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Quality of the code produced by compilers is essential to get high performance. Therefore, being able
to assess precisely code quality is extremely important. This issue can be successfully tackled by using
performance counters and dynamic profiling. In this paper, we advocate that in many interesting
cases, a careful static analysis of assembly code can achieve similar results at a much lower cost
and with a better accuracy. The principles of an automatic tool (MAQAO) for performing such an
analysis are presented. Among its key advantages, MAQAO offers versatility (the user can specify
a particular analysis using SQL formalism) and precise diagnosis capability which can be later
used for carefully driving the optimization process. Two case studies on real codes are presented
to illustrate the power of the tool: in each case, MAQAO helped us locate performance problems
easily and define an optimization strategy leading to substantial code improvements (20 to 30% on
the overall appliaction execution time).

1 Introduction

Quality of the code produced by the compiler is essential to get high performance. In the old CISC days,
quality could be simply assessed by counting the number of instructions. Nowadays, with the recent gener-
ation microprocessors, such simple metrics are no longer valid. First caches have introduced data locality
as a key metric for performance. Then, more other metrics have to be taken into account such as number
of branches, use of specific instructions (such as fused multiply add, predicated instructions, management
of memory hierarchy through prefetch etc). Additionally, some low level interactions such as bank conflicts
or load/store queue wrong aliasing require to analyze in detail memory address stream. In fact, on modern
microprocessors, taking into account all of the architectural features is critical to get high performance: for
example on Itanium systems, gcc which performs most of the standard (architectural neutral) optimizations
is very often outperformed by Intel C Compiler (icc) because icc is taking into account all of the features
offered by the Itanium 2 [19, 20]. However this performance gain comes at the expense of using complex
optimizations such as multiversioning: i.e. for the same code fragment, several versions are generated which
will be dynamically selected at run time depending on parameters such as loop iteration count. As a conse-
quence, first as usual complex optimizations generate code hard to analyze and additionally with potentially
unstable performance (for example due to bad choice for the strategy selecting the different versions).

On the other hand, performance analysis has made tremendous progress with the appearance of various
low level hardware capable of tracking various events. Such counters are extremely helpful to locate perfor-
mance bottlenecks: for example bad data locality automatically generates high cache miss ratio which can be
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easily captured by such counters. In a similar manner, branch prediction or code sparsity (average number
of nops per bundle) can be analyzed. In all of the cases just described, performance counters even allow to
correlate performance problems and source code line simplifying performance optimization 1. Unfortunately,
such ideal cases are not so common rule.

For example, missing an opportunity of using an fma instruction can be much trickier to detect if not
impossible. If the code is as simple as a DAXPY, using performance counters to evaluate the number of
fma will allow to detect that the compiler does not use fma. Now, if the loop is more complex, containing
several opportunities for using fma and that the compiler missed some of them, counting fma will not be
enough. In such a case, inspecting directly assembly code will be much simpler to reveal the problem. A
similar situation will occur with prefetch instructions: for a loop, the compiler can have inserted prefetch for
some array access and forgotten to insert prefetch for others 2. Again, a simple inspection of the assembly
code will be much more efficient to point out directly to the right source of the problem. Also all of the cases
where a compiler missed “classical” optimizations such as constant propagation, common subexpression can
be detected much more easily on the assembly listing than by hardware performance counters. A few more
examples are given in the “Case Study” section.

Now the real problem is “inspection/analysis” of assembly code: the first goal of our MAQAO tool is to
automate as much as much possible and in a flexible manner, assembly code analysis. A synoptic view of
MAQAO tool is given in figure 1.
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Figure 1: Overview of the assembly tool MAQAO.

The first step takes as input assembly files and parses them to produce a structured representation of the
assembly code: structured representation means building call flow graph, control flow graph, loop structures.
From that representation, SQL tables are built and organized in a database. Now on this database, queries
such as detecting fma use can be performed, mimicking the manual search through the assembly file. Having
structured the assembly code is not only usefull for queries but also for modifying it. A first application

1It should be noted that this correlation is very often achieved through sampling which in some cases can strongly bias the
results and alter their validity

2More subtle and harder is the case where the compiler did insert prefetch but the prefetch distance is too short !
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of this ability is insertion of performance probes (instrumentation) directly at the assembly level. Other
applications are direct modifications of the assembly code to improve code quality, perform optimizations.

Now, for assessing code quality, detecting bad code sequences is not enough, we need to build some
“reference”metric: i.e. we need some way of evaluating what an “optimal” compiler should have done. More
precisely, we compare performance metrics computed on the generated code with “optimal” bounds. For
that, we used a performance model introduced by E.S. Davidson (MACS) which provides simple performance
bounds which are usefull for quantifying the quality of the code produced.

Section 2 gives an overview of various performance tools which are tackling code analysis and optimization.
Section 3 describes the MAQAO static analysis phase, how the asssembly code is structured and how pattern
detection can be performed. Section 4 details how to compute “optimal” performance bounds and how to
compare them with the code produced by the compiler. Section 5 presents code instrumentation at the
assembly level. Section 6 illustrates how the diagnostics produced by MAQAO helped us optimize two real
life codes: a scientific code called TERA, and SHA-0 attack, a cryptographic application. Finally, Section 7
very briefly indicates how MAQAO can be used for interfacing and driving optimizations. Finally, conclusion
and openings are provided in section 8.

2 Related Works

Two main classes of Low Level instrumentation tools can be related to MAQAO. One calss is composed of
performance analysis tools aiming at understanding application behavior based on hardware counters. Fall
in this category tools such as VTune (self-contained program), or PAPI (user-dependent). The other family
of tools is more focused on code manipulation like Salto, or code instrumentation such as ATOM or Pin.
However MAQAO broad approach is more related to the path chosen by HPCview or to a lesser extend by
Finesse [9], this later one being more focused on parallelization than code optimization.

2.1 VTune

VTune [5] is the well known Intel promoted performance evaluation tool. Basically it provides classical
profiling information as well as a link to hardware event monitors, a view of the corresponding assembly and
high level code. Additionally, all the features are embedded within an elegant GUI. Nevertheless, among
its weakness, VTune relies on sampling, and despite complex heuristic to set the sampling rate, the tool
remains more convenient to detect hotspot than really evaluate the whole assembly quality. Furthermore,
while VTune is very good at profiling and hotspot detection it falls short on code instrumentation.

2.2 PAPI

The Performance Application Programing Interface [11] (PAPI) is an interesting initiative to abstract, through
the usage of a standardized API, the too often vendor specific hardware monitors. PAPI only selects a sub-
set of metrics as being meaningful which may be the right way to proceed in front of the numerous counter
available. Still, for tools writers who see abstraction as a burden, PAPI also supports a native mode, i.e. a
direct access to the proprietary hardware monitors.

An open question for MAQAO is to be compliant with PAPI or not: since the component architecture
of MAQAO introduces a relative independence between module, using PAPI seems to be the choice of con-
sistency. However, calls to PAPI needs to be done at the high level source code. And we already develop a
low overhead assembly instrumentation scheme which is very promising, we should stick with it as much as
possible.

In our sense PAPI should be kept as an inspirational source for the development of performance metrics,
or in case of migration from Itanium to a new platform.
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2.3 Salto

Salto [7] is a framework dedicated to the implementation of complex manipulations of low-level codes. One
of the developer’s main goal is to provide an object-based user interface to implement these transformations
directly on the abstract representation of assembly programs. Therefore, users can concentrate on the
implementation of actual optimizations and code instrumentation methods, without worrying about syntax
and lower level details handled directly by Salto.

The main difference with our approach: Salto is a toolkit not a tool, everything has to be explicitly
coded and it does not include any optimization knowledge like MAQAO tool (even if it allows to express it
via programming Salto applications). It does not provide database accesses and requests to gather statistics,
end user has to hard-coded every information he is interested in. More oriented toward code re-ordering
and transformation than observation and instrumentation, even if it clearly offers a super-set of our own
instrumentation routines (like catching the loop trip count), it lacks support for hardware monitor access
and the prototyping flexibility brought by SQL requests.

Basically Salto appears as a back-end of MAQAO diagnostic chain: the problem is identified and some
transformations has to be applied to solve it.

2.4 ATOM and Pin

Both tools offer similar features, the main difference being that Pin [10] is targeted for Intel processors
(x86, IA64, IA32-64 and even Xscale) codes. Additionally while ATOM [4] is focused on Alpha assembly
and that Pin allows to instrument not only assembly files but also binary files even already loaded in
memory (therefore supporting dynamic instrumentation). Basically the idea is to branch on user defined
instrumentation routines when specific instructions are executed. For instance, all branches within a code
will be preceded by a call to a routine which can be as simple as incremented an branch counter. At the
end of the execution the user will get the exact number of branches executed in the code. More ambitious
instrumentation can be executed, such as trapping all load/store of the code and simulated the effect of
larger or deeper cache hierarchy. Using ATOM or Pin such task can be easily tackled, user needs to write the
cache simulator and keep track of the cpu cycle.

ATOM has enjoyed a large success within the research community, leading to the development of execution
driven simulators. Such simulators are much more accurate than the previous generation of trace driven
tools [3]. Now, that the original platform is fading away, Pin is promised to a similar success within the
Itanium community.

However, while being very useful these tools are more oriented toward prospective architecture simulation
than code performance analysis, they lack the support of the now commonly available hardware performance
counters and are not suitable to evaluate code quality.

2.5 HPCview

HPCview [8] is currently the main competitor for MAQAO tools, firstly it is addressing the same problem:
the complex interaction between source code, assembly, performance and hardware monitors. Secondly its
development is much more advanced and they have already reach a production level.

Basically HPCview is providing a well designed GUI based on web browser, providing simultaneous view of
the source code, assembly code and dynamic information. This interface is connected to a database for each
statement of the assembly code, with the summary of the dynamic information related to it. Furthermore
based on control flow graph and a tool named bloop, HPCview provides an abstracted view of code loop
structures (using an XML interface).

However, some important difference should be underscored:

• heterogeneous application: XML, HTML, bloop, all of this leads to a complex software environment
to maintain.

• While a database is embedded in the application, end-user as only limited opportunity to explore the
code.
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• limited set of performance metrics: HPCview uses miss ratio, execution time and a very limited set of
metrics to help the developer to optimize its application

• lack of data analysis, loop trip count or other information collected dynamically can leads to powerful
yet simple to implement optimization, such thing is neglected by HPCview.

Therefore the existence of this tool can be interpreted as a confirmation of the relevance of our approach,
it is also a nice goal to meet for the quality of its GUI but still it is too much based on commodity available
information instead of building more meaningful metric about the ’why’ of the performance behavior.

3 Static Analysis

MAQAO parses any assembly code produced by icc and then performs several static analyses on the code. In
addition, this is an important feature of the tool, the user has the possibility to widen the range of analyses
and to do some fast prototyping of new analyses with a scripting module. From the parsing of the code
to the detection of the loops, all the results of static analyses are stored into a database associated to the
program analyzed. We detail in this section the main features of these phases.

3.1 Parsing Assembly

The instruction set reference of the Software Developer’s Manual [21] for Itanium describes in more than
230 pages the IA64 instructions. Hand-coding a parser for such an important amount of instructions is
error-prone and very time consuming. So instead of doing it by hand, we designed a script that parsed
automatically the manual in pdf form. This script generated the assembly code parser used by MAQAO .
Some simplifications have been performed on the code generated, additional rules for the assembly directives
have been incorporated and the lexical analyzer have been built then by hand. The overall cost of developing
the front-end of MAQAO has been light and it ensures that every IA64 instructions can be handled correctly.
Note that this process could be easily adapted to other architectures.

Instructions and assembly directives alike are stored in the database. The generation of the original code
from the data stored in the database is still possible. MAQAO has successfully parsed/analyzed codes of
more than 250,000 lines in a few seconds on a desktop machine, a Pentium4 1.8Ghz with 256MB.

The compiler provides through comment lines some values concerning the execution latencies (for each
instruction issue), the execution number of basic blocks (obtained after profiling) and gives the link between
assembly and source lines. Although the parser does not complain if they are missing, all these values are
also stored in the database for static or dynamic analyses.

3.2 Computing the Structure of the Assembly

We now describe the different analyses forming the foundations for more complex analyses. These analyses
restructure the assembly code in a hierarchical way, from functions to basic blocks and bundles. They provide
a convenient structure for the user to browse through the interface. This interface consists in one window
displaying the assembly and source codes, the call graph and control flow graph of a selected function, and
has a editor for scripts.

The hierarchy of structures is the following, from the topmost to the lowest level:

• Call graph: this structure slices the code into different functions and shows how they interact one with
the other. From a given function, the number of calls to a function is annotated on the edge going
from the caller to the callee. The graph is represented with GraphViz [6], a toolkit ensuring a layout
of the graph minimizing the intersection of edges, making it more manageable. Each node selection
triggers the display of the selected function control flow graph;

• Control Flow Graph: the control flow graph structures the basic blocks inside a function, showing the
possible control paths. This information is important for the detection of loops and provides a quick
assessment of the complexity of the function. Selecting a node highlights the block selected in the
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assembly code and positions the source code to the corresponding line. Likewise, selecting assembly or
source code selects the nodes corresponding to the basic blocks associated to these lines;

• Loops: the loops correspond to the basic blocks that are likely to be executed the most, hence are a
legitimate focus for analysis and optimization. They are stored in the database as list of blocks, with
one particular block for its entry. Moreover, the domination tree of each function is stored as well:
Each block in the database corresponds to an interval of integers. One interval of a block is strictly
included in another if and only if the first block is dominated by the latest. This representation encodes
the transitive closure of the dominance relation, that would be otherwise difficult to express in SQL;

• Bundles and Basic Blocks: they are given by the compiler and are expected to be well-formed. Basic
blocks are provided through comment lines but they could be computed instead if necessary.

An implementation of the reaching definition analysis is in progress; it will enable a dependence representation
of the program.

Moreover, from the interface of MAQAO and thanks to the debugging information provided by the
compiler, the user can navigate directly to and from assembly and source codes.

3.3 Scripting More Analyses

One of the key features of MAQAO is the possibility for the user to script new analyses with the SQL
language. This offers him a wider range of analyses when standard statistics are not enough. The knowledge
base of interesting analyses is built from the experience of different users. Scripting allows them to experiment
and tune new analyses with ease, and extends the tool to the advantage of other users. The script language
chosen is SQL, allowing the user a complete access to the structures of the code and to the results of previous
analyses. Once an analysis has been fast prototyped in SQL and tested, it can be encoded then in C for
better performance.

Scripted analyses provided with MAQAO can be inserted into menus with a simple configuration file.
The analyses included in MAQAO can be sorted into these categories:

• Gathering of simple statistics: number of nops, number of bundles with three-way branching or num-
ber of loops. This gathering can be performed on a part of the structure of the code (a particular
function or some blocks), which would not have been possible with a simple grep. Moreover, using the
optimistic cycle evaluation given by the compiler for each instruction in a basic block, it is possible to
compose them with profiling information in order to have an static optimistic performance evaluation
of important loops for instance (the number of executions of basic blocks is indicated in the assembly
through comment lines for profiled compilations);

• Histograms: histogram of basic blocks size in a function or histogram of the IPC in a function or block.
The histogram of IPC shows the number of non-nop instructions scheduled at the same issue. As the
compiler can give the number of times each block is executed (using profiling), this can help in showing
the lines of code where the IPC for instance should be improved;

• Code pattern detection: pattern detection is a valuable tool in order to detect deficient sequences or
code patterns. Simple examples include the detection of missing prefetches in loops, or missing fma. For
the computation of addresses, the pattern composed by setf/getf instructions indicates a conversion
to floats, usually to perform a multiplication. This poor pattern of address computation can be tracked
down in the structure of the code. It is also possible to express more intricate patterns, including more
than one instruction and with some interrelation with the underlying structure: spill/fill sequences
are sometimes generated by the compiler uselessly (no use of the variable between fill and spill, see
Section 6.2 for an example). The spill/fill pattern can be either generated explicitly (with ld.fill and
st.spill instructions) or implicitly (with a ld/st on the stack). Detecting a useless spill/fill pattern
can be expressed in SQL;

• Compiler optimization detection: MAQAO can find out some optimizations performed by the compiler.
For instance, it detects pipelined loops and the parameters of the pipeline. For unrolled loops, hints can
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select ’No of setf :’||count(*)

from blocks,instructions

where blocks.function=FUNCTION

and instructions.block=blocks.id

and instructions.name=’setf’;

a. Number of setf

select ’Size: ’||size||’ Number: ’||count(*)

from (select blocks.name,

count(*) as size

from blocks,instructions

where instructions.block=blocks.id

and blocks.function=FUNCTION

group by blocks.name order by size

) group by size;

b. Histogram of block size

Figure 2: Two examples of SQL requests.

be given by MAQAO concerning the unroll factor, based on the match between source and assembly
lines and the comparison of loads/stores in both codes. But due to the possible compiler optimization,
a reliable value of unroll factor is difficult to capture. The optimization report gives this information
and could be incorporated if needed.

Figure 2 shows two examples of scripts. Figure 2.a is used to detect the number of setf in the selected
function, usually showing a poor address computation, and Figure 2.b generates the histogram of block sizes.
In both scripts, FUNCTION is a predefined macro substituted by the id of the current function. Each line of
the table blocks has a column corresponding to the id of the including function, the same hierarchy applies
for instructions and blocks.

Scripting new analyses involves the use of the database associated to the code. We provide some details
concerning this database infrastructure: The instructions, bundles, blocks, directives, loops, functions and
graphs are stored in 13 tables. The size of the database seems to depend linearly on the size of the assembly
code: for codes ranging from a few KB to 6 MB, the factor of expansion remains between 4 and 5. The size
of the database, especially the size of the instruction table, has some influence on the way the queries must
be written in order to be efficient. Though, as an interpreter for the SQL scripts is embedded in MAQAO ,
a “test/fail” approach can avoid the performance issues that may arise.

To sum-up this section, MAQAO computes the structure of the assembly code and enables application
specific analyses and expert knowledge to be integrated inside the tool, with new scripts. Code pattern
detection can be combined with the hot spot detection or other dynamic analyses. As a result, it has a great
potential in revealing the possible flaws of the code generation.

4 Static/Dynamic Performance Evaluation

Performance evaluation techniques are critical for the design of processor architecture as well as software
development. Numerous researches are focused on the gap between theoretical and delivered performance
and on the key optimizations to apply.

To predict performance two approaches have been proposed: (i) Static approach, taking into account
factor evaluated statically within application (ii) Static/Dynamic approach, feeding the static analysis with
data gathered dynamically. Dynamic analysis allows to obtain value undecidable by a pure static scheme.

Davidson et al.[13], [14] has proposed a performance model, called MACS bounds, taking into account
both application and architecture specific parameters. Authors’s analysis on source and assembly codes
provides a series of performance bounds that explicitly identify the deliverable performance of the application
and the individual contributions of several factors to the performance degradation. In this section, we propose
an adaptation of this model for Itanium 2. In the model, cache effects, I/O latencies and interrupts are
ignored.
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4.1 The MACS Bound Model for Itanium 2

MACS bounds offer a model for peak performance in a hierarchical manner, each level designated by a name:
M for the peak performance of the machine independently of the application, MA for the performance of the
application, independently of the compiler, MAC for the assembly code independently of its schedule and
MACS for the real code.

We focus the performance study on three kinds of essential operations: memory operations, floating-point
operations and branches. These essential operations correspond to dedicated functional units in Itanium 2
and the aim of this performance is to assess the efficiency of the code w.r.t the maximal capacity of these
units. Integer operations are not counted since they can be handled by different types of functional units
(memory or integer). Performance is measured as cycles per floating-point (CPF) operations, cycles per
memory access (CPM) operations and cycles per branch (CPB) operation.

We assume that profiling provides the number of loop iterations in the code examined or that a single
iteration is analyzed.

4.1.1 MA and MAC Bounds

For the MA bounds, we count the minimum number of operations needed in the high level code, for each
essential operation type. Each floating-point multiply, add, divide, comparison, min/max operation counts
as one floating-point operation. Each loop, if, switch and break statement counts as one branch. And each
array access counts as one memory operation. The sum of these counts for an application defines resp. the
number of floating-point operations, denoted tf , the number of branch operations, denoted tb and the number
of memory operations, denoted tm. The Itanium 2 architecture constraints sequences of three operations
to fit into bundles (or two in one case). As only some combinations of operation types are authorized in
a bundle, we look for the number of authorized bundles that contain the tf floating-point operations, tm
memory operations and tb branch operations.

Finding the minimum of bundles fulfilling this condition corresponds to finding a solution to the following
system:

tf = xmfi + xmmf + xmfb

tm = xmii + 2xmmi + xmfi + 2xmmf + xmib + xmbb + 2xmmb + xmfb

tb = xmib + 2xmbb + xmmb + xmfb + 3xbbb,

where the integer positive variable xabc denotes the number of bundles of type abc used for the program, a, b
and c are among mfib. Finding the minimum value of:

cMA =

⌈
∑

authorized abc xabc

2

⌉

,

gives the minimum number of cycles necessary to execute the tf + tm + tb essential operations. Indeed, on
Itanium 2, at most two bundles can be executed per cycle.

The MA-performance bounds are then computed in CPF, CPB or CPM with: MABound(CPF ) =
cMA/tf , MABound(CPB) = cMA/tb and MABound(CPM) = cMA/tm.

For the MAC-performance bounds, the essential operations are counted this time on the assembly code:
nop instructions are not counted as essential operations; Counted floating point operations correspond to
arithmetic computations on floats (conversions are not counted), counted memory operations correspond to
load and stores (fetch or integer arithmetic operations in m slots are not counted) and counted branches
correspond to br. The same model as MA then applies similarly.

The types of two successive bundles are constrained so that they can be executed in one issue. A more
complex model taking into account this constraint consists in counting couples of successive bundles with
some variables. So for instance, instead of counting the bundles mmi with xmmi, we could count the number
of bundles mmi followed by mbb with a variable xmmi|mbb. According to the microarchitecture manual, 58
variables are then necessary.
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4.1.2 MACS Bound

At this level, the performance model takes into account the schedule of the assembly code. icc gener-
ates through comments the issue slot for each instruction. Therefore, cMACS is directly taken from these
annotations in MAQAO and tf , tb and tm are computed in the same manner as for the MAC Bound.
Finally, MACSBound(CPF ) = cMACS/tf , MACSBound(CPB) = cMACS/tb, MACSBound(CPM) =
cMACS/tm.

4.2 Gaps Between Bounds

The MACS Bounds hierarchy gives some indications on the origin of performance degradations by examining
the gap between two successive hierarchy levels. We now detail the explanation for each kind of gap. Note
that performance is expected to decrease from M, MA, MAC, MACS down to the measured performance
according to the previous model.

The gap between M and MA bounds (GAP A) shows the dominant essential operations in the application:
the narrower the gap for one kind of operations, the more important this kind of operation appears in the
performances of the application.

The gap between MA and MAC (GAP C) shows the quality of the code generation and the optimizations
performed by the compiler (apart from the scheduling). In some cases, the number of essential operations
may vary between MA and MAC levels: predicating if statements or loop unrolling lowers the number of
branch operations. Likewise, scalar promoting arrays lowers the number of memory accesses and the use of
double load operations can drastically decrease this number. These factors may improve the performance of
MAC w.r.t. MA.

The gap between MAC and MACS (GAP S) provides some hints about the quality of the schedule. It
also reflects dependence constraints that are not taken into account on the MAC level and shows the impact
of operations that are not considered as essentials (prefetches, address computations,...).

Finally, the gap between MACS and the measured performance (GAP P) shows the effects of all the
interferences that have not been put into the model (memory hierarchy, I/O latencies, memory bank laten-
cies,. . . ). This also corresponds to what have not been taken into account by the model integrated in the
compiler, as we are relying on its performance model for the MACS level.

4.3 Example: DAXPY

We study the case of a DAXPY code from BLAS1, performing the computation Y = α.X +Y on the vectors
X and Y . The loop have been unrolled 16 times with some compiler specific options.

Figure 3 presents the bounds for the MACS hierarchy. tf , tb and tm represent the number of essential
operations in one iteration of the code. There are 16 fma in MAC since the loop is unrolled. The c row
indicates the number of cycles necessary to execute the essential operations, with the constraints on bundles.
For MA, a solution minimizing the number of issues is to consider two bundles: mmf and mfb, thus taking one
cycle per iteration. For MAC, one of the solution is a pattern of 16 bundles mmf and one mib for instance,
thus taking 9 cycles. The code generated by the compiler takes 12 cycles/iteration.

The performance is indicated by the row CPF, CPB and CPM. Only these values are given for the M level
and for the measured performance, since others are code-dependent. GAP A shows that the preponderant
operations are first floating point operations and then memory operations. GAP C highlights the fact that
the compiler outperforms the CPM for the MA model: it uses double loads instead of simple ones. For CPF,
the degradation comes from the increase of issues/iterations and CPB gap results from the unrolling.

GAP S for this simple example outlines the importance (for CPF and CPM) of the non essential opera-
tions: there remains in the code some explicit additions for the computation of addresses, there are 3 nops
and 3 fetches. The measured cycle performance has been obtained through the dynamic analysis of MAQAO
(see next section for details) on a DAXPY with 100000 elements. The value of 13.5 cycles is the mean value
of several executions. The gap between MACS and the measured performances results from cache misses.
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M MA MAC MACS measured
tf n/a 2 16 16 n/a
tb n/a 1 1 1 n/a
tm n/a 3 32 32 n/a
c n/a 1 9 12 13.5

CPF 0.5 0.5 0.56 0.75 0.84
CPB 0.33 1 9 12 13.5
CPM 0.25 0.33 0.28 0.37 0.42

Figure 3: MACS Bounds for DAXPY

The MACS bounds model provides an additional measure for the application. The sizes of the gaps
provide very useful information to help the user identify the bottlenecks. The gaps between the different
bounds give insights about the possible performance loss resulting from the code generation, code scheduling
or cache misses. In future work, this model could be extended to take into account the effect of cache misses.

5 Dynamic Analysis

Profilers like gprof or tcov are the main tools used by performance conscious developers. Furthermore with
the always increasing exhaustiveness of hardware counters on all modern processors, illustrated by PAPI [11],
dynamic data collectors such as VTune [5], cprof have proved to be highly useful to understand the behavior
of an application and identify bottlenecks. Therefore, as a platform for code analysis and optimization it
was required for MAQAO to provide at least equivalent services.

But MAQAO goes beyond mimicking other tools: additionally to support hardware counters, and exe-
cution time profiling, it is also performing value profiling to monitor key parameters such as loop trip count,
functions arguments, array offset and other performance sensitive data.

At the end of the execution the user has access to these dynamic values, as a summary but also in detail,
individual values, distribution of trip counts for a particular loop, or standard deviation of execution time
for a given function. This extra information leads to a better understanding of the application and highlights
potential optimization tracks as illustrated in section 6.1.

5.1 Instrumentation level

Usually code instrumentation is done at the high level, performance probes being inserted within the source
code. But this method introduces a subtle yet dramatic observation bias. By adding function calls within
the source code it is changing the way the compiler applies its optimizations. As a result once instrumented,
an application can behave in a largely different way: for instance, with degraded loop unrolling, branch
optimization or inlining policy.

Instrumenting at the high level is simply not the right place to do it. Therefore MAQAO addresses the
problem at the low level: assembly code.

5.2 Instrumentation Framework

While the static analysis part of MAQAO is standalone, for dynamic instrumentation we need to access
all assembly sources and libraries used to build a binary of the application. We think this is a very light
constraint since even a disassembled binary can be re-built without the compiler just using an assembler
(ias for instance). Currently we do not handle cross-compilation (or deported compilation/execution ) and
everything as to be done either directly on the target system or implies some files copying from the user.

10



Object file header.o

01001100110....

Object file header.o

01001100110....

Instrumented binary

main

instrumentation_epilog

instrumentation_prolog

__real__main

C source header.c

wrap_main(argc,argv)

{

}

instrumentation_epilog();

__real_main(argc, argv);

instrumentation_prolog();

gcc −c or icc −c

01001100110....

Original application object  file

ld −wrap main

main −> __real_main

wrap_main −> main

Figure 4: Overview of the wrapper: main from the original code is substituted with header main which
performs memory allocation for statistics gathering and call a function to build the summary of these
collected data.

The implementation relies on standard tools for standard operations, which is similar to the scheme
followed by HPCview [8]. Hence all the hardware counter management is basically done through perfmon
[12], while more specific tasks are handled natively by the tool itself.

The instrumentation is done first by encapsulating the main of the application (depicted in Figure 4),
then injecting a limited number of extra-bundles, named assembly nodes, around the targeted code fragments
to monitor. These bundles are in charge of storing in memory some specific registers.

Part of the problem is to guarantee that registers stack is unchanged after instrumentation. Either some
registers are available or spill/fill action is required to reconstitute identical register stack. In a similar way,
any added function call is surrounded by special registers save/restore code.

Our instrumentation allows to track specific values: loop count, clock, or even a general register, with a
very limited overhead. These results are stored in buffers all along the application execution time. In case of
buffer overflow 3 a special C function is called. This function builds up summaries and computes statistics
before reseting the buffer.

5.3 Profiling supports

Traditional profiling is done through MAQAO interface if the source code is available by compiling the
application with the classic profiling flags executing the corresponding binary.

If the source code is not available, to be consistent with our assembly focused approach, our tool supports
an ’all functions’ instrumentation which injects few bundles of assembly code to get and store the value of
the clock register (ITC) at the entrance and exit of every functions. This allows to re-construct a complete
profile of the application. However it does not evaluate the amount of time spent in library functions.

Through the Call Graph displayed in the GUI, user can select for instrumentation a limited number of
functions to get cycle information, and insert probes before and after call to library functions. An important
feature of this assembly probes mechanism is its ability to draw a much more accurate picture of the execution
time: additionally to the total number of cycles spent in the function we get individual time for each function
execution 4.

3Buffers should be picked large enough to limit calls to the C function preventing overhead and I/D-Cache pollution.
4Individual times are also used to detect if the ITC registers was accessed in a burst mode (several times within 40 cycles)

which degrades its accuracy from 6 to 40 cycles
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5.4 Value profiling

Value profiling is a critical add-on from MAQAO over traditional tools. Monitored values can be any registers
singled out as being of higher potential:

• Function parameters, distribution of parameters values for any given function is a clear indicator that
code versioning is an optimization to consider;

• Addresses used in load/store instructions, this allows to detect alignment problem, like bank conflicts
or less known load/store queue conflicts [1]

• ITC register, direct access to this clock register allows a fine grain execution time profiling;
• LC register, this register is used for every counted loops to store the number of iterations to perform.

This is a powerful parameter to evaluate relevance of SWP.

Prefetch distance is also interesting to monitor, for the moment we apply a simple analysis scheme. But
the compiler can switch two address streams for the same lfetch instruction. This smart optimization
usually occurs in short SWP loops. In such a case we can only compute the prefetch distance for one of these
streams. A register dependency analysis module will be needed by MAQAO to handle this particular case.

5.5 Hardware monitor supports

There is few added value of MAQAO for hardware monitor support, basically it is an interface to use perfmon
[12]. However since perfmon is a complex tool in this particular case a GUI is a interesting feature. This
interface is implemented with calls to empty functions which are inserted within the application perfmon
using them as trigger to start and stop monitoring. This allows to observe only the code fragment of
interest. Incorporating the analysis tree described by Levinthal [15] to help end-user to navigate among
counter terminology would be a nice feature.

Overall, MAQAO performs instrumentation at the assembly level, therefore with low disturbance of the
real behavior of the application, low-overhead being a nice side effect. Thanks to its smart buffer scheme, it
offers finer granularity of observation than other tool. At last value profiling establishes a link between the
execution and the processed data.

6 Case Studies

In this section we report results obtained using MAQAO to analyze and optimize two different applications.
One being integer intensive with limited memory requirement while the second code is a more traditional
scientific code focused on floating points performance and stressing the memory bandwidth.

Both codes were run on the same hardware platform: a BULL Novascale system populated with 256
Itanium 2. Each processor is running at 1300 MHz with 3MB of L2 cache. On the software side we use Intel
C/Fortran compiler 8.1 5.

6.1 TERA Benchmark

The first case study concerns the optimization of the TERA [16] reference benchmark on the Itanium 2
processor. This benchmark is designed and used by the CEA-DAM (French atomic agency) and consists
of the resolution of fluid dynamic equations with precise methods. Written in Fortran, two code sections
deserve to be well optimized since they represent two of the most time consuming sections of the whole
benchmark. They are of two kinds : the first one is a simple vector loop performing floating point intensive
operations on several arrays whereas the second one involves a while structure controlled by array values
and is composed of three vector loops. They are respectively called Eis Loop and Totalisation.

5Intel Compiler C/Fortran v8.1.022, built on September 22nd, 2004
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Figure 5: Control Flow Graph of the Eis Original Code Version. The upper left pane corresponds to the
Procedure Call Graph of the file that contains the loop Eis. The bottom left pane corresponds to the Control
Flow Graph of the function that contains Eis, and the two blocks targeted by the arrays corresponds to the
assembly blocks implementing the software pipelined loop. The right pane displays the assembly source code
of the red block selected in the bottom left pane.

6.1.1 Eis Loop

The first critical code section is the following one :

do i = first_cell, last_cell
Eis(i) = Ets(i) - 0.5_r8*( Um(i)**2 + Um_p1(i)**2 + Um_p2(i)**2 )

end do

Two different implementations of this loop are compared : Original and Improved. Original consists
of the original Fortran version compiled with the best compiling options (-03, -fno-alias). Improved
corresponds to an implementation trying to avoid the potential performance bottlenecks statically found by
MAQAO.

Original Version MAQAO’s static analysis allows to highlight three identified roots of bad performance
just for this loop : deep software pipelined loop for the last iterations, costly array address computations and
bad spill/fill register mechanism.

First, MAQAO’s control flow graph (CFG, see Figure 5) of the loop reveals two different assembly
implementations that may be executed sequentially, an illustration of loop fission. The first loop is 2-
unrolled and SWP whereas the second one is only software pipelined. The loop analysis feature determines
that the second loop is executed only when the vector sizes are odd. Even in this case, the loop performs
only one iteration. This can lead to bad performance due to the high cost of the pipeline’s prolog and epilog.

Secondly, the CFG also unveils the execution of a costly basic block for just performing array address
computations, between the two loop implementations. On the Itanium 2, in Fortran, integer address compu-
tations are performed using high latency floating point instructions (such as getf, setf, xma). That severely
increases the execution time for the last iteration (see Section 3.3). As a consequence, for odd vector sizes,
the time spent only for the last iteration is equivalent to the execution of 14 iterations of the first loop

13



implementation. This is a critical issue since MAQAO’s instrumentation points out that this loop always
computes 110 iterations for the benchmark reference test case.

Thirdly, explicit spill and fill mechanisms are found to be unnecessary since in the whole function not all
registers are used (39 registers out of 128 remain at the end of the loop).

Improved Version Previous statical performance issues allow to generate an improved version of the loop.
First, porting the code from Fortran to C removes all address array computations performed with floating

point units. Every computation is now performed using simple integer arithmetical instructions. Secondly,
to avoid the cost of the last iteration, two versions are written in C: an 8-unrolled code and a loop tail code.
For the 8-unrolled version, the compiler generates a pretty good SWP loop with a dense code (only 6% of
nop operations) and makes an efficient usage of the large register file. The loop tail code, displayed in Figure
6, is implemented in C as a switch section in which each case is not followed by a break. This allows a late
entry into the switch-case structure.

switch (nr) {
case 7:

Eis[n+6]=Ets[n+6]-0.5*(Um[n+6]*Um[n+6]+Um_p1[n+6]*Um_p1[n+6]+Um_p2[n+6]*Um_p2[n+6]);
case 6:

Eis[n+5]=Ets[n+5]-0.5*(Um[n+5]*Um[n+5]+Um_p1[n+5]*Um_p1[n+5]+Um_p2[n+5]*Um_p2[n+5]);
// ... and so on for case 5 to 2

case 1:
Eis[n ]=Ets[n ]-0.5*(Um[n ]*Um[n ]+Um_p1[n ]*Um_p1[n ]+Um_p2[n ]*Um_p2[n ]);

}

Figure 6: Loop tail code for the improved version of Eis Loop

For this structure, the compiler generates a fully predicated code (7 iterations). Depending on the
remaining iterations number, predicates are set such that only the required iterations are executed and
retired. In this particular case it is far more efficient than the SWP version.

Overall these code transformations improve the performance of this loop by 22 %.

6.1.2 Totalisation Function

The other critical function of the benchmark is composed of a while structure with early exits, and three
vector loops.

Original Version The code generated by the compiler is rather complex due to the highly conditional
branching structure of this code section : the while structure contains exits only proceeded with break

instructions. Moreover, inside this structure, the vector loops are easily located within the CFG. For each of
them, MAQAO’s analysis shows the compiler generates deep inefficient SWP loops for small vectors. They
are preceded by a costly block of array address computations which in terms of execution time corresponds
to 10 iterations. This is extremely high since MAQAO’s instrumentation of this loop shows the loop trip
count is constant for the whole execution of the benchmark and is set to 5 iterations. Although it is unknown
by the compiler, the programmer knows this value since it corresponds to the number of variables used in
the mathematical model ; this information can help the compiler generate a good code.

Improved Version Since this function is critical and heavily relies on branch structures and on the
performance of the loops, a loop peeling is applied at high-level (C level) to improve the performance. It
consists in generating dedicated codes for the most frequent iterations of the loop, in order to avoid entering
in a costly software pipelined loop. Furthermore, pipeline depth is a crucial factor that determines the
minimal number of iterations required to reach a steady state behavior and for these loops, it is inefficient
for low trip counts. Such peeling transformation applied to one of the loop is represented in Figure 7.

First, the function fully rewritten in C removes all unnecessary and costly array address computations.
Secondly, peeling is applied to all vector loops and on the while structure condition test. The nb_var=5
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Original (Fortran):

do j = 1, nb_var
Mass( mn, j) = dxd*( Ro_p( ma, j) + 0.5*dxg*Dro_p( ma, j) )

end do

Improved (C):

if ( nb_var == 5 ){
(*Mass1) = dxd*( Rop1[ma] + dxg*0.5*Drop1[ma]);

(*Mass2) = dxd*( Rop2[ma] + dxg*0.5*Drop2[ma]);
(*Mass3) = dxd*( Rop3[ma] + dxg*0.5*Drop3[ma]);

(*Mass4) = dxd*( Rop4[ma] + dxg*0.5*Drop4[ma]);
(*Mass5) = dxd*( Rop5[ma] + dxg*0.5*Drop5[ma]);}

else {

for ( j = 0 ; j < nb_var ; j++)
Mass[mn+j*sMass1] = dxd*( Ro_p[ma+j*sRop1]+ 0.5*dxg*Dro_p[ma+j*sDrop1]);

Figure 7: Vector loop of Totalisation Function

case is then unrolled at high-level, which is converted into a predicated code giving better performance than
the SWP version. For other nb_var values, a SWP loop is executed. Loop peeling technique adds several
arcs in the control flow graph to select the variant to execute but improves the performance of the nb_var=5

case. The Improved version gives better performance than the Original by about 20 %.

6.2 SHA-0 Attack Application

The second case study concerns the optimization of a cryptographic application: the SHA-0 attack on the
Itanium 2 processor. This algorithm was developed by Chabaud and Joux [17] and this implementation
was the first to find a full collision on SHA-0 in August 2004 [18]. Using MAQAO, we discover two main
problems: the first one concerns the register allocation while the second one is related to memory/cache
interaction.
To generate studied code, we found that the best compiling options are -O2 -fno_alias.

6.2.1 Program Overview

This program determines a full collision for SHA-0 algorithm with an algorithmic complexity of 251. In other
words, this code finds 2 different messages having the same hashed value computed by SHA-0 algorithm and
needs to test about 251 messages before finding two colliding.
Written in C, the attack code is focused on integer computation. Indeed the algorithm manipulates integer
value on 32 bits (because SHA-0 was designed for 32 bits architectures). The second characteristic of this
code is complex control. For each pair of messages, the algorithm applies SHA-0 encryption turn by turn
(out of 80 turns) in parallel. But during these encryptions, the program contains early exits to stop the
computation on these 2 messages when it is sure that they will not collide at the end of the 80 turns.
Because of these early exits, the control flow is very complex and unpredictable.

The attack code is separated in several parts but we are interested in the most time consuming one. This
part (function called do_neutral) takes about 70 % of the whole CPU time and is in charge of comparing
messages belonging to the same set called neutral set (i.e. having in common several properties on their
bits). Iterating on this set allows to reuse some computation made for previous messages.

6.2.2 Register file pressure

The first problem pointed out by MAQAO concerns the pressure on the register file. Event if, on Itanium 2,
the number of integer registers available is quite large (128), the compiler seems to evaluate that more than
128 values are alive at a point. The first section provides results of MAQAO’s static analysis (see Section
3.3) for the register allocation and the second one confirms the correctness of these static remarks.
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Static Analysis MAQAO’s static analysis highlights a potential bottleneck due to the high pressure on
integer registers. Indeed the first remark is that the register file is fully used (saturated), according to the
alloc instruction:

alloc r40=ar.pfs,2,87,7,8 // 32 registers always allocated + 96 requested

This not only means that the code needs all 128 integer registers but maybe even more. The compiler
generates many implicit spill/fill instructions pointing out that, at some points, more than 128 registers are
alive but looking at the assembly some of these instructions are superfluous.

{ .mii
st8 [r31]=r67

add r31=176,sp // r31 is now set to address sp+176
nop.i 0 ;;

}

{ .mii
ld8 r8=[r31] // load value at sp+176 in r8

add r31=176,sp // r31 is re-set to the exact same value sp+176
nop.i 0 ;;

}

{ .mii
st8 [r31]=r8 // r8 is stored at the same address (sp+176)

add r31=184,sp
nop.i 0 ;;

}

Figure 8: Simple example of implicit spill/fill

In the code displayed in Figure 8, it is obvious that the last store saves an unmodified value (r8) loaded a
few instructions before. So the two additions, the load and the store associated to r8 can be safely removed.
But this is just an example on a short part of assembly instructions (only a few consecutive bundles).
The same pattern appears across basic blocks putting the stress on the the potential problem in data flow
estimation by the compiler. For example, the following fill occurs in a basic block:

add r31=344,sp // Shift from the stack pointer

...
ld8 r44=[r31] // Fill from the address sp+344

After this set of instructions, the next use of the register r44 is about 600 lines after:

add r31=344,sp // Shift from the stack pointer

...
st8 [r31]=r44 // Spill at address sp+344

Between these two points many traces are possible and not statically predictable (due to the complex control).
Along each possible path between the fill and the spill, the value stored in this register is not used. Actually,
in one path, r44 is written but the function ends (with a return branch) just after. In that more complex
case, the fill and spill instructions corresponding to r44 can be removed.

Dynamic Analysis Replacing theses instructions with nops or deleting (with rescheduling) them show
that they were useless. Using memory fence and splitting do_neutral in smaller sub-functions are on the
way to facilitate the register allocation for the compiler.

6.2.3 Memory/Cache Interference

As noted in program overview (see section 6.2.1), this code is focused on integer computation and contains
mainly operations based on 32 bits integers (most of them bitwise). The second problem highlighted by
MAQAO is related to memory interactions (loads/stores). In the following, we will see the results of static
analysis concerning loads/stores instructions and the dynamic overhead of such interactions. According to
these analysis we will see how to optimize the code in order to reduce memory/cache interferences.
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Counter Value
Cycles CPU 24 309 980

Numbers of instructions 79 620 526
Stalls Cycles 3 266 458

Stalls Cycles due to L1D access 1 173 888
L1D Misses 76 099

Number of loads 10 081 502
Number of stores 4 177 894

Table 1: Hardware counters on do_neutral function

Static Analysis Because SHA-0 algorithm uses exclusively 32 bits integers, the SHA-0 attack intensely
uses 32 bits integers. Indeed, in our studied function (do_neutral), this program applies partial SHA-0
encryption to two messages at the same time comparing them during the encryption. On the generated code
this is showed by many memory interactions on 32 bits. On Itanium 2 architecture, 32 bits interactions
could cause a performance loss because of the potential 8B unalignment. Indeed in a 32 bits arrays, one cell
out of two is not aligned on a 64 bits boundary.
Furthermore, MAQAO’s static analysis detects the potential sources of memory interactions burst. The
code Figure 9 extracted from the generated assembly shows the high number of 32 bits loads in consecutive
bundles:

{ .mmi
ld4 r8=[r70]
ld4 r3=[r46]

add r79=r61,r69
}

{ .mmi
add r2=r58,r69

add r30=r50,r69
add r29=r53,r69 ;;

}

{ .mmi
ld4 r28=[r71]

ld4 r27=[r47]
xor r26=r8,r3

}

{ .mmi
add r72=r57,r64

add r45=r98,r69
add r25=r51,r69 ;;

}
{ .mmi

ld4 r24=[r83]

ld4 r23=[r82]
xor r22=r28,r27

}
{ .mii

add r36=r62,r64

add r35=r97,r69 ;;
shl r21=r24,5

}

Figure 9: Consecutive ld4

Dynamic Analysis Table 1 displays list of hardware counters related to cache/memory for one call of the
do_neutral function:

Hardware counters confirm the important number of memory interactions. It seems that stalls occur due
to the excessive pressure on L1D. This is surprising, since the overall memory footprint is around 5 KB,
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Counter Original Part Optimized Part
Cycles CPU 763.1 368.8

Numbers of instructions 1245 1326
Stalls Cycles 498.6 63.3

Stalls Cycles due to L1D access 118.4 3.0
L1D Misses 57.2 1.0

Number of loads 278 270
Number of stores 159 154

Table 2: Hardware counters on part of do_neutral function: original version and optimized with padding

fitting perfectly in L1D.

Optimizations MAQAO’s static analysis warns on a potential problem with memory interactions by
32bits (ld4/st4). Dynamic analysis with hardware counters put the stress on cache problems (potential
large memory footprint). Taking into account this two information, we tried to change the load/store
alignment. For that we used padding to make the load/store of each cell aligned on a 64 bits boundary.
We applied this optimization on a part of do_neutral function and we obtain a speed-up of 2 with the same
compiling options (see Table 2).

As an unexpected conclusion, increasing the memory footprint to align data on 64 bits boundary increases
the performance by a factor 2 avoiding almost all bubbles due to L1 access. Notice that the number of
instructions retired increases with the padding because instead of accessing directly the arrays, we need to
multiply by 2 the indice.

7 Optimization

If a correct diagnosis of the problem is useful, what really matters is to find a solution/workaround for the
problem detected. In this section, we briefly describe how the MAQAO tool could be used to interface with
different optimization strategies. This part of the tool is still in the design phase and only key principles are
given.

A first general (and well known) principle is that the optimization should be mainly targeting loops and
profil guided. Once loops have been sorted by their contribution to execution time, optimization should be
done following that order.

As an output, MAQAO can automatically produce a detailed summary on a per loop basis of the major
“mistakes” done by the compiler and also an estimation of the gap between the theoretical bounds and the
observed performance. This second metric is essential because in some cases, the compiler might have done
mistakes but the overall impact (and therefore the maximal performance gain) could be shown to be less
than 5%. Then this summary can be used to try to correct these mistakes.

First, let us describe a clever manner of correcting some. For example, for a given loop if some prefetch
instructions are missing, a first solution would consist in inserting prefetch directives at the source level.
A more appropriate solution is to use specific compiler options which would force the compiler to insert
prefetch. A danger of such a solution when applied in a simple manner is that compiler options in general
cannot target directly a specific loop. Therefore, one possible pitfall would be that some compiler options
useful for some loops would be detrimental to other loops contained in the same file. A better solution would
consist in extracting the ”faulty” loop and wrap it into a subroutine on which the specific options could be
used. This technique would work pretty well if simple mistakes are detected.

A sophisticated algorithm would rely on the detection of code templates and their automatic substitution
by optimized versions [2]. Comparing two templates is not a trivial except when the control flow exhibits
good properties (static, no aliasing, array indices as affine equations). A more brute force technique which
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could work in more complex cases would be again to isolate the “faulty” loop and export it in a separate file.
Then on this file, a systematic search on the various compiler options could be performed: for each compiler
option setting, code is produced and analyzed by MAQAO, which can detect the optimal compiler option
settings.

Finally, MAQAO could be easily interfaced either with compilers like gcc or with tools such as Xemsys
Library Generator [22] which are not full compiler but tools specialized in optimizing a specific class of loops
such as simple vector loops.

8 Conclusion

As shown in the case studies MAQAO already fulfills needs as a convenient and powerful analysis platform.
Addressing the performance problem at the assembly level seems relevant, especially on Itanium 2 due to
the EPIC instruction set. The ability to process parsed code with a database allows end-user to build up
incrementally his knowledge base. SQL offers a flexible interface to dive into the code structure tracking
potential performance problem. A performance model extending Davidson’s proposal model is also included.
At last assembly level dynamic instrumentation performs value profiling as well as more common profiling
tasks without altering the behavior of the application. It should be noted that all the analysis performed by
MAQAO could be integrated within a compiler.

However, MAQAO is still in its development stages, and several limitations will be addressed. On the
static side, additional analysis, like precise monitoring of prefetch distance, will be available when the data
dependency module will be fully implemented. Another task is to extend and refine the MACS model, so
that it could guide subsequent profiling to better exploit performance gaps. Obviously the main effort will
be done on the optimization aspect.
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