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Abstract

Ubiquitous multicore architectures require that many levels of parallelism have to be found in codes. Dependence
analysis is the main approach in compilers for the detection of parallelism. It enables vectorisation and automatic
parallelisation, among many other optimising transformations, and is therefore of crucial importance for optimising
compilers.

This paper presents new open source software, FADAlib, performing an instance-wise dataflow analysis for
scalar and array references. The software is a C++ implementation of the Fuzzy Array Dataflow Analysis (FADA)
method. This method can be applied on codes with irregular control such as while-loops, if-then-else or
non-regular array accesses, and computes exact instance-wise dataflow analysis on regular codes. As far as we know,
FADAlib is the first released open source C++ implementation of instance-wise data flow dependence handling
larger classes of programs. In addition, the library is technically independent from an existing compiler; It can be
plugged in many of them; this article shows an example of a successful integration inside gcc/GRAPHITE. We give
details concerning the library implementation and then report some initial results with gcc and possible use for trace
scheduling on irregular codes.

1 Introduction
Modern compilers perform many transformations on programs in order to enhance efficiency and parallelism, through
instruction level parallelism, SIMDization or thread level parallelism. Among the analyses involved in such program
restructuring, dependence analysis plays a particular role. Dependences represent a partial execution order between
execution instances of statements. Any code transformations that is consistent with this order is legal, meaning that
it preserves the semantics of the program. Precise descriptions of program dependences allow more optimizations to
be applied and more parallelism to be detected and expressed. Generally, the computation of exact dependences are
out of reach of an automatic analyser, since it can easily be shown that proving dependence between two statements
could help, in theory, solving the 10th Hilbert problem. So analyses are conservative just by assuming two execution
statements are in dependence when it cannot prove they are independent. There is a large amount of literature about
dependence analysis, and many transformations can be easily described in frameworks where dependences are repre-
sented by cones or polyhedra (see [1, 2, 3] for instance).

Polyhedra dependence representation enables the description of instance-wise reaching definitions, or array dataflow
analysis. Dependences are described precisely and exactly between any two execution instances of statements. All
these polyhedra methods focus on regular codes, using scalar and arrays with linear indices in the loop counters, and
polyhedral loop domains. These program fragments are defined as static control programs, SCoPs. All legal sched-
ules [4] or all legal composition of elementary loop transformations [5, 6] can be described using this formalism,
and implementation of these techniques will appear soon in production compilers (see gcc/GRAPHITE for instance
[7]). Unfortunately, SCoPs do not capture all programs and computations. Essentially, programs with data dependent
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control-flow or data dependent data accesses (such as indirections) are out of reach of these methods. More complex
static analysis methods [8, 9] tackle a larger class of programs, extending the previous ones and providing only a con-
servative approximation of general programs. The FADA approach, implemented in FADAlib goes beyond SCoPs,
since it can analyse larger classes of programs, as we study below.

This paper presents FADAlib, an open source library of the Fuzzy Array Dataflow Analysis (FADA) [10, 8].
FADA is an instance-wise dataflow analysis for irregular programs with scalar and array references. It gives a full sup-
port for programs with array indexes that are non-affine in the loop counters, non-affine loop bounds, if and while
controls with non-affine conditions. FADA only handles programs with scalars and arrays, and pointers are not in its
scope. It has the unique feature of being able to take advantage of any relations between program variables to enhance
the preciseness of the dependences. If needed, FADAlib also comes with a C parser that handles special pragmas,
so that the user can provide application knowledge to the compiler that is integrated into the dependence analysis.
This improves parallelism detection and may enable further optimizations. The library has been integrated inside a
gcc/GRAPHITE branch, demonstrating that we are able to analyse non static control programs. As application to
the library, we show some examples of irregular parallelism detection (which is not possible with classical automatic
parallelisation techniques), as well as an application to trace scheduling. FADAlib is an open source library that
is independent from a compiler and is able to analyse non regular codes (beyond SCoPs model). Furthermore, it is
implemented in C++, which ease the engineering integration inside many compilers implemented in C and C++.

To our knowledge, very few methods and tools are able to handle non-affine constraints for instance-wise depen-
dence analysis. Most of them, simply introduce some approximation and remove non-affine constraints (PIPS [11]
and PETIT [9]). HA [12, 13] postpones their resolution at run time. The fractal analysis technique [14] applies a recur-
rent computation of symbolic values for non-affine terms, hopefully transforming them into manageable constraints.
FADAlib is the only tool proposing to improve statically the accuracy of the analysis through user-defined assertions or
computed invariants. Moreover, the introduction of the new parameters is reversible and the non-affine constraints can
be retrieved. This is especially important for code generation and we illustrate such use for a trace scheduling approach.

Section 2 starts by illustrating some examples to fix the idea. Section 3 presents a brief recall to FADA. Section 4
describes the features of the implementation FADAlib. Section 5 describes the integration of FADAlib as well as
some applications and performance numbers. Then, we conclude with some perspectives.

2 Motivating Examples
With the generalisation of multi-core processors, parallelism must be detected on irregular applications that do not
meet the static control model used for super-computing. For instance, Fig. 1(a) illustrates the case of a code that
cannot be analysed by conventional exact array dependence analysis (like ADA [1]). This is because the function calls
inside the for-loop as well as the non-affine condition of the if-then-else construct. This is a typical code that
can be easily analysed by FADA to detect that the dashed block part behaves as an atomic macro instruction writing
inside the T variable. Consequently, we can detect at compile time that this code can be parallelised as a reduction of
the result variable. A second example is illustrated in Fig. 1(b). This example is taken among the many codelets
of FFTW [15]. In statement S2, the array index of A is a non-affine variable io computed at each iteration of the
for-loop. Since we are not able to statically guarantee that io 6= 0, there may be a dependence between any execution
of S2 to a following execution of S1. This prevents loop optimisations such as unroll and jam (for enhancing instruc-
tion level parallelism), software pipelining, or vectorisation. The FADA toolkit is able to consider a simple pragma
language providing static assertions helping the analysis. As highlighted in Fig. 1(b), the pragma asserts that io > 0,
consequently the FADA toolkit eliminates the possible flow dependence from S2 to S1.

A last example motivating FADA is the extraction of static control code from an irregular program. Let us consider
the example of the left part in Fig. 1(c). The outermost for-loop cannot be considered by ADA and conventional
automatic parallelisation cannot be applied on it because it contains a non-affine if-then-else. However, the
innermost for-loop is a static control part of the code. If we apply automatic parallelisation on the innermost loop
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   item=fct();
   if(cond[item]<0)

}

for(i=10;i<n;i++){
         io=fct(i);
         ... =A[0] //S1

         A[io] = ... //S2

for(i=0;i<N;i++){

(b) Example of Pragmas Helping FADA(a) Example of Non Static Control Code

(c) Extracting Static Control Parts

for (i=0;i<N;i++){

  if (p != 0){
        if( cond[i] ==true) 
             R = R + p;
        else 
             R = R − p;
  }
  for (j=0;j<m;j++)

}

for (i=0;i<N;i++){
  p = tab[i];
  if (p != 0){
     if( cond[i] ==true) 
         R = R + p;
     else 
         R = R − p;
  } 
}

for (i=0;i<N;i++){

}

  p = tab[i];

         #pragma fada  0 < io

     T[j] = T[j] + X[i]; //S4

    for (j=0;j<m;j++)
        T[j]=T[j]+X[i]; //S4

return(result);
}
   result=result+T;

      T=f1(item);
   else
      T=f2(i);

Figure 1: Motivating Examples for FADA

only, maybe the amount of detected parallelism would not be sufficient to make full usage the underlying parallel
machine. Thanks to FADA, we can analyse at compile time that the innermost for-loop is independent from the
non-affine if-then-else. Consequently, we are able to extract the regular loop nest illustrated in the right part of
Fig. 1(c). Automatic parallelisation methods are more efficient on a regular loop nest in general.

3 Fuzzy Data Dependence Analysis
This section is a brief description of Fuzzy Array Dataflow Analysis (FADA) [10, 8]. FADA is an extension of the
array dataflow analysis proposed by Feautrier [1], also called instance-wise array dependence analysis. This dataflow
analysis identifies each instance of statement by its iteration vector, i.e. the vector of surrounding loop counter values.
The dataflow analysis defines for each instance of statement reading a value, the precise instance of write statement
defining it. In the case of static control programs (SCoPs) considered by Feautrier’s analysis, the set of iteration vec-
tor values associated to a statement defines a parametric polyhedron. Computing the latest write for a given read is
then equivalent to compute the maximum among a set of iteration vectors of write statements, i.e. the maximum of a
union of parametric polyhedra. FADA extends this analysis to any program, where iteration vectors no longer define
polyhedra.

For instance, the example that follows shows a code with some data dependent control. Statement S1 is executed
for iteration vectors in the set {(i, j)|0 ≤ i < M, 0 ≤ j < N, f(xS0,i) > 0}. This set is called the iteration domain of
S0. This set is not a polyhedron when f is not an affine function in x and i, or when x is not an induction variable. The
notation xS0,i represents the value of x taken at the execution of S0 for the ith outer-loop iteration (when it exists).

for (i=0; i<M; i++)
if (f(x) > 0)

for (j=0; j<N; j++)
..
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S0 A[g(i)] += ..
..

S1 .. = A[0]

The latest write of S0 that defines the value read by instance (i, j) of S1 has the iteration vector:

(αfg, N) = max
�
{(i, j)|0 ≤ i < M, 0 ≤ j < N, f(xS0,i) > 0, g(i) = 0}

The value of this lexicographic maximum cannot be computed statically in general (depending on f and g). Here,
αfg represents the value that is not known at compile time. α can be considered as a new parameter, checking all
constraints of the iteration domain and depending on f and g. This new parameter is the trick used in FADA in
order to handle non-affine constraints in the polyhedral model. An approximation consists in neglecting the non-affine
constraints on αfg: therefore assuming the following dependence:{

0 ≤ αfg < M : (S0, αfg, N)→ S1

otherwise: ⊥

for any value αfg between 0 and M . If the input parameter αfg is not in this interval, there is no dependence.

If the user is able to assert that i < 10 ∨ f(xS0,i) ≤ 0, then the approximation can be improved: Indeed, using
some logical resolution technique, it can be automatically inferred that αfg < 10 since f(xS0,αfg

) > 0. This inference
method requires simple manipulation between clauses and unification of constraints. The result is more accurate and
we say that its fuzziness has been reduced. Other mechanisms for improving the result have been proposed in [10].
Logical resolution is the only one implemented in FADAlib, and user asserts are given through pragmas.

4 Inside the FADAlib Software
FADAlib is an implementation of the FADA approach. While the algorithm is known from a long time, this is the
first implementation as an independent C++ library. It can be integrated in a real world compilers such as gcc. This
section details the internal structure and algorithms used in FADAlib. Full documentation of the API is available
on-line [16].

4.1 Overall Structure
FADAlib requires the following input information:

Guarded references: This is the list of read and write statements, with their iteration domain. Array dataflow anal-
ysis is performed for each read reference. If precision is needed (this is not always necessary), the user can
define additional constraints through a special pragma before each statement. These constraints (invariants or
application specific constraints) are attached to references of the same single statement.

Global information: This is the list of symbolic constants, some additional constraints provided by the user through
global pragmas and the sequencing predicate. Symbolic constants also called parameters, are read-only scalars.
The sequencing predicate is the function that corresponds to the partial order between statements.

FADAlib (Fig. 2) applies an iterative algorithm in order to compute the last write of each single read reference.
For each single read reference, FADAlib computes a list of candidate write instances. Then it builds constraints
relative to each candidate instance, which will be used to update in an incremental manner the last write of the read
reference. The process terminates either the last write is computed exactly or when all possible writes are processed.
This implementation improves the speed of FADAlib since the computation is terminated as soon as the last write is
reached. At this stage, FADAlib uses PIPlib [17] in order compute some maximal points of the polyhedra. Any other
parametric solver such as Omega [3] or the recent PPL solver[18] can be easily integrated in FADAlib.

Fig. 2 explains how FADAlib proceeds to compute sources. After building the constraints, a simple test checks
whether some of them are non-affine. According to the test, the logical resolution method, reducing fuzziness is
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Figure 2: FADAcore Functional Blocks

activated to handle non-affine constraints: From non-affine constraints and global information, some additional affine
constraints are built by automatic deduction if possible. The polyhedron defined by all these affine constraints (original
ones and the deducted ones) will define the set of all possible writes that produce the value of the read reference.

We can distinguish two kind of global information used by the logical resolution mechanism (Fig. 2 ): control
flow and dataflow properties. The control flow properties are a trivial knowledge about the nature of irregular controls
(for if-then-else and loop constructs). Such properties can be automatically generated from the analysis of
the constructs. Dataflow properties, coming from the application context or from the semantics of the application, are
not automatically found by FADAlib, the user has to define them through pragmas. FADAlib has a demonstration
engine that infers affine constraints deducted from non-affine constraints by applying logical resolution. These new
constraints are then used to improve the accuracy of the dependence description. The following sections provide more
detailed information on the structure of FADAlib.

4.2 FADAlib Input
FADA supports only scalar and array references. It assumes that memory locations can be distinguished using array
names and index functions. Access shapes based on pointer indirection and aliasing between array cells are not sup-
ported by the FADA approach. It is so for the current version of FADAlib.

FADAlib proposes three levels of input: The library integrates a partial C parser, offering the user the possibility
to put through pragmas additional applicative constraints. This corresponds to the highest level. The second level
consists in defining an Abstract Syntax Tree of the program to be analysed. This AST is built automatically by the
parser. Finally, the third, lowest level, consists in giving to FADAlib the guarded references and global information.
This input is automatically built when starting from the AST. The second and third levels do not depend on the input
language and can be used within any parser.

The simple C parser proposed within FADAlib parses a subset of C language:
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• Indirection with &, * and -> operators are not allowed.

• For-loops are defined by one single loop counter (as a scalar), upper and lower bounds, and a stride of 1. More
complicated shapes of C-for loops are not handled. Our syntax rule is :

for( <ID> = <Expression>; <ID> {<,<=} <Expression>; <ID>++)

• Only #pragma fada pragmas are supported. The expected format is:

#pragma fada <Inequation>

For the AST level, the AST is defined as N-ary trees. Internal nodes hold controls structures (for, while, if,
if-else constructs), when leaves represent assignments. Only scalar and array references are allowed (no pointers),
function calls can be performed within controls and assignments.

4.3 Reducing Fuzziness Engine
The reduction of the fuzziness in Fig. 2 is a demonstrator that infers new affine constraints out of constraints involving
non affine literals. The clauses considered are of the form:

∀v, a(v), c(f(v))⇒ a′(v)

where v is a vector of variables (iteration vectors and parameters), a(v) and a′(v) are conjunction of affine constraints,
f(v) affine multi-dimensional function and c(f(v)) a non-affine constraint. The logical resolution is performed this
way:

∀v1 : a1(v1), c(f(v1))⇒ a′1(v1) ∧ ∀v2 : a2(v2),¬c(g(v2))⇒ a′2(v2)

∀v1,∀v2 : a1(v1), a2(v2), f(v1) = g(v2)⇒ a′2(v2) ∨ a′1(v1)
The FADAlib demonstrator stores clauses within a stack. Unlike other logical demonstrators that proceed until

they reach a trivial value (true or false), FADAlib terminates as soon as affine clauses are generated. The general
demonstration steps are:

1. Let C be the clause in the header of the demonstration stack S. Pop C.

2. Attach C to all clauses in S.

3. Try unifying attached clauses. Apply the logical resolution on successfully unified clauses.

4. Recover all unified clauses U and detach stack clauses.

5. Push back U and C into into S.

6. If U includes affine clauses, terminate successfully the demonstration.

7. If there is no more possible resolution, the demonstration terminates with failure.

8. Go to step 1.

FADAlib puts this kind of properties with the dependence test constraints into the demonstrator. After a successful
inference, FADAcore gets the exact definition of the dependence or, as it needs to be conservative, an approximate
definition.

6



4.4 FADAlib Output
The output of our tool are definitions of all read references. They define the instance of a statement that writes the
value of a read reference. Within our implementation definitions are generated in three equivalent forms:

QUAST: This is a decision tree where leaves define all possible sources, and internal nodes hold affine conditions.
Only one leaf (so one source) is reachable if we give values to parameters (see Fig. 3.a).

Affine relation between write and read instances: Affine relations define the dependence as a relation between the
instance of a read statement and the possible instances of write statements that define its value. Constraints
between the read and write loop counter values correspond to a polyhedra. This representation is a flat form of
quasts, affine relations being conjunctions of conditions from the root of the equivalent quast to the considered
source. This format is very similar to the output of the Omega test [3](see Fig. 3.b).

Instance-wise dataflow graph: Definitions can be summarized in an instance-wise dataflow graph. Nodes are state-
ments and edges connect read statement to all possible sources of all read references by the concerned statement.
Edges are guarded by a condition of validity.

(a) Definition as a Quast. (b) Definition as Guarded Source List.

Figure 3: Different FADAlib output formats

Finally, dataflow results can be either pretty-printed in files or generated as browsable html pages. Dependences
are then checked on the original code just by selecting a read reference.

5 Integration and Experiments
FADAlib is implemented as an open source software, publicly available from [16] with their full documentation
and demo programs. This section reports the interface of FADAlib with gcc/GRAPHITE and experiments showing
applications of our tool.

5.1 Interfacing with gcc/GRAPHITE
FADAlib has been interfaced in gcc/GRAPHITE. Note that this is not an integration in the development branch of
gcc/GRAPHITE. So far, FADAlib remains an external development of gcc. This development has been possible
thanks to the TeraOps project [19].

gcc/GRAPHITE is a branch of gcc [7] for the polyhedral model. GRAPHITE analyses and transforms static con-
trol parts (SCoPs) of a program. For FADA, as we need to apply it on the whole program and not only on SCoPs,
only a few helper functions of GRAPHITE are used (for the construction of affine constraints mainly). FADAlib is
interfaced right before the detection of SCoPs and a glue code is necessary to transform GIMPLE representation into
a list of guarded references necessary for FADAlib.

The main challenges here for this integration are that the code is in tree-SSA, and the control flow of the pro-
gram can be of any kind, with natural loops but also with unstructured control. Due to the SSA representation of the
GIMPLE program, there are plenty of new variable names that do not correspond to any real variable, expressions
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are split into smaller expressions with temporary variables and φ-nodes already express a part, however inaccurate,
of dataflow graph. Applying dataflow analysis directly on GIMPLE requires to retrieve expressions with no SSA
temporary variables, and to traverse φ nodes in order to catch possible incoming dataflow. Besides, some data re-
structuring is achieved on structure and union fields (using GRAPHITE functions) in order to transform them in array
accesses. Memory accesses through pointers are restructured (using GRAPHITE) into array accesses whenever possi-
ble. Dataflow analysis of double pointers is not achieved by FADAlib and would require an alias analysis.

FADAlib requires that for each statement with read or write references, its iteration domain is built. This set
defines the iteration vector values taken for the different instances of the statement. gcc detects natural loops, so the
construction of the iteration vector for each statement is easy. However, construction of the iteration domain is more
complex: Indeed, since gcc handles any C program, the control flow graph can be anything that can be defined with
gotos and labels. The main algorithm we used to build the iteration domain for each statement boils down to a simple
walk-through the dominance graph, propagating constraints on iteration vector down the dominator tree. While this
method handles natural loops and structured control graph, it is inaccurate for some unstructured graphs. When such
case is detected, we build the iteration domains, walking through the dependence control graph.

5.2 OpenMP Parallelisation Example
We analysed, with FADAlib interfaced with gcc/GRAPHITE, all the benchmarks proposed in the TeraOps project
[19]. These benchmarks correspond to high performance embedded codes (radar, video analysis and video stream
compression). The codes under consideration by the industrial partners contain many large time consuming functions
that do not fit the static control program model. Consequently, there are fewer optimization opportunities. In addition,
for these applications, the compilation times are not considered as the first major criteria, and industrial partners accept
to pay for large compilation times to optimize irregular codes. The objective of FADAlib here is simply to analyse
and detect parallel loops, that can be parallelised with OpenMP. Private and shared variables can then be deducted
from the dataflow analysis.

The first result is that FADAlib is able to perform dataflow analysis on many large, unstructured C applications.
Two examples of interesting ones are two implementations of JPEG image compression and H264 video encoding. The
most time-consuming functions were analysed by our tool. The codes of theses functions are not precisely analysable
with existing data flow analysis tools, because of the shape of the control structures. We discuss below the results
obtained for them thanks to FADA.

Fig. 4.a shows a small part of the function t1_decode_cblks from a JPEG implementation. The function
has been processed by FADAlib in 0.3s. The processing results reveals that loops cblkno, j and i are parallel.
Variable thresh is private in the cblkno-loop, but shared in the i-j-loop. Variables val and mag are private
in the i-loop. Variables can be considered as private because their definitions are executed during the iteration (no
loop-carried dependences).

Function FastFullPelBlockMotionSearch (Fig. 4.b) is interesting because the loop-bound (max_pos) is not a
symbolic constant, so the pos-loop becomes irregular. Thanks to FADAlib demonstrator, this limitation is bypassed
and FADAlib reveals that variables cand_x,cand_y and mcost can be privatized to the pos-loop. Unfortunately,
FADAlib can not detect the parallelism of the loop because of the reduction on min_mcost and best_pos.
However, their sources can be used by more sophisticated techniques (based on dependence-scheme matching for
instance [20]) to detect parallelism with reductions. This function was processed in 0.3s.

These examples show the usage of FADAlib on some C codes. The analysis is able to perform on irregular codes
a precise dataflow analysis, finding loop parallelism.

5.3 Trace Scheduling Example
This section illustrates on a kernel example how the results of the dataflow analysis can be used for trace scheduling
optimization. The code presented in Figure 5.a combines the computation of a maximum and a computation involving
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for (cblkno = 0; cblkno < N; cblkno++)
if (tccproishift)
thresh = 1 >> tccproishift
for (j = 0; j < cblkh; j++)

for (i = 0; i < cblkw; i++)
val = datap[j][i]
mag = abs(val)
if (mag >= thresh)
mag =mag << tccproishift;
if (val < 0) datap[j][i]= -mag

(a) Part of the function t1 decode cblks from JPEG2000
code

maxpos = (2*searchrange+1)*(2*searchrange+1);
for (pos=0; pos<maxpos; pos++)

if (BlockSAD[list][ref][btype][bindex][pos] < mincost)
candx = shift((offsetx + spiralsearchx[pos]),2);
candy = shift((offsety + spiralsearchy[pos]),2);
mcost = BlockSAD[list][ref][btype][bindex][pos];
mcost += MVCOSTSMP (lambdafactor, candx, candy,

predmvx, predmvy);
if (mcost < minmcost)
mincost = mcost;
bestpos = pos;

GlobalMem[mvx] = offsetx + spiralsearchx[bestpos];
GlobalMem[mvy] = offsety + spiralsearchy[bestpos];
return(mincost);

(b) Part of the functionFastFullPelBlockMotionSearch
from H264 Application.

Figure 4: Two examples of code fragments successfully analysed by FADAlib.

the current value of the max. Dependence analysis shows that there is a loop-carried dependence on m, preventing
parallelisation and vectorization. Now, if there are very few local maxima in the array A, then the if is entered only
few times. Considering the most frequent execution path, looping around the assignment of B, there is no longer loop-
carried dependences. A trace scheduling approach consists in optimizing this path of execution, applying for instance
parallelisation or vectorization.

S0 m = 0
for (i = 0; i<N; i++)

S1 if (m<A[i]) m=A[i]
S2 B[i]+=m

(a) Initial C Source Code. The loop is sequential due to potential
loop-carried dependence on m.

m=0
for (i = 0; i < N-BS+1; i += BS)

c=1
for (ii = 0; ii < BS; ii++)
c &= (m >= A[i+ii])

if (c)
for (jj = 0; jj<BS; jj++) B[i+jj]+=m

else
for (kk = 0; kk<BS; kk++)

if (m<A[i+kk]) m=A[i+kk]
B[i+kk]+=m

(b) Code optimized for the execution path not entering the initial
if, for BS consecutive iterations. Loop ii evaluates condition on
BS iterations, loop jj is parallel/vectorizable and loop kk is the
fall-back case.

Figure 5: Example of trace scheduling optimization requiring the precise dataflow analysis provided by FADAlib

The dataflow analysis of the code in Fig. 5.a gives the following dependence, considering only variable m:{
0 ≤ i < N, 0 ≤ αi < i : (S1, αi)→ (S2, i)
otherwise: (S0)→ (S2, i)

where αi stands for the latest iteration count before i where the if defines a new value for m. A code transformation
transforms also this representation of dependence. We do not define formally here the transformation that leads from
code in Fig. 5.a to 5.b but show the main steps of it and prove that it could be achieved automatically thanks to FADA.

Strip mining loop i into a loop i and a new loop ii with BS iterations would lead to the dependence expression:
0 ≤ αi,ii < BS.i + ii : (S1, αi,ii) → (S2, i, ii). This is a simple renaming of i into BS.i + ii. Now, if we can split
the dependence into two cases: either the dependence is carried by ii, or it is not. This would lead to the following
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expression of dependence: 0 ≤ i ≤ N/BS, 0 ≤ ii < BS, 0 ≤ αi,ii < BS.i+ ii, αi,ii ≤ BS.i : (S1, αi,ii)→ (S2, BS.i+ ii)
0 ≤ i ≤ N/BS, 0 ≤ ii < BS, 0 ≤ αi,ii < BS.i+ ii, αi,ii > BS.i : (S1, αi,ii)→ (S2, BS.i+ ii)
otherwise: (S0)→ (S2, i)

This formulation is strictly equivalent to the previous one. Now, generating code for this dependences would lead to
the code presented in Fig. 5.b. Indeed, checking that ∀ii = 0..BS − 1, αi,ii ≤ BS.i corresponds to the loop ii, and
the predicate computed helps to define which case is activated.

To evaluate this code transformation, we compared the performance of the initial code to the performance of the
optimized code, varying the probability to enter the if statement. Using result of the dataflow analysis, the transfor-
mation into code Fig. 5.b is achieved by hand. Figures 6 show the speed ups obtained, when all arrays are in cache
or out of cache, on a 2.27GHz Intel E5520 with 8MB L3, using Intel icc compiler version 11.1. Array elements are
floats (similar results were obtained for double) and loops are compiler vectorized through a compiler pragma.

The figures show that when the probability of entering the if is 1 (the leftmost X-value), the most unfavourable
case for the optimized codes, the transformation entails a slowdown of around 20%. However, as soon as there is less
than one chance out of block-size iterations to enter the if, then there is some speed up. This speed up goes up
to 2.8 when in cache, 2.1 when out of cache. This speed up comes from the vectorized code, overcoming the overhead
due to the evaluation of the condition c.
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(a) Speed-ups when arrays are in L3 cache. (b) Speed-ups when arrays are out of L3 cache.

Figure 6: Speedups of the optimised, vectorised version compared to the original code, according to the probability of
entering the if construct (X scale is logarithmic). Different plots correspond to different block sizes.

For very large block sizes (such as 1024 as shown in the figure, and over), the loop jj can be parallelised using
OpenMP (and vectorized with compiler pragma). The maximum speedup obtained (in cache) is then around 30%.
This relative slowdown, compared to the vectorized-only version, is due to the overhead of threads (synchronization
and start) compared to the fine grain of the computation. Further experiments on more realistic and larger codes are
required.

6 Conclusion
FADAlib is a C++ library of instance-wise array dataflow analysis working for non regular codes, FADA [8]. The user
may use it as an external library for data dependence analysis. The input of FADAlib is either an AST or low level
information of references and domains. Moreover, a command line invocation parses a C-like program, computes
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array dataflow dependences and can print them on the console and/or in HTML pages. One of the unique features
proposed to the users is to directly add, through pragmas, constraints concerning variables of the program. These
constraints are used to remove spurious dependences. Moreover, since FADAlib handles a larger class of programs
than techniques based on SCoPs, it can help to identify code fragments that are almost SCoPs with the exception of
some inner loops. By computing the dependences that go in/out of these fragments and considering them as macro
statements, we are able to extend quite easily the techniques that apply only on scopes so far (code generation or
transformation frameworks such as [21, 6] for instance).

Currently, FADAlib is open source software, distributed under LGPL licence, intended for academic research
purposes. In some cases, the analysis computation time of our tools is expensive because of the complexity of data
flow analysis of irregular programs, and also because of the internal usage of PIP solver [22]. Our future work tends
to improve the PIP solver to consider FADA constrains, and we expect that the future generations of our software will
be more efficient.

The integration of FADAlib into an internal branch of GRAPHITE/gcc has been done, allowing us to analyse
non SCoP programs. We provided some concrete examples to demonstrate that the usage of FADA information helps
to detect irregular loop parallelism, and also to generate speculative codes with considerable speedups. In the future,
we will work on formal algorithms for irregular code transformations based on trace scheduling, typically devoted to
codes from bio-informatics and sparse matrix that exhibit similar patterns to the examples treated in this article.
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