compare different versions. Indeed,

the compiler sometimes generates the same assembly code

from two different source codes or may fail to perform some

key optimization (such as vectorization for instance).

2.5. Putting Kernels to Work

The final step consists of choosing the best kernel de-

composition from the available kernels. For each decompo-

sition, the tile code is written as a combination of memory

copies and kernel codes. All memory copies are hoisted and

then performance of the tile is evaluated as the product of

the individual performance of the kernels and the memory

operations by their surrounding loop trip count. All kernel

measurements are performed in the same context as they are

used in the application (same alignment, same cache level).

All tiles in T correspond to the best tiles, given some

constraints on tile sizes. In particular very thin tiles are

taken into account by our approach and may require spe-

cial kernels.

3. Experimental Results

First details on our implementation are presented fol-

lowed by a description of the different architectures, com-

piler and libraries used. Then, kernel performance is de-

scribed and analyzed. Finally kernel decomposition and

combination on whole code is presented together with per-

formance numbers.

3.1 Implementation of our approach

Kernel decomposition is implemented by a new pragma

inside X-language. Compared to the version presented in

[8], the version we have developed is based on a C99 front-

end parser, tiny C compiler [1] and relies on a Prolog engine

for source-to-source transformations. Most of the transfor-

mations, with their pragmas, are still the same. The main

contributions of the new X-language version is the possibil-

ity to:

• Generate multiple versions by defining search inter-
vals, such as

#pragma xlang parameter STRIDE [16:128:32]

#pragma xlang parameter UNROLL [1:8:1]

These directives define that STRIDE can take any

value multiple of 32 between 16 and 128. X-language
then generates automatically all versions of the code

fragment with these optimization parameters;

• Trigger the decomposition of a code fragment into ker-
nels:



#pragma xlang decompose i

This directive decomposes loop i into kernels, as ex-

plained in Section 2.2. This step corresponds to the

tiling into computation kernels. X-language generates

one file per kernel found.

Micro-optimization of these kernels still requires now an-

other compilation step using X-language. Generation of the

code testing array alignment stability is automatic. The au-

tomatic selection of the best tile according to the tile size is

not yet automatic. Further automation of the method pre-

sented in this paper is planned for future work.

3.2 Experimental Environment

Three different codes from dense Linear Algebra have

been targeted for validating our approach: Matrix Matrix

Multiply (DGEMM), Matrix Vector Multiply (DGEMV)

and 1D Convolution.

On the hardware side, two different architectures have

been used:

Itanium 2: BULLNovascale server featuring 1.6GHz Ita-

nium 2 processor, with 3 cache levels was used. Out of these

3 levels, only the 2nd level (256KB, unified) and the 3rd

level (9MB, unified) can contain floating point values. The

processor offers 128 floating point registers and can issue

up to 6 instructions per cycle.

Pentium 4: PC equipped with an Intel Pentium 4 Prescott

2.80GHz processor with two cache levels: L1 D cache (16

KB) and L2 (1MB, unified) was used. The processor can

issue up to 2 instructions per cycle and supports the SSE2

extensions. The SSE2 instructions allows to vectorize most

of the standard floating operations (up to 2 double precision

word can be packed in a single instruction). On this Pen-

tium version, the number of registers available for SSE2 is

limited to 8 making register allocation a sensitive issue.

Our kernels and codes were compiled using Intel ICC

Compiler v9.0 on both platforms. The code generated with

our approach was compared with the MKL library (version

8.02) and ATLAS library generator (version 3.6), the same

release number being used for both machines.

3.3 Kernel Performance Analysis

Due to lack of space, we will focus on the some key ker-

nels representative of kernel performance analysis. Since all

of our kernels correspond in fact to rectangular matrix muli-

ply operation, we also compared our kernels with MKL and

ATLAS.

Dotproduct-k, k A dotproduct-k, k kernel of length n has
a fairly small working set: 2 × k × n + k × k. If there
is enough register space, it offers also a very good mem-

ory/arithmetic ratio: 2 × k loads for k × k multiply add.

Increasing k will decrease the stress on load instruction
scheduling but at the same time will increase register pres-

sure up to the point where the register allocator will have

to insert expensive spill/fill instructions or to reload some

of the operands. Results for the Itanium are presented

in Figure 11. For all kernels (and vector length ranges),

the working set is small enough so all of the data is con-

tained the L2 cache. Increasing k improves performance
because kernels becomemore and more floating point dom-

inated. Dotproduct-4, 4 offers peak performance around 6.2
Gflops but this requires vector length of at least 200 (how-

ever using larger vector length does not generate perfor-

mance loss). However, for k = 8, the register pressure is
too high: the compiler start inserting spill/fill instructions

and furthermore, the loop body becoming too complex, the

compiler can no longer software pipeline the loop, explain-

ing the much lower performance level obtained by this ker-

nel. On the Pentium 4 (see Figure 12), the L1 size being

much smaller, increasing vector length will push some of

the operands out of L1. This explains the general trend on

all curves, performance quickly decreases for larger vector

lengths. Now, since there are only 8 SSE2 registers, starting

with k = 2 the compiler can no longer keep data in regis-
ters but instead reloads them. From this angle, increasing k
wil increase data reuse within L1 and therefore performance

improves with larger values of k. However, since many re-
aload instructions have to be issued (even if some can be

combined with arithmetic), the overall performance of all

dotproduct kernels (under 1.8 Gflops) is fairly disappoint-

ing.

Outerproduct-k An outerproduct-k kernel of length n
has a larger working set: 2 × k × n + n × n. The mem-
ory/arithmetic ratio is good: 2×n×k loads for n×n stores
and n × n multiply adds, but requires large temporary stor-
age (much larger than register space). However, it should

be noted that register pressure will increase quickly in func-

tion of k but also in function of n, therfore data will have
to reloaded (but fortunately most of the time from cache).

On Itanium 2 (see Figure 13), the increase in working set

requirement explains the drop off in performance around

n = 900. For n larger than 900, the operands can no longer
be kept in the L3 cache, some of them come from main

memory. A smaller drop off occurs between 100 and 200,
because here operands no longer contained in the L2 cache.

However, it should be noted that L3 organization is such that

very quickly (n = 400), performance levels are high again
although now a large fraction of the operation are coming

from L3. This explains why minimizing the number of L2

misses is not such an important issue. Increasing k im-
proves performance (not because of register reuse but due

to reuse in L2) and allows to reach performance levels close

to peak but slighly lower than the Dotproduct-k kernel. On
Pentium 4 (see Figure 14), the performance drop off ap-



pears much quicker: for n = 300, the working set exceeds
L2 cache size. Now increasing k, improves operand reuse in
L1 but since L1 is fairly small, already k = 8 exceeds L1 ca-
pacity level. However, it should be noted that outerproduct-

4 kernel on Pentium performs much better than all of the
dotproduct-k, k kernels.

3.4 Kernel Decomposition/Combination

After decomposing the different target codes in several

kernels, the combination step selects the best kernel (taking

into account block size constraints) and then uses it to build

the tile code. Furthermore, as said in Section 2.5, some

memory move operations (direct copies or transpose) can

be added to make sure that all array accesses during kernel

execution are well aligned and use strides as much as pos-

sible. The cost of these memory copy/transpose operations

is experimentally evaluated and is taken into account when

performing the combination phase.

DGEMM: As described in previous sections, DGEMM

can be decomposed in several ways leading to different

kinds of kernels: dot product, daxpy, dgemv or outerproduct

(see Figures 7, 8, 9 and 10).

For square matrices, the kernel performance analysis and

the combination phase analysis selected dotproduct 4,4 ker-

nel on the Itanium 2 and the daxpy-4,1 kernel on the Pen-

tium 4. The resulting performance on the whole square ma-

trix multiply is presented in Figure 16. It is interesting to

note that on the Pentium 4, performance obtained still lags

behind MKL. The main explanation is that we did not suc-

ceed in making the compiler make the best use of 8 SSE2

registers.

For rectangular matrices, our approach will use kernels

presented in the previous sections. Now, for some perfor-

mance numbers on rectangular matrices, refer back to Fig-

ures 11, 12, 13 and 14 since some of the kernels we used

are in fact matrix multiply. For example, Figure 11 gives the

performance results for matrix multplication of a flat matrix

k×N by a tall matrixN×k. Please note that such rectangu-
lar matrices cases can be used as building blocks/kernels in

our approach. It is why performance results were integrated

in the kernel section (Kernel decomposition).

DGEMV: Since DGEMV belongs to our kernel set, the

decomposition can be straightforward using directly its

equivalent in kernel, or can be more complex using 1D ker-

nels.

Table 1 shows the performance results of combining a

dotproduct-8,1 kernel for DGEMV code. This result is

compared with the use of a straight DGEMV naive code

and MKL one. As we can see kernel combination approach

lead to speed-up on this target code.

1D Convolution: This code presented in Figure 15 is

an example of how to reuse kernel micro-optimization for

N 100 200 2000 4000 6000

Naive DGEMV (GFlops) 4.92 3.59 1.23 1.23 1.18

DGEMVMKL (GFlops) 4.92 4 1.18 1.14 1.1

Composed DGEMV (GFlops) 5.71 4.38 4.38 1.83 1.92

Table 1. DGEMV and combination of dgemv

(with dotproduct 8,1 kernel) on Itanium2

other codes. Indeed, this code can be decomposed again,

after tiling, into daxpy and dotproduct kernels again.

for(i=0;i<N-n;i++)

for(j=0;j<2*n;j++)

a[i] += b[j] * c[i-j+n];

Figure 15. Code of 1D convolution.

On Itanium 2, daxpy 8 kernels were used while on Pen-

tium 4 daxpy-10 were used. This leads to a 66% (resp.
60%) performance improvement on Itanium 2 (resp. Pen-
tium 4) when compared with a use of the ICC compiler (see

Figure 17).

Figure 16. Matrix-matrix multiply on Itanium 2
(top) and Pentium 4 (bottom) after combina-

tion



Figure 17. Results of 1D convolution on Ita-

nium 2 (top) and Pentium 4 (bottom).

4. Related Works

Among related works, many works have been dedicated

to iteration exploration of optimization search:

ATLAS[20] explores tile sizes and performs some sim-

ple micro-optimization (software pipeline, scalar promo-

tion,. . . ), but it mainly relies on a single kernel. This ker-

nel was chosen according to its good ratio memory ac-

cesses/computations, not according to its performance on

the target architecture. It is however possible to introduce

new high performance kernels into ATLAS, since there is

an add-on mechanism that enables ATLAS to use exter-

nal, possibly hand-tuned assembly codes. Compared with

ATLAS, the approach described in the paper is not limited

to specific application and performs quite extensive search

for the micro-optimizations, having the opportunity to find

better kernels. The advantage of our approach is clearly

demonstrated by the performance results where our codes

outperform ATLAS. On the other hand, our method relies

on the programmer to find out the size of the cache or the

maximum size of the tiles.

For model-based ATLAS[23], the model targets essen-

tially cache behavior. Our approach focuses more on mini-

MMM optimization, and resorts to simple model based

tiling and then iterative search for finding tile sizes, guided

by the user. The use of more complex models (e.g. [11]) is

still possible.

Extensive search among optimizations[6] shows that it

is difficult to understand the links between optimization pa-

rameters, optimization sequence and performance. The ex-

ploration proposed by the authors is very time consuming

and yet does not include many optimizations. In compari-

son, our method resorts to a very small number of transfor-

mations and relies on existing compiler to perform adapted

optimizations.

The compiler optimization space exploration proposed

by [19] changes the heuristic guiding optimizations by a

search. This search is not exhaustive and is guided by a

cost function. The goal is mostly to improve the optimiza-

tion step of the compiler but does not seem to be aggressive

enough to apply to library optimization.

Chen et al.[3] describes an overall framework for opti-

mizing multiple loop nests, focusing mainly on memory hi-

erarchy behavior. Our approach is fairly different because

we first consider the key problem to solve is to achieve a

good balance between memory transfer optimization and

ILP optimization. Second, we perform a much more sys-

tematic search on all the possible variants, taking into ac-

count not only cache behavior but also ILP. Third, instead

of making the final adjustements for tile size (etc...) at the

whole application, we perform systematic experimentation

at the kernel level which is less costly, allowing exploration

of more kernels and provides more flexibility: different ker-

nels can be chosen to accomodate different input matrix

sizes.

Finally, [12] describes a methodology for hand-tuned op-

timization, applied to BLAS optimization. The authors pro-

pose a decomposition of micro kernel similar to ours, ac-

cording to different tile sizes. The main focus of this work

is improving memory behavior in particular changing the

data layout (making copies or transpositions of arrays) to

improve TLB hit ratio. The whole fine-tuning of micro ker-

nels is however performed by hand. In comparison, our ap-

proach is automatic, at the expense of a small performance

degradation, and is not specific to matrix matrix multiplica-

tion.

5. Conclusion/Future Directions

This paper proposed a new automated approach for gen-

erating highly optimized code addressing ILP issues as well

as data locality issues. This approach relies on state of the

art compiler and does not require any hand coding. This

approach has been successfully validated on Itanium and

Pentium 4 architectures for BLAS3 routines, outperform-

ing ATLAS and being very competitive with MKL highly

tuned routines.



Now, it is clear that we rely in a critical manner on a

”good” compiler to achieve high performance on our build-

ing blocks/kernels. As a matter of test, we used our ap-

proach replacing ICC with GCC. On the Itanium 2, the per-

formance results were much lower while on the Pentium the

performance gap was smaller. This clearly shows the neces-

sity of having a very good compiler for the kernels. How-

ever, since the kernels used in our approach are fairly sim-

ple, a specialized ”compiler” for such kernels can be devel-

oped. A good example of such a compiler is the XLG[22]

tool developed by CAPS Enterprise. This code generator

is fairly specialized in the sense that it only targets vec-

tor loops but for such loops, it is capable of applying very

aggressive optimization: for example, it evaluates the per-

formance and resource impact of several loop unrolling de-

grees and at the end generates several versions selecting the

best one in function of the vector length.

Beyond the backend/compiler issue, this work needs to

be extended into three major directions: first, pushing fur-

ther the automation of the whole process (this includes

pruning efficiently the optimization parameter space), sec-

ond performing experiments on a larger number of codes to

improve robustness of the method and third extending the

approcah to cover the multicore architecture case. This last

case will require delicate tradeoffs between locality, inter

and intra processor parallelism.

References

[1] Tiny C compiler. http://www.tinycc.org.

[2] D. Barthou, A. Cohen, and J.-F. Collard. Maximal static

expansion. In Symposium on Principles of Programming

Languages, pages 98–106, 1998.

[3] C. Chen, J. Chame, and M. W. Hall. Combining models and

guided empirical search to optimize for multiple levels of

the memory hierarchy. In CGO ’05, pages 111–122, 2005.

[4] P. Clauss. Counting solutions to linear and nonlinear con-

straints through Ehrhart polynomials: Applications to ana-

lyze and transform scientific programs. In ICS ’96, pages

278–295, 1996.

[5] S. Coleman and K. S. McKinley. Tile size selection using

cache organization and data layout. In PLDI ’95, pages 279–

290, 1995.

[6] K. D. Cooper and T. Waterman. Investigating Adaptive

Compilation using the MIPSPro Compiler. In Proc. of the

Symp. of the Los Alamos Computer Science Institute, Octo-

ber 2003.

[7] L. Djoudi, D. Barthou, P. Carribault, C. Lemuet, J.-T. Ac-

quaviva, and W. Jalby. Exploring application performance:

a new tool for a static/dynamic approach. In Proceedings of

the 6th LACSI Symposium, Santa Fe, NM, Oct. 2005.

[8] S. Donadio, J. Brodman, K.Yotov, T. Roeder, D. Barthou,

A. Cohen, M. Garzaran, D. Padua, and K. Pingali. A lan-

guage for the Compact Representation of Multiple Program

Versions. In LCPC ’05, Hawthorne, New York, Oct. 2005.

[9] Engineering and scientific subroutine library. Guide and

Reference. IBM.

[10] P. Feautrier. Dataflow analysis of scalar and array refer-

ences. Int. J. of Parallel Programming, 20(1):23–53, Feb.

1991.

[11] B. B. Fraguela, R. Doallo, and E. L. Zapata. Automatic

analytical modeling for the estimation of cache misses. In

PACT ’99, page 221, 1999.

[12] K. Goto and R. van de Geijn. On reducing tlb misses in

matrix multiplication. Technical report, The University of

Texas at Austin, Department of Computer Sciences, 2002.

[13] W. Jalby, C. Lemuet, and X. L. Pasteur. Wbtk: a new set of

microbenchmarks to explore memory system performance

for scientific computing. Int. J. High Perform. Comput.

Appl., 18(2):211–224, 2004.

[14] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-

level blocking. In PLDI ’97, pages 346–357, 1997.

[15] I. Kodukula and K. Pingali. Transformations for imperfectly

nested loops. In Supercomputing ’96, page 12, 1996.

[16] V. Lefebvre and P. Feautrier. Automatic storage manage-

ment for parallel programs. Parallel Computing, 24(3–

4):649–671, 1998.

[17] Intel math kernel library (intel mkl). Intel.

[18] W. Thies, F. Vivien, J. Sheldon, and S. P. Amarasinghe. A

unified framework for schedule and storage optimization. In

PLDI ’01, pages 232–242, 2001.

[19] S. Triantafyllis, M. Vachharajani, and D. I. August. Com-

piler Optimization-Space Exploration. The Journal of

Instruction-level Parallelism (JILP), 2005.

[20] R. Whaley and J. Dongarra. Automatically tuned linear al-

gebra software, 1997.

[21] M. Wolfe. Iteration space tiling for memory hierarchies. In

Proceedings of the Third SIAM Conference on Parallel Pro-

cessing for Scientific Computing, pages 357–361, 1989.

[22] Caps entreprise. http://www.caps-entreprise.com.

[23] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali,

and P. Stodghill. Is search really necessary to generate high-

performance blas, 2005.



Figure 11. Performance of dotproduct-k, k kernel on Itanium 2 with k = 1, 2, 4, 8.

Figure 12. Performance of dotproduct-k, k kernel on Pentium 4 with k = 1, 2, 4, 8.



Figure 13. Performance of outerproduct-k kernel on Itanium2 with k = 1, 2, 4, 8.

Figure 14. Performance of outerproduct-k kernel on Pentium4 with k = 1, 2, 4, 8.


