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Abstract. Application performance is heavily dependent on the com-
piler optimizations. Modern compilers rely largely on the information
made available to them at the time of compilation. In this regard, spe-
cializing the code according to input values is an effective way to com-
municate necessary information to the compiler.

However, the static specialization suffers from possible code explosion
and dynamic specialization requires runtime compilation activities that
may degrade the overall performance of the application.

This article proposes an automated approach for specializing code that
is able to address both the problems of code size increase and the over-
head of runtime activities. We first obtain optimized code through spe-
cialization performed at static compile time and then generate a template
that can work for a large set of values through runtime specialization.

Our experiments show significant improvement for different SPEC
benchmarks on Itanium-II(IA-64) and Pentium-IV processors using icc
and gcc compilers.

1 Introduction

The classical static compilation chain is yet unable to reach the peak performance
proposed by modern architectures like Itanium. The main reason comes from the
fact that an increasing part of the performance is driven by dynamic information
which is only available during execution of the application. To obtain better code
quality, a modern compiler first takes into account input data sets, and then
optimizes code according to this information.

Static specialization of integer parameters provides to the compiler the op-
portunity to optimize code accordingly, but it comes at the expense of large
code size. A wide range of optimizations can take advantage of this kind of val-
ues: branch prediction, accurate prefetch distances (short loops do not have the
same prefetch distance as loops with large iteration count), constant propaga-
tion, dead-code elimination, and complex optimizations including loop unrolling
and software pipelining etc. can then be performed by the compiler.

The dynamic behavior of the applications and unavailability of information
at static compile time impact the (static) compilation sequence and result in
specialization of code to be performed at runtime. The code is specialized and
optimized during execution of the program. It is mostly achieved by dynamic
code generation systems [1,2,3,4,5] and offline partial evaluators [6,7]. These
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void smvp (int nodes, params..) {
for (i = 0; i < nodes; i++) {
Anext = Aindex[i];
Alast = Aindex[i + 1];
sum0 = A[Anext][0][0]*v[i][0] + A[Anext][0][1]*v[i][1] +
A[Anext][0][2]*v[i][2];
sum1 = A[Anext][1][0]*v[i][0] + A[Anext][1][1]*v[i][1] +
A[Anext][1][2]*v[i][2];
sum2 = A[Anext][2][0]*v[i][0] + A[Anext][2][1]*v[i][1] +
A[Anext][2][2]*v[i][2];
Anext++;
...

}//end for
}//end function

Fig. 1. 183.equake benchmark

systems perform runtime activities including analysis and/or computations for
code generation and optimizations. All these activities incur a large overhead
which may require hundreds of calls to be amortized.

For the hybrid specialization approach proposed in this paper, we do not
require such time-consuming activities. The runtime specialization is performed
for a limited number of instructions in a generic binary template. This template
is generated during static compilation and is highly optimized since we expose
some of the unknown values in the source code to the compiler. This step is
similar to static specialization. The template is then adapted to new values
during execution thereby avoiding code explosion as in other existing specializers.
This step is similar to dynamic specialization with a very small runtime overhead.
We have applied our method to different benchmarks from SPEC CPU2000 [8]
suite.

The remainder of the paper is organized as follows. Section 2 describes the
main principle on which hybrid specialization is based. Section 3 provides the
required context that is essential to apply this technique and Section 4 elaborates
the main steps included in the algorithm. The implementation details describing
the input and output of each phase are provided in Section 5. Sections 6 and 7
present respectively the experimental results including the overhead incurred. A
comparison with other technologies has been given in Section 8 before concluding
in Section 9.

2 Principle of Hybrid Specialization

Consider the code in Figure 1 of the most time-consuming function smvp from
183.equake benchmark. Code specialization is oriented towards improving the
performance by simplification of computations (through constant propagation,
dead code elimination), or by triggering other complex optimizations such as
software pipelining. It however may result in code explosion if performed at
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static compile time. Although the runtime optimizations may take advantage of
known input, the cost of these optimizations makes them inappropriate to be
performed at runtime.

If the parameter nodes is specialized with constants from 1 to 8192, we ob-
tain different versions of code. We categorize them into different classes where
each class differs from others in terms of optimizations but contains versions
which are similar in optimizations. The versions in a class must differ only by
some immediate constants. These differences occur due to different values of a
specialized parameter.

Fig. 2. Classes obtained for 183.equake benchmark

Analyzing object code generated through Intel compiler icc V9, we find only 31
classes of code. Figure 2 shows the classes obtained after specialization together
with the number of versions in each class. Any version in the class can serve as a
template which can be instantiated at runtime for many values. Such behavior of
compilers is similar for other benchmarks as well, even for different architectures.

The principle of the optimization we propose relies on the fact that while
versioning functions for different parameter values, the compiler does not gen-
erate completely different codes. For some parameter value range, these codes
have the same instructions and only differ by some constants. The value range
to consider can be defined by several approaches: profiling, user-input, or static
analysis. The idea is to build a binary template, which if instantiated with the
parameter values, is equivalent to the versioned code. If the template can be
computed at compile time, the instantiation can be performed at run-time with
little overhead. We therefore have the best of versioning and dynamic special-
ization, i.e., we take advantage of complex static compiler optimizations and
yet obtain the performance of versioned code without paying the cost of code
expansion.

The hybrid specialization approach is depicted in Figure 3. The first step
consists of versioning a function for appropriate parameters. From these versions,
a template is extracted if this is possible. The template generation also includes
the generation of a dynamic specializer together with specialized data for the
template. The final hybrid code therefore comprises template versions, dynamic
specializer and the original compiled code (as a fallback).
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Fig. 3. Overview of Hybrid Specialization

3 Template Creation and Efficient Runtime Specialization

We define the notion of template as an abstraction of binary code with some
slots (locations in the binary code) corresponding to parameters specialized.
These slots can be filled with the constant values instantiating the template.
Let TX1...Xn denote a binary template with slots X1, . . . , Xn. The instanti-
ation of this template with the constant integer values v1, . . . , vn is written
TX1...Xn [X1/v1, . . . , Xn/vn], and corresponds to a binary code where all slots
in the template have been filled with values. The complexity of instantiation of
a template is O(n) which is very low as compared to full code generation and
optimizations performed at runtime.

3.1 Equivalence of Specialized Binaries

Now consider the code of a function F to be optimized, we assume without
loss of generality that F takes only one integer parameter X . This function is
compiled into a binary function C(F )(X), where C denotes the optimization
sequence and code generation performed by the compiler. By versioning F with
a value v, the compiler generates a binary Bv = C(Fv), performing better than
C(F )(v). We define an equivalence between specialized binaries:

Definition 1. Given two specialized binaries Bv and Bv′ , Bv is equivalent to
Bv′ if there exists a template TX1...Xn and functions f1 . . . fn such that

TX1...Xn [X1/f1(v), . . . , Xn/fn(v)] = Bv, TX1...Xn [X1/f1(v′), . . . , Xn/fn(v′)] = Bv′ .
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In other words, the two specialized binaries are equivalent if they are instanti-
ations of the same template with the same function applied to their specialized
value. Let R denote this equivalence.

This is indeed an equivalence: reflexivity and symmetry are obvious, and for the
transitivity: Assume BvRBv′ and Bv′RBv′′ , for v �= v′′, this means that there
exist two templates TX1...Xn and TY1...Ym , and two sets of functions f1 . . . fn and
g1 . . . gm such that:

TX1...Xn [X1/f1(v), . . . , Xn/fn(v)] = Bv

TX1...Xn [X1/f1(v′), . . . , Xn/fn(v′)] = Bv′

TY1...Ym [Y1/g1(v′), . . . , Xm/gm(v′)] = Bv′

TY1...Ym [Y1/g1(v′′), . . . , Xm/gm(v′′)] = Bv′′

Assume, without loss of generality, that the first p slots Y1, . . . , Yp correspond
to the slots X1, . . . , Xp. For these slots, we deduce from the preceding equations
that fi(v′) = gi(v′), for all i ∈ [1..p]. We define m−p+1 new functions on v′ and
v′′ by fi−p−1+n(v′) = gi(v′), fi−p−1+n(v′′) = gi(v′′) for i ∈ [p + 1..m]. Finally,
we define these functions for v as the value in the binary Bv taken in the slot Yi,
i ∈ [p + 1..m]. To conclude, we have defined a new template TX1...XnYm−p−1...Ym

such that the instantiation of this template with the functions fi in v, v′ and v′′

gives the binaries Bv, Bv′ and Bv′′ . These three binaries are equivalent, and R
is an equivalence relation.

Computing the minimum number of templates necessary to account for all
specialized binaries Bv when v ∈ [lb, ub] boils down to computing the equivalence
classes {Bv, v ∈ [lb, ub]}/R incrementally. Given below is the relation between
specialized binaries and templates:

Interval of values Specialized binaries Binary templates
[lb, ub] −→ {Bv, v ∈ [lb, ub]} ⇀↽ {Bv, v ∈ [lb, ub]}/R

As shown in the motivating example, there are many more specialized binaries
than binary templates. Given the range of values to specialize for, compilation of
the specialized binaries from the original code is achieved by a static compiler.
Computation of the templates is likewise at static compile time. Instantiation of
the templates then corresponds to the efficient dynamic specialization, performed
at run-time.

3.2 Minimizing Overhead of Template Specialization

The overhead of template specialization is reduced through the generation of
template at static compile time together with generation of specialized data
requiring no calculation at runtime.

To compute the specialized data for instantiation of templates, we proceed
after having found the classes. For each class computed from specialized binaries,
let vt = v1 be first value for the class whose version will act as a template.

For values v2, v3, . . . , vn, occurring in the same equivalence class (producing
n versions in the class),
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– Initialize a linear data list with immediate values which exist in version
specialized with vt and do not exist in version specialized with v2.

– Insert into the data list the values that differ (at corresponding locations)
in the version specialized with vt and those in versions specialized with
v2, v3, . . . , vn.

– Generate the formula corresponding to the starting index of the element for
the class in the data list.

By using this specialized data, it is easier to instantiate the template without
calculating the runtime values.

4 Optimization Algorithm

We describe in this section the main steps that are required to perform hybrid
specialization, incorporating both static and dynamic specializations. After ob-
taining intervals of values of the parameters, the following steps are performed.

1. Code specialization and analysis of object code;
Different specialized versions of the function may be generated where its
integer parameters are replaced by constant values. The specialized object
code is analyzed to obtain a template that can be used for a large range of
values. This search is performed within profiled values to meet the conditions
described in Section 3. The equivalent specialized code versions differ in
immediate constants being used as operands in object code. The instructions
which differ in these versions will be termed as candidate instructions.

2. Generating statically specialized data list;
The runtime specialization overhead is minimum if necessary data required
for specialization of binary code has already been computed at static com-
pile time. This specialized data (to be inserted into binary instructions) can
be obtained for values in the interval corresponding to each candidate in-
struction as given in Section 3.2. The specialized data approach not only
transfers the complexity of runtime computations to static compile time but
also reduces the overhead of possible code size increase.

3. Generation of runtime specializer and template;
For the classes containing more than one value, a runtime specializer is gen-
erated. The runtime specializer contains the code to search for the proper
template and subsequently modify binary instructions of that template. In-
formation regarding locations of each candidate instruction can be easily
gathered from object code. The template in hybrid specialization therefore
comprises all the candidate instructions to be modified during execution.
The modification of instructions can then be accomplished by self-modifying
code.

This approach ensures that the cost of runtime code generation/modification
is far less than that in existing specializers and code generators. The opti-
mizations on the template have already been performed at static compile
time due to specialization of code.
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5 Implementation Framework and Experimentation

The hybrid specialization approach (depicted in Figure 3) has been automated
for function parameters of integral data types in HySpec[5] framework. It takes
input configuration file containing the functions, parameters, the intervals and
compilation parameters. The intervals can be specified based on application-
knowledge, otherwise code is first instrumented at routine level with HySpec to
obtain the value profile [9] for integral parameters of the functions.

In addition to instrumentation for value profiling, HySpec performs different
steps to generate hybridly specialized code which are given below.

5.1 Code Specialization and Object Code Analysis

Within interval values, code is specialized by exposing the values of function
parameters. The code is parsed1 to generate another specialized version. This
is followed by an analysis of object code to search for classes of code, so that
within a class the versions differ only in immediate constants. For example, for

Table 1. Object code generated over Itanium-II and Pentium-IV

Value IA-64 P-IV
nodes=19 cmp.ge.unc p6,p0=19,r54 cmpl $19, %eax
nodes=17 cmp.ge.unc p6,p0=17,r54 cmpl $17, %eax

183.equake, the object code generated by icc compiler, when specialized with
the value nodes=17 and the one generated for nodes=19 differs only in some
constants as shown in Table 1. These instructions correspond to the value of
specialized parameter.

5.2 Generation of Specialized Data and Runtime Specializer

Automatic generation of specialized data and the runtime specializer renders
hybrid specialization to be a declarative approach. For an interval, all the values
corresponding to each instruction differing in equivalent versions are used to
generate a linear array of specialized data. This array represents the actual
values with which the binary code is specialized during execution. The offset of
data from where the values start for an instance of a template, are also computed
at static compile time.

The template can be specialized by modifying instructions at runtime. This
is accomplished by the runtime specializer which is able to efficiently insert
values at specified locations. These locations are also calculated during analysis
of object code. As shown in Figure 4 (on the right), each invocation of Instruction
Specializer puts statically specialized data into template slots. This is followed
by activities for cache coherence (required for IA-64).

1 Only the C language is supported.



An Effective Automated Approach to Specialization of Code 315

The Instruction Specializer is implemented as a set of macros which may have
different functionality for different processors due to different instruction set ar-
chitecture. For Itanium-II, the offset contains the bundle number and instruction
number within that bundle, whereas for Pentium-IV, it contains exact offset of
the instruction to be modified.

5.3 Final Wrapper Code

Figure 4 (on the left) shows the pseudo-code for the wrapper. It first searches
for the template for which the new (runtime) value is valid. The branches in the
wrapper are used to redirect control to the proper version. For each template, the
current implementation supports dynamic specialization with a software cache
of single version. We intend to implement the software cache with multiple clones
to mitigate the problem of parameters with repeated patterns.

static long old Param[]={...}; Offset = Location of candidate inst.
void WrapperFunction (Parameters) Data = Pointer to specialized data

Let TN = FoundTemplate BA = Function’s Base Address
if TN>0 then void BinaryTemplateSpecializer{

if Param <> old Param[TN] InstSpec(BA+offset 0, Data[0])
Branch to Specializer[TN] InstSpec(BA+offset 1, Data[1])
Update old Param InstSpec(BA+offset 2, Data[2])

end if InstSpec(BA+offset 3, Data[3])
Branch to Template[TN] .........

else .........
Branch to Standard code .........

End Function }

Fig. 4. Wrapper code (left) and invocation of Instruction Specializer(right)

6 Experimental Results

The specialization approach has been applied to hot functions in SPEC CPU2000
benchmarks with reference inputs. The experiments have been performed over
platforms with the configurations given in Table 2. This section describes the
results of these benchmarks together with optimizations performed by compilers
due to specialization.

Figure 5 shows the speedup percentage obtained w.r.t standard (original)
code. For these benchmarks, the speedup largely depends upon the use of pa-
rameters in the code. The hot code of these benchmarks does not always include

Table 2. Configuration of the Architectures Used

Processor Speed Compilers & optimization level
Intel Itanium-II (IA64) 1.5 GHz gcc v 4.3, icc v 9.1 with -O3

Intel Pentium-4 (R) 3.20 GHz gcc v 4.3 , icc v 8.0 with -O3



316 M.A. Khan, H.-P. Charles, and D. Barthou

(a) Speedup percentage with icc compiler

(b) Speedup percentage with gcc compiler

Fig. 5. Performance Results of SPEC CPU2000 Benchmarks

integer parameters, and in some cases, the candidate parameters were unable to
impact overall execution to a large factor.

For benchmark mesa, the compilers were able to perform inlining and partial
evaluation. However, these optimizations did not put any significant impact on
execution time. In art benchmark, the main optimizations were data prefetch-
ing and unrolling which resulted in good performance on IA-64 architecture.
However, the compilers did not make any big difference w.r.t standard code on
Pentium-IV architecture.

For equake, the large values of specializing parameters resulted in code almost
similar to that of un-specialized version with small difference in code scheduling.
Similarly, the gzip benchmark benefits from loop optimizations and code inlining
on Pentium-IV, however on Itanium-II, the compilers generated code with similar
unroll factor for both the standard and specialized versions.

In the ammp, vpr, mcf, parser and gap benchmarks, a large part of hot func-
tions does not make use of integer parameters and the large frequency of variance
in runtime values reduces the performance gain after hybrid specialization.

In case of the bzip2 benchmark, the gcc compiler performed partial evalua-
tion and the loop-based optimizations which did not exist in un-specialized code.
With the icc compiler, the loop-based optimizations were similar in both the spe-
cialized and un-specialized code with small difference due to partial evaluation.

The twolf benchmark benefits mainly from data cache prefetching, reduced
number of loads and better code scheduling on IA-64 with icc compiler, whereas
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Table 3. Summarized analysis for SPEC benchmarks

BenchmarkNumber
of static
versions
reqd.

Percentage of
re-instantiations

Number of
Templates

Percentage of code
size increase (w.r.t.
un-specialized
benchmark)

IA-64 P-IV IA-64 P-IV IA-64 P-IV
icc gcc icc gcc icc gcc icc gcc icc gcc icc gcc

177.mesa 9 8% 8% 36% 8 % 9 9 2 9 10% 1% 1% 1%
179.art 5 1% 1% 1% 1% 4 5 5 4 9% 8% 9% 1 %
183.equake 1 0% 0% 0% 0% 1 1 1 1 8% 7% 1% 7%
188.ammp 1 0% 0% 0% 0% 1 1 1 1 1% 2% 1% 3%
164.gzip 15 43% 86% 43% 86% 2 1 2 1 1% 2% 1% 3%
175.vpr 8444 1% 1% 1% 1% 3 3 11 4 1% 1% 1% 1%
181.mcf 10 1% 1% 1% 1% 3 1 3 1 19 % 38 % 19% 1%
197.parser 40 21% 42% 21% 42% 2 1 2 1 4% 1% 4% 1%
254.gap 53 8% 16% 8% 63% 8 4 8 1 34% 10% 1% 5%
256.bzip2 5 21% 42% 21% 21% 2 1 2 2 2% 1% 1% 5 %
300.twolf 2 49% 49% 49% 49% 1 1 1 1 1% 1% 1% 1%

(a) icc compiler

(b) gcc compiler

Fig. 6. Speedup to Size Increase Ratio(SSIR) for SPEC Benchmarks. SSIR=1 means
that the speedup obtained is equal to the code size expansion.

for the remaining platform configurations, the compilers were limited to per-
forming inlining and partial evaluation.

Table 3 shows (in column 1) the number of versions that were required for
static specialization together with percentage of re-instantiations of the same
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(a) icc compiler

(b) gcc compiler

Fig. 7. Slot to Template Size Percentage (STSP) for SPEC Benchmarks

template (in column 2). The large percentage of re-instantiations for the gzip,
parser and twolf benchmarks represents repeated pattern of values. This factor
can only be minimized through software cache of templates which is part of
future work.

Columns 3 and 4 show respectively the number of templates and the percent-
age of code size increase w.r.t. un-specialized code. The compilers show variant
behaviour in terms of code size after code specialization mainly due to different
optimizations. This is why, sometimes code with a large number of specialized
versions/templates may result in less size than with a small number of specialized
versions.

The speedup to size increase ratio (SSIR) computed as Speedup
( Size of code after specialization

Size of unspecialized code )
for SPEC benchmarks has been given in Figure 6. The SSIR metric is a measure of
efficiency for our specialization approach (similar to the one used for parallelism).
The SSIR is not large over both the processors even with benchmarks having
large speedup, e.g., art. This is due to the fact that for benchmarks with the
large speedup, standard (un-specialized) code size of entire application is small,
and addition of hybrid code with specialized versions, template and specializer
code thereby reduces the SSIR factor.

The Figure 7 shows the largest slot to template size percentage (STSP) for each
benchmark. It is calculated as:

(
No. of slots reqd. for dynamic specialization

Total no. of instructions in template

)
∗ 100 .

For benchmarks mesa, equake, ammp, where the number of static versions required
is equal to the number of templates, it becomes zero. However, it is less than 6%
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(a) icc compiler

(b) gcc compiler

Fig. 8. Code Size Reduction Percentage(CSRP) for SPEC Benchmarks w.r.t equivalent
static specialization. 50% would mean that the number of templates is half the number
of static versions required to cover the same specialized values.

for all benchmarks which shows that our specialization method incurs the small-
est possible overhead at runtime.

The effectiveness of hybrid specialization also lies in code size reduction w.r.t
static specialized code for the same input intervals. In this regard, the metric
Code Size Reduction Percentage calculated as,(
1 − Number of Templates found

Number of Static Versions Required

)
∗ 100 , has been given in Figure 8. For the

benchmarks mesa, art, equake and ammp, the CSRP is very small since the
number of templates is very close to the number of versions required for static
specialization. For other benchmarks, this factor becomes large since a single
template is used to serve a very large number of values.

7 Specialization Overhead

A summarized view of overhead with respect to application execution time is
shown in Figure 9. The reduced overhead results in good performance for SPEC
benchmarks. It is due to the fact that the templates and the values to be inserted
at runtime are entirely generated at static compile time. The modification of a
single instruction takes an average2 of 9 cycles on Itanium-II and 2 cycles on
Pentium-IV. This overhead of generation of instructions is far less than that in
existing dynamic compilation/specialization systems e.g. Tempo [6] or Tick C [1],
2 The binary instruction formats require extraction of different numbers of bit-sets.
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(a) icc compiler

(b) gcc compiler

Fig. 9. Overhead of Specialization w.r.t Execution Time

where it takes 100 cycles with the VCODE interface (with no optimizations) and
300 to 800 cycles using the ICODE interface (with optimizations) to generate a
single instruction.

Moreover, the time taken to generate templates at static compilation depends
upon the size of intervals. For benchmark with the largest interval size, i.e.
vpr, it takes 5 hours for gcc on IA-64, otherwise it takes 3 hours for all other
configurations.

8 Related Work

The C-Mix [10] partial evaluator works only at static compile time. It analyzes
the code and makes use of specialized constructs to perform partial evaluation.
Although it does not require runtime activities, it is limited to optimizing code
for which the values already exist. The scope therefore becomes limited since
a large part of application execution is based on values only available during
execution.

The Tempo [6] specializer can perform specialization at both static compile
time and runtime. At static compile time, Tempo performs partial evaluation
that is only applicable when the values are static (i.e. already known). In con-
trast, hybrid specialization makes the unknown values available and uses a tem-
plate that is already specialized at static compile time. Therefore, the template
is more optimized in our case than the one generated through the Tempo spe-
cializer. Similarly, another template-based approach of specialization has been
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given in [4,5]. They suggest the use of affine functions to perform runtime code
specialization. The scope of templates therefore becomes very limited since the
number of constraints for generating templates is very large. Moreover, the run-
time computations required for specialization of templates reduce the impact of
optimizations.

The Tick C(‘C )[1] compiler makes use of the lcc retargetable intermediate
representation to generate dynamic code. It provides ICODE and VCODE in-
terfaces to select the trade-off between performance and runtime optimization
overhead. A large speedup is obtained after optimizations during execution of
code. However, its code generation activity incurs overhead that requires more
than 100 calls to amortize. In case of the hybrid specialization approach, we
minimize the runtime overhead through generation of optimized templates and
specialized data at static compile time. Similarly, most of the dynamic code gen-
eration and optimization systems like Tick C [1], DCG [11] or others suggested in
[2,12,7] are different in that these can not be used to produce generic templates
thus requiring large number of dynamic template versions for each different spe-
cializing value. The runtime activities other than optimizations, such as code
buffer allocation and copy, incur a large amount of overhead thereby making
them suitable for code to be called multiple times.

In runtime optimization systems, Dynamo [13] and ADORE [14] perform op-
timizations and achieve good speedup, but these systems do not provide the
solution to control code size increase caused by dynamic versions.

9 Conclusion and Future Work

This article presents a hybrid specialization approach which makes use of static
specialization to generate templates that can be specialized at runtime to adapt
them to different runtime values. For many complex SPEC benchmarks, we are able
to achieve good speedup with minimum increase in code size. Most of the heavy-
weight activities are performed at static compile time including the optimizations
performed by compilers. The code is specialized statically and object code is ana-
lyzed to search for templates followed by generation of a runtime specializer. The
specializer can perform runtime activities at the minimum possible cost.

A generalization mechanism makes the template valid for a large number of
values. This new concept of template serves two purposes: to control the code
size with minimum runtime activities and benefit from optimizations through
specialization performed at static compile time.

The current implementation framework of hybrid specialization is being em-
bedded into XLanguage [15] compiler with additional support of software cache
containing more clones of same templates.
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