
Computer Science Tripos, Part IB

Foundations of Functional Programming

Lawrence C Paulson
Computer Laboratory

University of Cambridge

Copyright c
�

1995 by Lawrence C. Paulson

Contents

1 Introduction 1

2 Equality and Normalization 6

3 Encoding Data in the � -Calculus 11

4 Writing Recursive Functions in the � -calculus 15

5 The � -Calculus and Computation Theory 21

6 ISWIM: The � -calculus as a Programming Language 27

7 Lazy Evaluation via Combinators 37

8 Compiling Methods Using Combinators 42

i

ii

1

1 Introduction

This course is concerned with the � -calculus and its close relative, combinatory logic.
The � -calculus is important to functional programming and to computer science gen-
erally:

1. Variable binding and scoping in block-structured languages can be modelled.

2. Several function calling mechanisms — call-by-name, call-by-value, and call-
by-need — can be modelled. The latter two are also known as strict evaluation
and lazy evaluation.

3. The � -calculus is Turing universal, and is probably the most natural model of
computation. Church’s Thesis asserts that the ‘computable’ functions are pre-
cisely those that can be represented in the � -calculus.

4. All the usual data structures of functional programming, including infinite lists,
can be represented. Computation on infinite objects can be defined formally in
the � -calculus.

5. Its notions of confluence (Church-Rosser property), termination, and normal
form apply generally in rewriting theory.

6. Lisp, one of the first major programming languages, was inspired by the � -
calculus. Many functional languages, such as ML, consist of little more than the

� -calculus with additional syntax.

7. The two main implementation methods, the SECD machine (for strict evalua-
tion) and combinator reduction (for lazy evaluation) exploit properties of the � -
calculus.

8. The � -calculus and its extensions can be used to develop better type systems,
such as polymorphism, and to investigate theoretical issues such as program syn-
thesis.

9. Denotational semantics, which is an important method for formally specifying
programming languages, employs the � -calculus for its notation.

Hindley and Seldin [7] is a concise introduction to the � -calculus and combinators.
Gordon [6] is oriented towards computer science, overlapping closely with this course.
Barendregt [1] is the last word on the � -calculus.

Acknowledgements. Reuben Thomas pointed out numerous errors in a previous ver-
sion of these notes.

2 1. INTRODUCTION

1.1 The � -Calculus

Around 1924, Schönfinkel developed a simple theory of functions. In 1934, Church
introduced the � -calculus and used it to develop a formal set theory, which turned out to
be inconsistent. More successfully, he used it to formalize the syntax of Whitehead and
Russell’s massive Principia Mathematica. In the 1940s, Haskell B. Curry introduced
combinatory logic, a variable-free theory of functions.

More recently, Roger Hindley developed what is now known as type inference.
Robin Milner extended this to develop the polymorphic type system of ML, and pub-
lished a proof that a well-typed program cannot suffer a run-time type error. Dana Scott
developed models of the � -calculus. With his domain theory, he and Christopher Stra-
chey introduced denotational semantics.

Peter Landin used the � -calculus to analyze Algol 60, and introduced ISWIM as a
framework for future languages. His SECD machine, with extensions, was used to im-
plement ML and other strict functional languages. Christopher Wadsworth developed
graph reduction as a method for performing lazy evaluation of � -expressions. David
Turner applied graph reduction to combinators, which led to efficient implementations
of lazy evaluation.

Definition 1 The terms of the � -calculus, known as � -terms, are constructed recur-
sively from a given set of variables � , � , � , ����� . They may take one of the following
forms:

� variable�
�����
	�� abstraction, where 	 is a term� 	�
�� application, where 	 and
 are terms

We use capital letters like � , 	 ,
 , . . . for terms. We write 	���
 to state that 	
and
 are identical � -terms. The equality between � -terms, 	���
 , will be discussed
later.

1.2 Variable Binding and Substitution

In
�

�����
	�� , we call � the bound variable and 	 the body. Every occurrence of � in 	
is bound by the abstraction. An occurrence of a variable is free if it is not bound by some
enclosing abstraction. For example, � occurs bound and � occurs free in

�
����� � ����� � ������� .

Notations involving free and bound variables exist throughout mathematics. Con-
sider the integral ������ � ������� , where � is bound, and the product �! "�#�$&% �(' � , where

'
is

bound. The quantifiers) and * also bind variables.
The abstraction

�
�����
	�� is intended to represent the function � such that � � ���+��	

for all � . Applying � to
 yields the result of substituting
 for all free occurrences

1.3 Avoiding Variable Capture in Substitution 3

of � in 	 . Two examples are

�
����� ��� The identity function, which returns its argument un-

changed. It is usually called
�

.�
��� � ��� A constant function, which returns � when applied to

any argument.

Let us make these concepts precise.

Definition 2 ��� � 	�� , the set of all bound variables in 	 , is given by

��� � ��� � ���� � �����
	�� � ��� � 	����	� ��

��� � 	�
�� � ��� � 	�������� �
��

Definition 3
�� � 	�� , the set of all free variables in 	 , is given by

�� � ��� � � ��

�� � �����
	�� �
�� � 	������ ��

�� � 	�
�� �
�� � 	�����
�� �
��
Definition 4 	�� ��� ��� , the result of substituting � for all free occurrences of � in 	 , is
given by

��� ��� ��� � � � if � ���
� otherwise

�
�����
	���� ��� ��� � � � �����
	�� if � � ��

�����
	�� ��� ��� � otherwise� 	�
���� ��� ��� � � 	�� ��� ����
�� ��� ��� �
The notations defined above are not themselves part of the � -calculus. They belong

to the metalanguage: they are for talking about the � -calculus.

1.3 Avoiding Variable Capture in Substitution

Substitution must not disturb variable binding. Consider the term
�

����� � ��� � ����� . It
should represent the function that, when applied to an argument
 , returns the con-
stant function

�
��� �

�� . Unfortunately, this does not work if
 � � ; we have defined

substitution such that
�

��� � ����� ��� ��� � �
��� � ��� . Replacing � by � in the constant function

transforms it into the identity function. The free occurrence of � turns into a bound oc-
currence of � — an example of variable capture. If this were allowed to happen, the

4 1. INTRODUCTION

� -calculus would be inconsistent. The substitution 	��
 � ��� is safe provided the bound
variables of 	 are disjoint from the free variables of
 :

��� � 	�� �
�� �
��+� ���
We can always rename the bound variables of 	 , if necessary, to make this condi-

tion true. In the example above, we could change
�

��� � ��� into
�

����� ��� , then obtain the
correct substitution

�
����� ����� ��� ��� � �

����� ��� ; the result is indeed a constant function.

1.4 Conversions

The idea that � -abstractions represent functions is formally expressed through con-
version rules for manipulating them. There are � -conversions, � -conversions and � -
conversions.

The � -conversion
�

�����
	������ � ��� �
	�� ��� ��� � renames the abstraction’s bound vari-
able from � to � . It is valid provided � does not occur (free or bound) in 	 . For exam-
ple,

�
����� � � �����	�
� � ��� � � ������� . We shall usually ignore the distinction between terms

that could be made identical by performing � -conversions.
The � -conversion

���
�����
	���
����
� 	��
 � ��� substitutes the argument,
 , into

the abstraction’s body, 	 . It is valid provided ��� � 	�����
�� �
�� � � . For exam-
ple,

�
����� � � ����� � ��������� ��� ����� � ������� . Here is another example:

���
����� � ������� � ����� �������
����

����� ����������� � .
The � -conversion

�
����� � 	 �������
� 	 collapses the trivial function

�
����� � 	 �����

down to 	 . It is valid provided ����
�� � 	�� . Thus, 	 does not depend on � ; the
abstraction does nothing but apply 	 to its argument. For example,

�
����� ��� ���������������� ����� .

Observe that the functions
�

����� � 	 ����� and 	 always return the same answer,� 	�
�� , when applied to any argument
 . The � -conversion rule embodies a princi-
ple of extensionality: two functions are equal if they always return equal results given
equal arguments. In some situations, this principle (and � -conversions) are dispensed
with.

1.5 Reductions

We say that 	��
 , or 	 reduces to
 , if 	��
�
 or 	����
 . (Because � -
conversions are not directional, and are not interesting, we generally ignore them.) The
reduction 	��
 may consist of applying a conversion to some subterm of 	 in order
to create
 . More formally, we could introduce inference rules for � :

	�� 	���
�����
	���� �

�����
	 � �
	�� 	��� 	�
���� � 	 �
��

	�� 	��� �+	���� � �+	 � �
If a term admits no reductions then it is in normal form. For example, ��� � � � and

� ��� are in normal form. To normalize a term means to apply reductions until a normal

1.6 Curried Functions 5

form is reached. A term has a normal form if it can be reduced to a term in normal
form. For example,

�
����� ����� is not in normal form, but it has the normal form � .

Many � -terms cannot be reduced to normal form. For instance,
�

����� � ��� � ����� � ���
reduces to itself by � -conversion. Although it is unaffected by the reduction, it is cer-
tainly not in normal form. This term is usually called � .

1.6 Curried Functions

The � -calculus has only functions of one argument. A function with multiple arguments
is expressed using a function whose result is another function.

For example, suppose that � is a term containing only � and � as free variables, and
we wish to formalize the function � � ��� ������� . The abstraction

�
��� �
�+� contains � free;

for each � , it stands for a function over � . The abstraction
�

����� � ��� �
�+��� contains no free
variables; when applied to the arguments 	 and
 , the result is obtained by replacing
� by 	 and � by
 in � . Symbolically, we perform two � -reductions (any necessary
� -conversions are omitted):

�����
����� � ��� �
�+����	���
������ ��� ��� �
� � 	�� ��� ��
������ � � 	�� ��� �
 � ���

This technique is known as currying after Haskell B. Curry, and a function ex-
pressed using nested � s is known as a curried function. In fact, it was introduced by
Schönfinkel. Clearly, it works for any number of arguments.

Curried functions are popular in functional programming because they can be ap-
plied to their first few arguments, returning functions that are useful in themselves.

1.7 Bracketing Conventions

Abbreviating nested abstractions and applications will make curried functions easier to
write. We shall abbreviate

�
����� � � ����� ������� � ��� �
	�� �����
��� as

�
����������������� �
	��� ����� � 	�� 	�� � ����� 	 � as
� 	�� 	�������� 	 �

Finally, we drop outermost parentheses and those enclosing the body of an abstraction.
For example,

�
����� � � � ��� � � ����������� can be written as ����� � � ��� � ����� �

It is vital understand how bracketing works. We have the reduction

����� � �����
	���
 ��� �����
	��
 � ���
but the similar term ����� � � �����
	���
 admits no reductions except those occurring
within 	 and
 , because �����
	 is not being applied to anything. Here is what the
application of a curried function (see above) looks like with most brackets omitted:

�
��� � �
�+��	�
 ��� � ��� �
� � 	�� ��� ��
 ��� � � 	�� ��� �
 � ���

6 2. EQUALITY AND NORMALIZATION

Note that �����
	�
 abbreviates ����� � 	�
�� rather than
�

�����
	���
 . Also, � ��� abbre-
viates

� � ����� rather than � � ����� .

Exercise 1 What happens in the reduction of
�

��� � �
�+��	�
 if � is free in 	 ?

Exercise 2 Give two different reduction sequences that start at
�

����� � ��� � � ��������� and
end with a normal form. (These normal forms must be identical: see below.)

2 Equality and Normalization

The � -calculus is an equational theory: it consists of rules for proving that two � -terms
are equal. A key property is that two terms are equal just if they both can be reduced
to the same term.

2.1 Multi-Step Reduction

Strictly speaking, 	��
 means that 	 reduces to
 by exactly one reduction step,
possibly applied to a subterm of 	 . Frequently, we are interested in whether 	 can be
reduced to
 by any number of steps. Write 	��
 if

	�� 	���� 	���������� � 	 " �
 �('���� �
For example,

���
����� � ������� � ����� �����	� � . Note that � is the relation ��
 , the reflex-

ive/transitive closure of � .

2.2 Equality Between � -Terms

Informally, 	 � 	�� if 	 can be transformed into 	 � by performing zero or more
reductions and expansions. (An expansion is the inverse of a reduction, for instance
�
� �

����� ����� .) A typical picture is the following:

	 	�� 	��������
	 "�� � 	 " ��	��� � � � � � � � � � � �

 �
 � �����
 "

For example, � ��� ��� ��� ������� � �
����������� � ����� because both sides reduce to � � ����� . Note

that � is the relation
� ��� � � � ��
 , the least equivalence relation containing � .

Intuitively, 	 � 	�� means that 	 and 	�� have the same value. Equality, as de-
fined here, satisfies all the standard properties. First of all, it is an equivalence relation
— it satisfies the reflexive, symmetric and associative laws:

	 � 	 	 �

 � 	

� ��	 	 �

� ��

2.3 The Church-Rosser Theorem 7

Furthermore, it satisfies congruence laws for each of the ways of constructing � -
terms:

	���	���
�����
	��+� �

�����
	 � �
	���	��� 	�
�� � � 	 �
��

	 � 	��� �+	�� � � �+	 � �
The six properties shown above are easily checked by constructing the appropriate di-
agrams for each equality. They imply that two terms will be equal if we construct them
in the same way starting from equal terms. Put another way, if 	 � 	 � then replacing
	 by 	�� in a term yields an equal term.

Definition 5 Equality of � -terms is the least relation satisfying the six rules given
above.

2.3 The Church-Rosser Theorem

This fundamental theorem states that reduction in the � -calculus is confluent: no two
sequences of reductions, starting from one � -term, can reach distinct normal forms. The
normal form of a term is independent of the order in which reductions are performed.

Theorem 6 (Church-Rosser) If 	 �
 then there exists � such that 	 � � and

 � � .
Proof See Barendregt [1] or Hindley and Seldin [7].

For instance,
�

����������� ��� ��� ��� ������� has two different reduction sequences, both lead-
ing to the same normal form. The affected subterm is underlined at each step:

�
����������� ��� ��� ��� ������� � � ��� ��� ��� ����� ��� � � ������
����������� ��� ��� ��� ����� ��� �

����������� � ����� � � � �����
The theorem has several important consequences.

� If 	 �
 and
 is in normal form, then 	 �
 ; if a term can transform
into normal form using reductions and expansions, then the normal form can be
reached by reductions alone.

� If 	 �
 where both terms are in normal form, then 	 �
 (up to renaming
of bound variables). Conversely, if 	 and
 are in normal form and are distinct,
then 	 ���
 ; there is no way of transforming 	 into
 . For example, ��� � � � ��

��� � � � .

An equational theory is inconsistent if all equations are provable. Thanks to the
Church-Rosser Theorem, we know that the � -calculus is consistent. There is no way
we could reach two different normal forms by following different reduction strategies.
Without this property, the � -calculus would be of little relevance to computation.

8 2. EQUALITY AND NORMALIZATION

2.4 The Diamond Property

The key step in proving the Church-Rosser Theorem is demonstrating the diamond
property — if 	 ��	 � and 	 � 	�� then there exists a term � such that 	 � � �
and 	�� � � . Here is the diagram:

	� � � �
	�� 	��� � � �

�

The diamond property is vital: it says that no matter how far we go reducing a term
by two different strategies it will always be possible to come together again by further
reductions. As for the Church-Rosser Theorem, look again at the diagram for 	���	 �
and note that we can tile the region underneath with diamonds, eventually reaching a
common term:

	 	�� 	��������
	 "�� � 	 " ��	��� � � � � � � � � � � �

 �
 � �����
 "� � � � � � � �

� � � � ����� � "�� �� � � � . . .
� �

.
�

2.5 Proving the Diamond Property

Note that � (one-step reduction) does not satisfy the diamond property

	� �
	�� 	��� �

�

Consider the term
�

����� � ��� � � ��� , where
� � ����� � . In one step, it reduces to�

����� � ����� or to
� � ��� � � ��� . These both reduce eventually to � � , but there is no way to

2.6 Possibility of Nontermination 9

complete the diamond with a single-step reduction:

�
����� � ��� � � ���� �

� � ��� � � ��� �
����� � �����

. . .
�

� �

The problem, of course, is that
�

����� � ��� replicates its argument, which must then
be reduced twice. Note also that the difficult cases involve one possible reduction con-
tained inside another. Reductions that do not overlap, such as 	�� 	 � and
 �
 �
in the term ��	�
 , commute trivially to produce ��	 �

 � .

The diamond property for � can be proved with the help of a ‘strip lemma’, which
considers the case where 	 � 	 � (in one step) and also 	 � 	 � (possibly many
steps):

	� � �
	�� 	��� � � �

�

The ‘strips’ can then be pasted together to complete a diamond. The details involve
an extremely tedious case analysis of the possible reductions from various forms of
terms.

2.6 Possibility of Nontermination

Although different reduction sequences cannot yield different normal forms, they can
yield completely different outcomes: one could terminate while the other runs forever!
Typically, if 	 has a normal form and admits an infinite reduction sequence, it contains
a subterm � having no normal form, and � can be erased by a reduction.

For example, recall that � reduces to itself, where � � �
����� � ��� � ����� � ��� . The re-

duction �
��� ����� � � �

reaches normal form, erasing the � . This corresponds to a call-by-name treatment of
functions: the argument is not reduced but substituted ‘as is’ into the body of the ab-
straction.

Attempting to normalize the argument generates a nonterminating reduction se-
quence: �

��� ����� ��� �
��� ����� ��� �����

10 2. EQUALITY AND NORMALIZATION

Evaluating the argument before substituting it into the body corresponds to a call-
by-value treatment of function application. In this example, the call-by-value strategy
never reaches the normal form.

2.7 Normal Order Reduction

The normal order reduction strategy is, at each step, to perform the leftmost outermost
� -reduction. (The � -reductions can be left until last.) Leftmost means, for instance, to
reduce � before
 in �+
 . Outermost means, for instance, to reduce

�
�����
	���
 before

reducing 	 or
 .

Normal order reduction corresponds to call-by-name evaluation. By the Standard-
ization Theorem, it always reaches a normal form if one exists. The proof is omitted.
However, note that reducing � first in �+
 may transform � into an abstraction, say

�����
	 . Reducing
�

�����
	���
 may erase
 .

2.8 Lazy Evaluation

From a theoretical standpoint, normal order reduction is the optimal, since it always
yields a normal form if one exists. For practical computation, it is hopelessly ineffi-
cient. Assume that we have a coding of the natural numbers (for which see the next
section!) and define a squaring function ����� � ��� ���
	���
���� . Then

�����
�
������
������
	���

�
������
�� � �����+
������
	���

�
�
	���

�
�� � �
	���
�
�
��

and we will have to evaluate four copies of the term
 ! Call-by-value would have eval-
uated
 (only once) beforehand, but, as we have seen, it can result in nontermination.

Note: multi-letter identifiers (like �����) are set in bold type, or underlined, in order
to prevent confusion with a series of separate variables (like �����).

Lazy evaluation, or call-by-need, never evaluates an argument more than once. An
argument is not evaluated unless the value is actually required to produce the answer;
even then, the argument is only evaluated to the extent needed (thereby allowing infinite
lists). Lazy evaluation can be implemented by representing the term by a graph rather
than a tree. Each shared graph node represents a subterm whose value is needed more
than once. Whenever that subterm is reduced, the result overwrites the node, and the
other references to it will immediately have access to the replacement.

Graph reduction is inefficient for the � -calculus because subterms typically contain
free variables. During each � -reduction, the abstraction’s body must be copied. Graph
reduction works much better for combinators, where there are no variables. We shall
return to this point later.

11

3 Encoding Data in the
�

-Calculus

The � -calculus is expressive enough to encode boolean values, ordered pairs, natural
numbers and lists — all the data structures we may desire in a functional program.
These encodings allow us to model virtually the whole of functional programming
within the simple confines of the � -calculus.

The encodings may not seem to be at all natural, and they certainly are not com-
putationally efficient. In this, they resemble Turing machine encodings and programs.
Unlike Turing machine programs, the encodings are themselves of mathematical inter-
est, and return again and again in theoretical studies. Many of them involve the idea
that the data can carry its control structure with it.

3.1 The Booleans

An encoding of the booleans must define the terms
���	�� , ����� ��� and ��� , satisfying (for
all 	 and
)

���
���	���	�
 � 	
���	����� ����	�
 �
 �

The following encoding is usually adopted:

���	�� � ��� � � �
����� ��� � ��� � � �

��� � � %&� � � %&� �
We have
���	�� ��
����� ��� by the Church-Rosser Theorem, since
���	�� and ����� ���

are distinct normal forms. As it happens, ��� is not even necessary. The truth values are
their own conditional operators:

���	�� 	�
 � �
��� � � ����	�
 � 	

����� ��� 	�
 � �
��� � � ����	�
 �

These reductions hold for all terms 	 and
 , whether or not they possess normal
forms. Note that ��� �+	�
�� �+	�
 ; it is essentially an identity function on � . The
equations given above even hold as reductions:

���
���	���	�
 � 	
���	����� ����	�
 �
 �

All the usual operations on truth values can be defined as conditional operator. Here
are negation, conjunction and disjunction:

����
 � � % ��������% ������� ���
� � � � % ��������%
���	�� �

� �
 � � % ������%������ ���
���	��

12 3. ENCODING DATA IN THE � -CALCULUS

3.2 Ordered Pairs

Assume that
���	�� and ����� ��� are defined as above. The function ����� � , which con-
structs pairs, and the projections � �
 and ����
 , which select the components of a pair,
are encoded as follows:

����� � � ��� � � � � � �
� �
 � � % � %
���	��
����
 � � % � %������ ���

Clearly, ����� ��	�
 � � � � � 	�
 , packaging 	 and
 together. A pair may be ap-
plied to any 2-place function of the form ��� � �
� , returning � � 	�� ��� �
 � ��� ; thus, each
pair is its own unpackaging operation. The projections work by this unpackaging op-
eration (which, perhaps, is more convenient in programming than are the projections
themselves!):

� �

� ����� ��	�
�� � � �

�
� � � � 	�
��

� �
� � � � 	�
��
���	��

�
���	���	�

� 	

Similarly, ����

� ����� �+	�
�� �
 . Observe that the components of ����� ��	�
 are

completely independent; either may be extracted even if the other has no normal form.
Ordered � -tuples could be defined analogously, but nested pairs are a simpler en-

coding.

3.3 The Natural Numbers

The following encoding of the natural numbers is the original one developed by Church.
Alternative encodings are sometimes preferred today, but Church’s numerals continue
our theme of putting the control structure in with the data structure. Such encodings are
elegant; moreover, they work in the second-order � -calculus (presented in the Types
course by Andrew Pitts).

Define
� � � � ��� �� � � � ��� � �� � � � ��� � � � ���
...

...
...

� � � � ��� � � ����� � �� ��� �
 	��
 ��
��

��� �����
�

Thus, for all �
� �

, the Church numeral � is the function that maps � to � . Each
numeral is an iteration operator.

3.4 Arithmetic on Church Numerals 13

3.4 Arithmetic on Church Numerals

Using this encoding, addition, multiplication and exponentiation can be defined imme-
diately:

��
�
 � ��� � � ����� � � � � ���
�
	���
 � ��� � � ����� � � � ���
��� ��
 � ��� � � ��� ��� � �

Addition is not hard to check:

��
�
�� � � � � ����� � � � � ���
� � � ��� � � � � ���
� � � ��� � �
	 �
� ��� �

Multiplication is slightly more difficult:

�
	���

� � � � � ����� �
� � ���

� � � ��� � � � � � �
� � � ��� � � � � �
� � � ��� � ��� �
� ��� �

These derivations hold for all Church numerals � and � , but not for all terms 	
and
 .

Exercise 3 Show that ��� ��
 performs exponentiation on Church numerals.

3.5 The Basic Operations for Church Numerals

The operations defined so far are not sufficient to define all computable functions on the
natural numbers; what about subtraction? Let us begin with some simpler definitions:
the successor function and the zero test.

��	�� � ��� � ��� � � � � ���
� ��� � � � � ��� � � � ����������� �����
���	��

The following reductions hold for every Church numeral � :

��	�� � � ��� �

� ��� � � �
� �
���	��

� ��� � � �
�
��� � � � ����� ���

14 3. ENCODING DATA IN THE � -CALCULUS

For example,

� ��� � � �
�
��� � � � ��� � � ����������� �����
���	��

� �
����������� ����� 	 �
���	��

� �
����������� ����� ��� ����������� ��� �
���	����

� ����� ���

The predecessor function and subtraction are encoded as follows:

��� � ��� � � � % � ����� � � � � � �
 % ��� � � �
 % �
��� � � ��� � ��������
 � � � ��� � ��� � � � ����� ��� �����
��	�� � ��� � � � ��� � �

Defining the predecessor function is difficult when each numeral is an iterator. We
must reduce an �
� �

iterator to an � iterator. Given � and � , we must find some � and
� such that �� 	 � � computes � �� . A suitable � is a function on pairs that maps

� ��� ��� to� � � ��� � ��� ; then
� 	 � � ��� ����� � � 	 � � ��� � � � ����� �

The pair behaves like a one-element delay line.
Above, ��� � ��� � constructs the function � . Verifying the following reductions

should be routine:

��� � � ��� � � � �
��� � � � � � �

For subtraction, ��	���� � computes the � th predecessor of � .

Exercise 4 Show that ��� � ��� ��	�� � performs addition on Church numerals.

3.6 Lists

Church numerals could be generalized to represent lists. The list � � � � ��� ������� � � � would
essentially be represented by the function that takes � and � to � � � � � ��������� � � � ��� �����
� .
Such lists would carry their own control structure with them.

As an alternative, let us represent lists rather as Lisp and ML do — via pairing. This
encoding is easier to understand because it is closer to real implementations. The list� ��� � ��� ������� � � � will be represented by ���������������+��������� ��� � . To keep the operations
as simple as possible, we shall employ two levels of pairing. Each ‘cons cell’ �������
will be represented by

�
����� ��� �

� ��� ����� , where the ����� ��� is a distinguishing tag field.
By rights, ��� � should be represented by a pair whose first component is
���	�� , such
as
�

���	�� �
���	�� � , but a simpler definition happens to work. In fact, we could dispense

with the tag field altogether.

15

Here is our encoding of lists:

��� ��� ����� �
� � ��� � ��� � � ����� � ����� ��� � ����� ��� ���
��	�� ��� � �

�
 � ������� �
 � ����
 ���

���� ����������
 � ����
 ���

The following properties are easy to verify; they hold for all terms 	 and
 :

��	�� ����� ���
���	��
��	�� �

�
� � ����	�
�� � ����� ���

�

�
� � ����	�
�� � 	

��
�
� � ����	�
�� �

Note that ��	�� � ��� �
�
���	�� happens really by chance, while the other laws hold
by our operations on pairs.

Recall that laws like
�

�
� � ����	�
�� ��	 and ����

� ����� ��	�
�� ��
 hold for
all 	 and
 , even for terms that have no normal forms! Thus, ����� � and � � ��� are
‘lazy’ constructors — they do not ‘evaluate their arguments’. Once we introduction
recursive definitions, we shall be able to compute with infinite lists.

Exercise 5 Modify the encoding of lists to obtain an encoding of the natural numbers.

4 Writing Recursive Functions in the
�

-calculus

Recursion is obviously essential in functional programming. With Church numerals, it
is possible to define ‘nearly all’ computable functions on the natural numbers. � Church
numerals have an inbuilt source of repetition. From this, we can derive primitive recur-
sion, which when applied using higher-order functions defines a much larger class than
the primitive recursive functions studied in Computation Theory. Ackermann’s func-
tion is not primitive recursive in the usual sense, but we can encode it using Church
numerals. If we put

����� � ��� ��� � � � � � � � � � � ��� ��	��
then we can derive the recursion equations of Ackermann’s function, namely

�����
�
� � ��� �

�����
�
���

� � � � ����� � �

�����
�
���

� � � ��� � � � ����� �
�
�����

�
���

� � � �
�
The precise meaning of ‘nearly all’ involves heavy proof theory, but all ‘reasonable’ functions are

included.

16 4. WRITING RECURSIVE FUNCTIONS IN THE � -CALCULUS

Let us check the first equation:

�����
�
� � � �

� � � � � � � � � ��� ��	�� �
� ��	�� �
� ��� �

For the other two equations, note that

�����
�
���

� � � � �
���

� � � � � � � � � � � � ��� ��	�� �
� �

� � � � � � � � � ��� � � �
� � � � � � � � � ��� ��	���� �

� �
� � � � � � � � � ��� � ����� � � �

� �
�
����� � � � ����� � � �

We now check

�����
�
���

� � � � � �
����� � � � ����� � � �

� ����� � �

and

�����
�
���

� � � ��� � � � ��� � � ����� � � � ����� � � �
� ����� �

�
�
�
����� � � � ����� � � ���

� ����� �
�
�����

�
���

� � � �
The key to this computation is the iteration of the function ����� � .

4.1 Recursive Functions using Fixed Points

Our coding of Ackermann’s function works, but it hardly could be called perspicuous.
Even worse would be the treatment of a function whose recursive calls involved some-
thing other than subtracting one from an argument — performing division by repeated
subtraction, for example.

General recursion can be derived in the � -calculus. Thus, we can model all recur-
sive function definitions, even those that fail to terminate for some (or all) arguments.
Our encoding of recursion is completely uniform and is independent of the details of
the recursive definition and the representation of the data structures (unlike the above
version of Ackermann’s function, which depends upon Church numerals).

The secret is to use a fixed point combinator — a term � such that ������� � ��� �
for all terms � . Let us explain the terminology. A fixed point of the function � is any�

such that � � � � ; here,
� ����� . A combinator is any � -term containing no

free variables (also called a closed term). To code recursion, � represents the body of
the recursive definition; the law ��� ��� � ��� � permits � to be unfolded as many
times as necessary.

4.2 Examples Using Y 17

4.2 Examples Using Y

We shall encode the factorial function, the append function on lists, and the infinite list� � � � � � ������� � in the � -calculus, realising the recursion equations

������
+
 � ���
�
� ��� � � �
�� � � �
	���

 � ������
 � ��� ��
������

� � ��� ��
���� � ���
�
��	�� ���!��� �

� � ���
� �
��!� � � � ��� ��
 �
����!��� ���

� � � � � � � � � ���
�
� � � � � �

To realize these, we simply put

������
 � �
�

� � � ����� � � ��� � � � ��� � � �
	���
�� � � � ��� � ���������
� � ��� ��
 � �

�
� �&��� ����� � ��	�� �����	� � � � ��� � �
 ��� � � �
�� ���	�!�����

� � � � � � � �
�

� � ��� � ��� � � �
In each definition, the recursive call is replaced by the variable � in �

�
� � �������
� . Let

us verify the recursion equation for � � � � � � ; the others are similar:

� � � � � � � �
�

� � ��� � ��� � � �
� �

� � ��� � ��� � � � � � �
� � ��� � ��� � � ���

� �
� � ��� � ��� � � � � � � � � �

� � � ���
�
� � � � � �

4.3 Usage of Y

In general, the recursion equation 	 ��
 	 , where
 is any � -term, is satisfied by
defining 	 �
��
 . Let us consider the special case where 	 is to be an � -argument
function. The equation 	 ��������� � ��
 	 is satisfied by defining

	�� � �
� �&��������� � ��
 � �

for then

	 ��������� � � �
�

� �&����������� ��
 � ����������� � � �
� �&��������� � ��
 � ��	 ��������� �

�
 	
Let us realize the mutual recursive definition of 	 and
 , with corresponding bod-

ies
 and � :

	 �
 	�

 � � 	�

18 4. WRITING RECURSIVE FUNCTIONS IN THE � -CALCULUS

The idea is to take the fixed point of a function � on pairs, such that �
� � � � � ��
 � � � � � � � . Using our encoding of pairs, define

� � �
�

����� ����� � �
 � � �
 ��� � ����
 ������ � � � �
 ��� � ����
 �������
	 � � �
+�

 � ����
 �

By the fixed point property,

� � ����� �
�
 � � �
+�+� � ����
 �+���� � � � �
��+� � ����
 �+���

and by applying projections, we obtain the desired

	��
 � � �
+�+� � ����
 �+�+�
 	�

 ��� � � �
+�+� � ����
 �+�+��� 	�
 �

4.4 Defining Fixed Point Combinators

The combinator � was discovered by Haskell B. Curry. It is defined by

� � � � � � ����� � � � ����� � ����� � � � �����
Let us calculate to show the fixed point property:

��� � �
����� � � � ����� � ����� � � � �����

� �
���

����� � � � ����� � ����� � � � � �����
� �

�
��� �

This consists of two � -reductions followed by a � -expansion. No reduction
��� � � � ��� � is possible! There are other fixed point combinators, such as Alan
Turing’s

�
:

� � ��� � � � � � � ���� � ���

We indeed have the reduction
�
� � � � � � � :

�
��� ���

� � � � ��� � � � � � � � �
Here is a fixed point combinator discovered by Klop:
� � � � ��� ��� � ���
	�� '�
 � ��� % �������
��� � ��� � � � � ���
	 ��	 � � � 	(����� %���	 �
� ��� � ��	 � ������� �� � ���

The proof of
�
� � � ��� � � is left as an exercise. Hint: look at the occurrences of � !

Any fixed point combinator can be used to make recursive definitions under call-by-
name reduction. Later, we shall modify � to get a fixed point combinator that works
with a call-by-value interpreter for the � -calculus. In practical compilers, recursion
should be implemented directly because fixed point combinators are inefficient.

4.5 Head Normal Form 19

4.5 Head Normal Form

If 	 ����	 then 	 has no normal form. For if 	 �
 where
 is in normal form,
then
 � ��
 . Since ��
 is also in normal form, the Church-Rosser Theorem gives us

 ����
 . But clearly
 cannot contain itself as a subterm!

By similar reasoning, if 	 �
 	 then 	 usually has no normal form, unless

is something like a constant function or identity function. So anything defined with the
help of a fixed point combinator, such as ������
 , is unlikely to have a normal form.

Although ������
 has no normal form, we can still compute with it; ������
�� does have
a normal form, namely

��� �
. We can use infinite objects (including functions as above,

and also lazy lists) by computing with them for a finite time and requesting a finite part
of the result. To formalize this practice, let us define the notion of head normal form
(hnf).

Definition 7 A term is in head normal form (hnf) if and only if it looks like this:

������������� � � ��	�� ����� 	 " �
� �

' � � �
Examples of terms in hnf include

� ����� ��� ��� � � � ����� � ��� �������������
But ��� � � ����������� is not in hnf because it admits the so-called head reduction

��� � � �����������	� ��� ��� �
Let us note some obvious facts. A term in normal form is also in head normal form.

Furthermore, if
������������� � � ��	�������� 	 " �

then
 must have the form

������������� � � ��
 � �����
 "
where 	�� �
 � , . . . , 	 " �
 " . Thus, a head normal form fixes the outer structure
of any further reductions and the final normal form (if any!). And since the arguments
	�� , . . . , 	 " cannot interfere with one another, they can be evaluated independently.

By reducing a term 	 to hnf we obtain a finite amount of information about the
value of 	 . By further computing the hnfs of 	 � , . . . , 	 " we obtain the next layer of
this value. We can continue evaluating to any depth and can stop at any time.

For example, define � � � � � ����� � � � . This is analogous to � � � � � � , but uses pairs:
� � � � �

�
� �
�
� �
�������
����� . We have

� � � ����� � � � �
� �

��� � � � � � ��� � � �
� � � � � � � �
� � � � � � � � � � � � � ���
� �����

20 4. WRITING RECURSIVE FUNCTIONS IN THE � -CALCULUS

With � � � � � � � we reached a head normal form, which we continued to reduce. We
have � �

�
� ��� � �

and � �

�
����

�
� ����� � �

, since the same reductions work if � � is
a function’s argument. These are examples of useful finite computations involving an
infinite value.

Some terms do not even have a head normal form. Recall � , defined by � ��
����� � ��� � ����� � ��� . A term is reduced to hnf by repeatedly performing leftmost reduc-

tions. With � we can only do � � � , which makes no progress towards an hnf. An-
other term that lacks an hnf is ��� � � ; we can only reduce ��� � ��� ��� � � .

It can be shown that if 	�
 has an hnf then so does 	 . Therefore, if 	 has no hnf
then neither does any term of the form 	�
 �
 �������
 " . A term with no hnf behaves
like a totally undefined function: no matter what you supply as arguments, evaluation
never returns any information. It is not hard to see that if 	 has no hnf then neither
does �����
	 or 	��
 � ��� , so 	 really behaves like a black hole. The only way to get rid
of 	 is by a reduction such as

�
����������	�� � . This motivates the following definition.

Definition 8 A term is defined if and only if it can be reduced to head normal form;
otherwise it is undefined.

The exercises below, some of which are difficult, explore this concept more deeply.

Exercise 6 Are the following terms defined? (Here
� � ��� � � � .)

� � � �
 � � � � � � � �
� � ��� �

Exercise 7 A term 	 is called solvable if and only if there exist variables � � , . . . , � �
and terms
 � , . . . ,
 such that

�
������������� � �
	���
 �������
 �

� �
Investigate whether the terms given in the previous exercise are solvable.

Exercise 8 Show that if 	 has an hnf then 	 is solvable. Wadsworth proved that
	 is solvable if and only if 	 has an hnf, but the other direction of the equivalence is
much harder.

4.6 Aside: An Explanation of �
For the purpose of expressing recursion, we may simply exploit ������� � ��� � with-
out asking why it holds. However, the origins of � have interesting connections with
the development of mathematical logic.

Alonzo Church invented the � -calculus to formalize a new set theory. Bertrand Rus-
sell had (much earlier) demonstrated the inconsistency of naive set theory. If we are
allowed to construct the set � ��� �������� ��
 , then � � � if and only if ���� � . This
became known as Russell’s Paradox.

4.7 Summary: the � -Calculus Versus Turing Machines 21

In his theory, Church encoded sets by their characteristic functions (equivalently, as
predicates). The membership test 	 �
 was coded by the application
 � 	�� , which
might be true or false. The set abstraction � � �

 was coded by ������
 , where
 was
some � -term expressing a property of � .

Unfortunately for Church, Russell’s Paradox was derivable in his system! The Rus-
sell set is encoded by � � ������� �
 � � ��� . This implied � ��� � �

� � �!� , which was a
contradiction if viewed as a logical formula. In fact, � � has no head normal form: it
is an undefined term like � .

Curry discovered this contradiction. The fixed point equation for � follows from
� � � � �

� � �!� if we replace � �
 by an arbitrary term � . Therefore, � is often
called the Paradoxical Combinator.

Because of the paradox, the � -calculus survives only as an equational theory. The
typed � -calculus does not admit any known paradoxes and is used to formalize the syn-
tax of higher-order logic.

4.7 Summary: the � -Calculus Versus Turing Machines

The � -calculus can encode the common data structures, such as booleans and lists, such
that they satisfy natural laws. The � -calculus can also express recursive definitions.
Because the encodings are technical, they may appear to be unworthy of study, but this
is not so.

� The encoding of the natural numbers via Church numerals is valuable in more
advanced calculi, such as the second-order � -calculus.

� The encoding of lists via ordered pairs models their usual implementation on the
computer.

� As just discussed, the definition of � formalizes Russell’s Paradox.

� Understanding recursive definitions as fixed points is the usual treatment in se-
mantic theory.

These constructions and concepts are encountered throughout theoretical computer
science. That cannot be said of any Turing machine program!

5 The
�

-Calculus and Computation Theory

The � -calculus is one of the classical models of computation, along with Turing ma-
chines and general recursive functions. Church’s Thesis states that the computable
functions are precisely those that are � -definable. Below, we shall see that the � -
calculus has the same power as the (total) recursive functions. We shall also see some
strong undecidability results for � -terms. The following definition is fundamental.

22 5. THE � -CALCULUS AND COMPUTATION THEORY

Definition 9 If � is an � -place function over the natural numbers, then � is � -definable
if there exists some � -term � such that, for all

'
� ������� � '

�
 ,

�
'
� ����� ' � � �(' � ������� � ' � �

In other words, � maps numerals for arguments to numerals for � ’s results. By the
Church-Rosser Theorem, since numerals are in normal form, we have the reduction

�
'
� ����� ' � � �(' � ������� � ' � �

Thus, we can compute the value of � �(' � ������� � ' � by normalizing the term �
'
� ����� ' .

5.1 The Primitive Recursive Functions

In computation theory, the primitive recursive functions are built up from the following
basic functions:

0 the constant zero
suc the successor function
���

 the projection functions,
���

� ��� ������� � � ��� � �

New functions are constructed by substitution and primitive recursion. Substitu-
tion, or generalized composition, takes an � -place function � and the � -place func-
tions ��� ������� � � � ; it yields the � -place function � such that

� � ��� ������� � � �+� �
� ��� � ��� ������� � � � ������� � � �

� ��� ������� � � ��� �
Primitive recursion takes an � -place function � and an

�
�
� � � -place function � ; it yields

the
�
��� � � -place function � such that

� � � � ��� ������� � � � � �
� ��� ������� � � �

� � ��	�� � ��� � ��� ������� � � � � � � � � ��� ��� ������� � � � � ��� ��� ������� � � �

5.2 Representing the Primitive Recursive Functions

The functions are defined in the � -calculus in the obvious way. The proof that they are
correct (with respect to our definition of � -definability) is left as an exercise.

Here are the basic functions:

� For 0 use
�

, namely � � ��� � .

� For suc use ��	�� , namely ��� � ��� � � � � ��� .
� For

� �

 use ������������� � � � .

5.3 The General Recursive Functions 23

To handle substitution, suppose that the � -place function � and � -place func-
tions ��� ������� � � � are � -defined by � ��� � ������� ��� � , respectively. Then, their composi-
tion � is � -defined by

��� ����������� � ��� � � ������������� � ����� � � � ����������� � �
To handle primitive recursion, suppose that the � -place function � and

�
� � � � -place

function � are � -defined by � and � , respectively. The primitive recursive function �
is � -defined by

��� �
�

� � ����������� � �����
�
� ��� � � � ���� �!��������� � �� � � � � ��� ��������� ������� �

� ��� �+��������������� �����+�
5.3 The General Recursive Functions

Starting with the primitive recursive functions, the so-called general recursive func-
tions are obtained by adding the minimisation operator, or function inversion. Given
an � -place function � it yields the � -place function � such that

� � ��� ������� � � ��� the least � such that � � � ��� � � ������� � � �+� ��� �
and is undefined if no such � exists.

Thus, minimisation may yield a partial function. This leads to certain difficulties.
� The notion of undefined is complicated in the � -calculus. It is tedious to show

that the � -encoding of minimisation yields an undefined term if and only if the
corresponding function fails to terminate.

� Composition in the � -calculus is non-strict. For example, consider the partial
functions � and � such that �

� ���+� � and �
� ��� is undefined for all � . We may � -

define � and � by � � ����� � and � � ����� � . Now, �
�
�
� � ��� should be undefined,

but � � � � ��� �
. Defining the strict composition of � and � is tricky.

Let us restrict attention to the total recursive functions. If for all � � ������� � � there is
some � such that �

� ��� � � ������� � � ��� ��� , then the inverse of � is total. Suppose that �
is a term that � -defines � . Then the inverse is � -defined by

��� ������������� � �
�

��� � ����� � � ��	���� ����� � �!������������� �� � � � ��	�� ����� � �

This sets up a recursive function that tests whether
� �!��� ��������� � equals � � for in-

creasing values of � . To start the search, this function is applied to
�

. The equality test
for natural numbers can be defined in many ways, such as

� ��	���� � � ��� � ��� ��� � � � � ��
�
 � ��	�� � ��� � ��	�� � �����

24 5. THE � -CALCULUS AND COMPUTATION THEORY

This works because ��	�� � � � �
if ��� � . The equality relation between arbi-

trary � -terms (not just for Church numerals) is undecidable and cannot be expressed in
the � -calculus.

Exercise 9 Find another definition of the equality test on the natural numbers.

5.4 The � -Definable Functions are Recursive

We have just shown that all total recursive functions are � -definable. The converse is
not particularly difficult and we only sketch it. The key is to assign a unique (and recur-
sively computable!) Gödel number � 	 to each � -term 	 . First, assume that the set of
variables has the form � � � ��� � ��� ������� , so that each variable is numbered. The definition
of � 	 is quite arbitrary; for example, we could put

� � � � � �

� � ��� � �
	�� � � � ���	�
� � 	�
�� �
 �	� � � �	�

To show that all � -definable functions are recursive, suppose that we are given a
� -term � ; we must find a recursive function � such that � �(' � ������� � ' �+�

'
if and only

if �
'
� ����� ' � '

. We can do this in a uniform fashion by writing an interpreter for
the � -calculus using the language of total recursive functions, operating upon the Gödel
numbers of � -terms. This is simply a matter of programming. The resulting program is
fairly long but much easier to understand than its Turing machine counterpart, namely
the Universal Turing Machine.

Exercise 10 (Composition of partial functions.) Show that � � � �
for every

Church numeral � . Use this fact to show that the term � defined by

� � ������� � � � � � � �����
� -defines the composition �
� � of the functions � and � , provided � � -defines � and� � -defines � . What can be said about ��	 if � 	 is undefined? Hint: recall the
definition of solvable from Exercise 7.

5.5 The Second Fixed Point Theorem

We shall formalize the � -calculus in itself in order to prove some undecidability results.
The Gödel numbering is easily coded and decoded by arithmetic operations. In particu-
lar, there exist computable functions Ap and Num, operating on natural numbers, such
that

Ap
� � 	 ���
�� � � � 	�
��

5.5 The Second Fixed Point Theorem 25

�
 �	� � � �	�
Num

�
��� � � � � �

� � ��������� � ��� � ����� � ���� ��� �

����� �����
�

These can be � -defined by terms ��� and ����� , operating on Church numerals.
Let us write ��	
	 for

� � 	�� , which is the Church numeral for the Gödel number of 	 .
This itself is a � -term. Using this notation, ��� and ����� satisfy

������	
	���
�	 � ��	�
�	
����� � � � � 	 (where � is any Church numeral)

Putting ��	
	 for � in the latter equation yields a crucial property:

�����
��	
	 ������	
	�	��

Theorem 10 (Second Fixed Point) If � is any � -term then there exists a term
�

such
that

��� � 	 � � �
Proof Make the following definitions:

� � ����� � � ��� � � ����� �����
� � ������	

Then, by a � -reduction and by the laws for ��� and ����� , we get

� � �
�
��������	 � �����
����	����

� �
�
��������	�������	�	��

� �
�
��������	�	��

� �
�
�
�
	��

Therefore
� ��� � � � 	�� . ��

Exercise 11 How do we know that the steps in the proof are actually reductions, rather
than mere equalities?

What was the First Fixed Point Theorem? If � is any � -term then there exists a
term
�

such that � � � � . Proof: put
� � ��� . Note the similarity between ���

and the
�

constructed above. We use fixed point combinators to � -define recursive
functions; we shall use the Second Fixed Point Theorem to prove undecidability of the
halting problem.

26 5. THE � -CALCULUS AND COMPUTATION THEORY

5.6 Undecidability Results for the � -Calculus

We can show that the halting problem, as expressed in the � -calculus, is undecidable.

Theorem 11 There is no � -term
� ����
�� such that

� ����
�� ��	
	 � �
���	�� if 	 has a normal form
����� ��� if 	 has no normal form

Proof Assume the contrary, namely that
� ����
�� exists. Put

� � ��������� � � ����
�� ��� � � �

by the Second Fixed Point Theorem, there exists
�

such that

� � � � � 	 � ���
� � ����
�� � � 	�� � � �

There are two possible cases; both lead to a contradiction:

� If
�

has a normal form then
� � ���
���	�� �

� � � , which has no normal form!

� If
�

has no normal form then
� � ��� ����� ��� �

� � �
, which does have a normal

form!
��

The proof is a typical diagonalisation argument. The theorem is strong: although� ����
�� ��	
	 can do anything it likes with the code of 	 , analysing the term’s structure,
it cannot determine whether 	 has a normal form. Assuming Church’s Thesis — the
computable functions are precisely the � -definable ones — the theorem states that the
halting problem for the normalization of � -terms is computationally undecidable.

Much stronger results are provable. Dana Scott has shown that

� if � is any non-trivial set of � -terms (which means that � is neither empty nor
the set of all � -terms), and

� if � is closed under equality (which means that 	 � � and 	 �
 imply

 � �)

then the test for membership in
�

is undecidable. The halting problem follows as a
special case, taking

� � ��	 ��	���
 and
 is in normal form

See Barendregt [1, page 143], for more information.

27

6 ISWIM: The
�

-calculus as a Programming Language

Peter Landin was one of the first computer scientists to take notice of the � -calculus and
relate it to programming languages. He observed that Algol 60’s scope rules and call-
by-name rule had counterparts in the � -calculus. In his paper [9], he outlined a skeletal
programming languages based on the � -calculus. The title referred to the 700 languages
said to be already in existence; in principle, they could all share the same � -calculus
skeleton, differing only in their data types and operations. Landin’s language, ISWIM
(If you See What I Mean), dominated the early literature on functional programming,
and was the model for ML.

Lisp also takes inspiration from the � -calculus, and appeared many years before
ISWIM. But Lisp made several fatal mistakes: dynamic variable scoping, an imper-
ative orientation, and no higher-order functions. Although ISWIM allows imperative
features, Lisp is essentially an imperative language, because all variables may be up-
dated.

ISWIM was designed to be extended with application-specific data and operations.
It consisted of the � -calculus plus a few additional constructs, and could be translated
back into the pure � -calculus. Landin called the extra constructs syntactic sugar be-
cause they made the � -calculus more palatable.

6.1 Overview of ISWIM

ISWIM started with the � -calculus:

� variable�
�����
	�� abstraction� 	�
�� application

It also allowed local declarations:

let � ��	 in
 simple declaration
let � ��� ����� � " ��	 in
 function declaration
letrec � � � ����� � " ��	 in
 recursive declaration

Local declarations could be post-hoc:

 where � � 	

 where � ��� ����� � " � 	

 whererec � � � ����� � " ��	

The meanings of local declarations should be obvious. They can be translated into the
pure � -calculus:

let � ��	 in
 � �
�����

���	

let � ��� ����� � " ��	 in
 � �
� � �

�� � ����� ����� � " �
	��

letrec � � � ����� � " ��	 in
�� �
� � �

�� � � �

� � ��� ����� � " �
	����

28 6. ISWIM: THE � -CALCULUS AS A PROGRAMMING LANGUAGE

Programmers were not expected to encode data using Church numerals and the like.
ISWIM provided primitive data structures: integers, booleans and ordered pairs. There
being no type system, lists could be constructed by repeated pairing, as in Lisp. The
constants included

� � � � � � � ����� integers
� � � � arithmetic operators
� ������ � � relational operators

���	�� ����� ��� booleans
����
 � � � �
 boolean connectives
��� �

then 	 else
 conditional

6.2 Call-by-value in ISWIM

The call-by-value rule, rather than call-by-name, was usually adopted. This was (and
still is) easier to implement; we shall shortly see how this was done, using the SECD
machine. Call-by-value is indispensable in the presence of imperative operations.

Call-by-value gives more intuitive and predictable behaviour generally. Classical
mathematics is based on strict functions; an expression is undefined unless all its parts
are defined. Under call-by-name we can define a function � such that if � � ��� � � for
all � , with even � � � � � �!� � . Ordinary mathematics cannot cope with such functions;
putting them on a rigorous basis requires complex theories.

Under call-by-value, if -then-else must be taken as a special form of expression.
Treating ��� as a function makes fact run forever:

letrec �����	� ��
 �+� ���
��
 �
����� ��
 �������	� ��
 �������

The arguments to ��� are always evaluated, including the recursive call; when � � �

it tries to compute �����	� � ����� . Therefore, we take conditional expressions as primitive,
with evaluation rules that return 	 or
 unevaluated:

��� �
then 	 else
 � 	

��� �
then 	 else
 �

Our call-by-value rule never reduces anything enclosed by a � . So we can translate
the conditional expression to the application of an ��� -function:

��� �
then 	 else
 � ��� � �

�����
	�� � �����

�� �

Choosing some variable � not free in 	 or
 , enclosing those expressions in � delays
their evaluation; finally, the selected one is applied to 0.

6.3 Pairs, Pattern-Matching and Mutual Recursion 29

6.3 Pairs, Pattern-Matching and Mutual Recursion

ISWIM includes ordered pairs:
� 	 �
�� pair constructor
� �
 ����
 projection functions

For pattern-matching, let �
� % � � % � � � �

abbreviate

����� � � % � % � � � � � � �
 ��� � ����
 ���
where % � and % � may themselves be patterns. Thus, we may write

let
� ��� ������	 in

�
taking apart 	 ’s value

let � � ��� ����� �
in
 defining � on pairs

The translation iterates to handle things like

let
� � � � ��� � ��� ������� ��	 in

� �
We may introduce � -tuples, writing

� ��� ������� � � � � � � � for the nested pairs

� ��� ������� � � � � � � � � �����
� �
The mutually recursive function declaration

letrec � ������+��	��
and � ������ ��	��
...
and � " �� " ��	 "
in

can be translated to an expression involving pattern-matching:

�
�
� � � ������� � � " � �

�� � � �

�
� � � ������� � � " � � � ������ �
	�� � ��������
	�� ������� � ���� " �
	 " �����

We can easily handle the general case of
'

mutually recursive functions, each with any
number of arguments. Observe the power of syntactic sugar!

6.4 From ISWIM to ML

Practically all programming language features, including go to statements and pointer
variables, can be formally specified in the � -calculus, using the techniques of denota-
tional semantics. ISWIM is much simpler than that; it is programming directly in the � -
calculus. To allow imperative programming, we can even define sequential execution,
letting 	 �
 abbreviate

�
�����

���	 ; the call-by-value rule will evaluate 	 before
 .

30 6. ISWIM: THE � -CALCULUS AS A PROGRAMMING LANGUAGE

However, imperative operations must be adopted as primitive; they cannot be defined
by simple translation into the � -calculus.

ISWIM gives us all the basic features of a programming language — variable scope
rules, function declarations, and local declarations. (The let declaration is particularly
convenient; many languages still make us write assignments for this purpose!) To get
a real programming language, much more needs to be added, but the languages so ob-
tained will have a common structure.

ISWIM was far ahead of its time and never found mainstream acceptance. Its in-
fluence on ML is obvious. Standard ML has changed the syntax of declarations, added
polymorphic types, exceptions, fancier pattern-matching and modules — but much of
the syntax is still defined by translation. A French dialect of ML, called CAML, retains
much of the traditional ISWIM syntax [4].

6.5 The SECD Machine

Landin invented the SECD machine, an interpreter for the � -calculus, in order to exe-
cute ISWIM programs [3, 5, 8]. A variant of the machine executes instructions com-
piled from � -terms. With a few optimisations, it can be used to implement real func-
tional languages, such as ML. SECD machines can be realized as byte-code inter-
preters, their instructions can be translated to native code, and they can be implemented
directly on silicon. The SECD machine yields strict evaluation, call-by-value. A lazy
version is much slower than graph reduction of combinators, which we shall consider
later.

It is tempting to say that a value is any fully evaluated � -term, namely a term in
normal form. This is a poor notion of value in functional programming, for two reasons:

1. Functions themselves should be values, but many functions have no normal form.
Recursive functions, coded as ��� , satisfy ��� ��� � ��� �+� � � � � � � ���+�
����� . Although they have no normal form, they may well yield normal forms as
results when they are applied to arguments.

2. Evaluating the body of a � -abstraction, namely the 	 in �����
	 , serve little pur-
pose; we are seldom interested in the internal structure of a function. Only when
it is applied to some argument
 do we demand the result and evaluate 	��
 � ��� .

Re (2), we clearly cannot use encodings like ��� � � � for
���	�� and � � ��� � for
�

,
since our evaluation rule will not reduce function bodies. We must take the integers,
booleans, pairs, etc., as primitive constants. Their usual functions (� , � , � , . . .) must
also be primitive constants.

6.6 Environments and Closures

Consider the reduction sequence
�

��� � � � � ��� � � � �
��� � � � �����	� � � �	� � �

6.7 The SECD State 31

The � -reduction eliminates the free occurrence of � in ��� � � � � by substitution for � .
Substitution is too slow to be effective for parameter passing; instead, the SECD ma-
chine records � � � in an environment.

With curried functions,
�

��� � � � ����� � is a legitimate value. The SECD machine
represents it by a closure, packaging the � -abstraction with its current environment:

� � �
� ��

bound variable

� � � ��

function body

� � � ��

environment

�

When the SECD machine applies this function value to the argument 5, it restores the
environment to � � � , adds the binding � � � , and evaluates ��� � in this augmented
environment.

A closure is so-called because it “closes up” the function body over its free vari-
ables. This operation is costly; most programming languages forbid using functions as
values. Until recently, most versions of Lisp let a function’s free variables pick up any
values they happened to have in the environment of the call (not that of the function’s
definition!); with this approach, evaluating

let �
� ���+� � � � in

let � � ���+� � � � � in
� � �
 �

would return 18, using 17 as the value of � in � ! This is dynamic binding, as opposed to
the usual static binding. Dynamic binding is confusing because the scope of � in � � ���
can extend far beyond the body of � — it includes all code reachable from � (including
� in this case).

Common Lisp, now the dominant version, corrects this long-standing Lisp defi-
ciency by adopting static binding as standard. It also allows dynamic binding, though.

6.7 The SECD State

The SECD machine has a state consisting of four components � ,
�

, � ,
�

:

1. The Stack is a list of values, typically operands or function arguments; it also
returns the result of a function call.

2. The Environment has the form ��� � � � � ����� � � � � , expressing that the vari-
ables ��� ������� � � have the values � � ������� ��� , respectively.

3. The Control is a list of commands. For the interpretive SECD machine, a com-
mand is a � -term or the word app; the compiled SECD machine has many com-
mands.

32 6. ISWIM: THE � -CALCULUS AS A PROGRAMMING LANGUAGE

4. The Dump is empty
� � � or is another machine state of the form

� � � � � � � � � . A
typical state looks like

� ��� � � � � � � �
� ��� � � � � � � ������� � � � �

 � � � � � ����� ���
It is essentially a list of triples

� � � � � � � � ��� , � ��� � � � � � � � , . . . ,
� � � �

 � � � and
serves as the function call stack.

6.8 State Transitions

Let us write SECD machine states as boxes:

Stack
Environment

Control
Dump

To evaluate the � -term 	 , the machine begins execution an the initial state where
	 is the Control: � �

� �
� 	� �

If the Control is non-empty, then its first command triggers a state transition. There
are cases for constants, variables, abstractions, applications, and the � � � command.

A constant is pushed on to the Stack:

�
�

' �
��

� � �
' � �

�

��

The value of a variable is taken from the Environment and pushed on to the Stack.
If the variable is � and

�
contains � � � then � is pushed:

�
�

� �
��

� � � � � �
�

��

A � -abstraction is converted to a closure, then pushed on to the Stack. The closure
contains the current Environment:

�
�

�����
	 �
��

� � �
� � �

� ��� 	 � � � � �
�

��

6.9 A Sample Evaluation 33

A function application is replaced by code to evaluate the argument and the func-
tion, with an explicit app instruction:

�
�

	�
 �
��

� � � �
�

 � 	 �
� � � �

��

The � � � command calls the function on top of the Stack, with the next Stack ele-
ment as its argument. A primitive function, like � or � , delivers its result immediately:

� � � � �
�

� � � �
��

� � � � � ��� � �
�

��

The closure
� � �

� ��� 	 � � � � is called by creating a new state to evaluate 	 in the
Environment

� � , extended with a binding for the argument. The old state is saved in
the Dump: � � �

� ��� 	 � � � � � � � �
�

� � � �
��

� � � �
� ��� � � �

	� � � � � � � � �
The function call terminates in a state where the Control is empty but the Dump is

not. To return from the function, the machine restores the state
� � � � � � � � � from the

Dump, then pushes � on to the Stack. This is the following state transition:

�
� ��� � � � � � � � �

� � � � � �
�

��

The result of the evaluation, say � , is obtained from a final state where the Control
and Dump are empty, and � is the sole value on the Stack:

� �
� �

� �� �
6.9 A Sample Evaluation

To demonstrate how the SECD machine works, let us evaluate the expres-
sion twice ����� � , where twice is � � ��� � � � ��� and ����� is a built-in squaring

34 6. ISWIM: THE � -CALCULUS AS A PROGRAMMING LANGUAGE

function. (Note that twice is just the Church numeral
�

). We start from the initial
state:

��
twice ����� ��

�������
 �� � � ��
� �

twice �����
�
� � ��

����� ���� � � ��
twice �����

�
� � ��

�������
 �� � �
��

�����
�

twice
�
� � � �

� � ��
����� ���� � � �����

� ��
twice

�
� � � �

� � ��
��	 ���
� � �

� � �
� � � ����� � � � ��� � �!� �

�����
� ��

� � � �
� � ��

�
���
� � � �

� � �����
����� � � � ���� � � � ��� � � � � �

��	 ���
� � �
� � �

� ��� � � � ��� � � � �������
� � ������� � � � ��� � � � � �

�� ��
��� � �
� � �

� ��� � � � ��� � � � ����� � � ��
� � ��

�
���
� � �

�
� � � � � � �����

� � � ���� � � � � � � � �
�������
 �� � � �

� � � � � � �����
� � � � �

� � �� � � � � � � � �
�������
 �� � �

�
� � � � � � �����
� � � �

� � � � � �
� � �� � � � � � � � �

����

� � � �

� � � � � � �����
� �
� � � � � �

� � �� � � � � � � � �
����

� � � �����
� �

� � � � � � �����
� � � � � �

� � �� � � � � � � � �
������� �

� � �
�

� � � � � � �����
� �
� � �� � � � � � � � �

����

� � � �����

� �
� � � � � � �����

� � �� � � � � � � � �
�
���

� � �
� �

� � � � � � ������� � � � � � � � �

�� ��
��� � �

� ����
The machine terminates in a final state, giving a value of 81.

6.10 The Compiled SECD Machine 35

6.10 The Compiled SECD Machine

It takes 17 steps to evaluate
���

��� � � ���!��� ����� ! Much faster execution is obtained by first
compiling the � -term. Write � � 	 � � for the list of commands produced by compiling 	 ;
there are cases for each of the four kinds of � -term.

Constants are compiled to the � � ���
 command, which will (during later execution
of the code) push a constant onto the Stack:

� � ' � ��� � � ���

�(' �

Variables are compiled to the � ��� command, which will push the variable’s value,
from the Environment, onto the Stack:

� � ��� ����� ��� � ���
Abstractions are compiled to the � � � ��	�� � command, which will push a closure onto

the Stack. The closure will include the current Environment and will hold 	 as a list
of commands, from compilation:

� � �����
	 � ��� � � � ��	�� �
� ��� � � 	 � � �

Applications are compiled to the � � � command at compile time. Under the inter-
preted SECD machine, this work occurred at run time:

� � 	�
 � ��� � �
 � � � � � 	 � � �
� � �

We could add further instructions, say for conditionals. Let
 � �

�

� � � � � � be re-
placed by � � or � � , depending upon whether the value on top of the Stack is
���	��
or ����� ��� : � � ��� �

then 	 else
 � ����� � � � � �

 � �

� � � 	 � � � � �
 � � �
To allow built-in 2-place functions such as � and � could be done in several ways.

Those functions could be made to operate upon ordered pairs, constructed using a
pair instruction. More efficient is to introduce arithmetic instructions such as ��
�

and �
	���
 , which pop both their operands from the Stack. Now

���
��� � � � � ��� �����

compiles to
� � ���

�
��� �
� � ���

� ��� �
� � � ��	�� �

� ��� � $ � �
� � � �

� � �
and generates two further lists of commands:

� $ � � � � ��	�� �
� ��� � ���

� � � � ���
� ��� �
� ���

� ��� �
��
�

Many further optimisations can be made, leading to an execution model quite close
to conventional hardware. Variable names could be removed from the Environment,

36 6. ISWIM: THE � -CALCULUS AS A PROGRAMMING LANGUAGE

and bound variables referred to by depth rather than by name. Special instructions en-
ter and exit could efficiently handle functions that are called immediately (say, those
created by the declaration � �
�� ��
 � ��), creating no closure:

� � � �����
	���
 � ����� �
 � � �
� �
 � �

� � � 	 � � �
������

Tail recursive (sometimes called iterative) function calls could be compiled to the
tailapp command, which would cause the following state transition:

� � �
� ��� � � � �
� � �

�

 ��� � � � ��
� � � �

� ��� � � �
��

The useless state
� � � � � � � � � is never stored on the dump, and the function return after

tailapp is never executed — the machine jumps directly to � !

6.11 Recursive Functions

The usual fixed point combinator, � , fails under the SECD machine; it always loops.
A modified fixed point combinator, including extra � ’s to delay evaluation, does work:

� � � � ����� � � ��� � � � ��� � ��� � � � �����
But it is hopelessly slow! Recursive functions are best implemented by creating a clo-
sure with a pointer back to itself.

Suppose that � � ���+��	 is a recursive function definition. The value of � is repre-
sented by �

�
� � ���
	�� . The SECD machine should interpret �

�
� � ���
	�� in a special

manner, applying the closure for � � ���
	 to a dummy value,
�

. If the current Environ-
ment is

�
then this yields the closure

� � �
� ����	 � � � � � � �

Then the machine modifies the closure, replacing the
�

by a pointer looping back to
the closure itself:

� � �
� ��� 	 � � � � � � �

When the closure is applied, recursive calls to � in 	 will re-apply the same closure.
The cyclic environment supports recursion efficiently.

The technique is called “tying the knot” and works only for function definitions.
It does not work for recursive definitions of data structures, such as the infinite list� � � � � � �������], defined as �

�
�

 ��� � ��� �
 � . Therefore strict languages like ML allow only

functions to be recursive.

37

7 Lazy Evaluation via Combinators

The SECD machine employs call-by-value. It can be modified for call-by-need (lazy
evaluation), as follows. When a function is called, its argument is stored unevaluated
in a closure containing the current environment. Thus, the call 	�
 is treated some-
thing like 	 �

�����

�� , where � does not appear in
 . This closure is called a suspen-
sion. When a strict, built-in function is called, such as � , its argument is evaluated in
the usual way.

It is essential that no argument be evaluated more than once, no matter how many
times it appears in the function’s body:

let ��������� � � � in

�����

�
�����

�
����� � ���

If this expression were evaluated by repeatedly duplicating the argument of ����� , the
waste would be intolerable. Therefore, the lazy SECD machine updates the environ-
ment with the value of the argument, after it is evaluated for the first time. But the cost
of creating suspensions makes this machine ten times slower than the strict SECD ma-
chine, according to David Turner, and compilation can give little improvement.

7.1 Graph Reduction in the � -Calculus

Another idea is to work directly with � -terms, using sharing and updating to ensure that
no argument is evaluated more than once. For instance, the evaluation of

�
��� � � � ����	

might be represented by the graph reduction

mult n

n

Mλn
mult M

The difficulty here is that � -abstractions may themselves be shared. We may not
modify the body of the abstraction, replacing the bound variable by the actual argu-
ment. Instead, we must copy the body — including parts containing no occurrence of
the bound variable — when performing the substitution.

Both the lazy SECD machine and graph reduction of � -terms suffer because of the
treatment of bound variables. Combinators have the same expressive power as the � -
calculus, but no bound variables. Graph reduction in combinators does not require
copying. David Turner found an efficient method of translating � -terms into combi-
nators, for evaluation by graph reduction [10]. Offshoots of his methods have been
widely adopted for implementing lazy functional languages.

38 7. LAZY EVALUATION VIA COMBINATORS

7.2 Introduction to Combinators

In the simplest version, there are only two combinators,
�

and � . Combinators are
essentially constants. It is possible to define

�
and � in the � -calculus, but combina-

tory logic (CL) exists as a theory in its own right. �

The terms of combinatory logic, written
 , � , � , . . . , are built from
�

and � us-
ing application. They may contain free variables, but no bound variables. A typical
CL term is

� � � � � ��� � � � � ����� . Although CL is not particularly readable, it is
powerful enough to code all the computable functions!

The combinators obey the following reductions:
�
 � ���

�
 � � ���
�� � � �!�

Thus, the combinators could have been defined in the � -calculus by
� � ��� � � �
� � ��� � ��� � � � �+���

But note that � � does not reduce — because � requires three arguments — while
the corresponding � -term does. For this reason, combinator reduction is known as weak
reduction (hence the “w” in ���).

Here is an example of weak reduction:

� � �
���� �
 � �
 �����

Thus � � �
 ���
 for all combinator terms
 ; let us define the identity combinator
by
� ��� � � .
Many of the concepts of the � -calculus carry over to combinators. A combinator

term
 is in normal form if it admits no weak reductions. Combinators satisfy a version
of the Church-Rosser Theorem: if
 �
� (by any number of reductions, forwards or
backwards) then there exists a term � such that
 ��� � and � ��� � .

7.3 Abstraction on Combinators

Any � -term may be transformed into a roughly equivalent combinatory term. (The
meaning of “roughly” is examined below.) The key is the transformation of a com-
binatory term
 into another combinator term, written as �
 ����
 since it behaves like a

� -abstraction. �

Definition 12 The operation �
 � , where � is a variable, is defined recursively as fol-
lows:

�
 ��� � � �
�
 ����
 � �
 (� not free in
)
�
 ����
 � � �

�
�
 ����
 � � �
 ����� �

�
It is called combinatory logic for historical reasons; we shall not treat it as a logic.�
Some authors write 	
���
 for ����
��
 .

7.3 Abstraction on Combinators 39

Finally, �
 ����������� ��
 abbreviates �
 ��� � � ����� �
 � ��
 ����� � .
Note that �
 � is not part of the syntax of combinatory logic, but stands for the term

constructed as according to the definition above. Here is an example of combinatory
abstraction:

�
 � � � �+� � �
 ��� � �
 � � �+���
� �
 ��� � � �
 � � ��� � �
 � � ���
� �
 ��� � � � � � � ���
� �

�
�
 ��� � � � � �
 ��� � ���

� �
� � �

� � ��� � � � �
 ��� � � � �
 ��� �����
� �

� � �
� � ��� � � � � � � � �

Each �
 can double the number of applications in a term; in general, growth is ex-
ponential. Turner discovered a better abstraction method, discussed in the next section.
First, let us show that combinatory abstraction behaves like its � -calculus cousin. Let
�� be defined for combinatory terms in an analogous manner to Definition 3.

Theorem 13 For every combinatory term
 we have

�� � �
 ����
 � �
�� �
 ����� ��
�
�
 ����
 ��� ���

Proof We prove both properties independently, by structural induction on
 . There
are three cases.

If
 is the variable � , then �
 ��� � � �
. Clearly

�� � �
 ��� �����
�� � � �+� � �
�� � ������� ��
�
�
 ��� ����� � � � ��� �

If
 is any term not containing � , then �
 ����
 � �
 and

�� � �
 ����
 �+�
�� � �
 � �
�� �
 ��
�
 ����
 ��� � �
!� ���

If
�� � � , and � is free in � or � , then �
 ����
 � �
�

�
 ����� � � �
 ��� �!� . This case is
the inductive step and we may assume, as induction hypotheses, that the theorem holds
for � and � :

�� � �
 ����� � �
�� � � ����� ��

�� � �
 ��� �!� �
�� � �!� � � ��

�

�
 ����� ��� ��� ��
�
 ��� �!��� ��� �

40 7. LAZY EVALUATION VIA COMBINATORS

We now consider the set of free variables:

�� � �
 ����� �!� �
�� � � � �
 ����� � � �
 ��� �!���
� �
�� � � � ��� ��
���� �
�� � �!� ��� ��
��
�
�� � � �!����� ��

Finally, we consider application:
�

�
 ����
 ��� � �
�

�
 ����� � � �
 ��� �!���
��� �

�
 ����� ��� ��� �
 ��� �!�����
��� � ��� �
 ��� �!�����
��� � �

��

Using
�

�
 ����
 ���	���
 , we may derive an analogue of � -reduction for combina-
tory logic. We also get a strong analogue of � -conversion — changes in the abstraction
variable are absolutely insignificant, yielding identical terms.

Theorem 14 For all combinatory terms
 and � ,

�
�
 ����
 ��� ���
 � � � ���

�
 ����
 � �
 � ��
 � ��� ��� if � ��
�� �
 �
Proof Both statements are routine structural inductions; the first can also be derived
from the previous theorem by a general substitution theorem [1]. ��

7.4 The Relation Between � -Terms and Combinators

The mapping
� � ��� converts a � -term into a combinator term. It simply applies �

recursively to all the abstractions in the � -term; note that the innermost abstractions are
performed first! The inverse mapping,

� ��� , converts a combinator term into a � -term.

Definition 15 The mappings
� � ��� and

� ��� are defined recursively as follows:

� ��� ��� � �� 	
�� ��� � � 	�� ��� �
�� ����
�����
	�� ��� � �
 ��� � 	�� ���

� ����� � �� � ��� � ��� � � ��
� ����� ��� � ��� � � � �+����
 � ��� � �
 ��� � � ���

7.4 The Relation Between � -Terms and Combinators 41

Different versions of combinatory abstraction yield different versions of
� � ��� ; the

present one causes exponential blow-up in term size, but it is easy to reason about. Let
us abbreviate

� 	�� ��� as 	 ��� and
�
 ��� as
 � . It is easy to check that

� � ��� and
� ��� do

not add or delete free variables:

�� � 	��+�
�� � 	 ��� �
�� �
 �+�
�� �
 � �
Equality is far more problematical. The mappings do give a tidy correspondence

between the � -calculus and combinatory logic, provided we assume the principle of
extensionality. This asserts that two functions are equal if they return equal results for
every argument value. In combinatory logic, extensionality takes the form of a new
rule for proving equality:

!� � � �

�� � (� not free in
 or �)

In the � -calculus, extensionality can be expressed by a similar rule or by introducing
� -reduction:

�����
	 � ���!	 (� not free in)

Assuming extensionality, the mappings preserve equality [1]:

� 	 ��� ��� � 	 in the � -calculus�
 � � ��� �
 in combinatory logic

	 �
 ��� 	 ��� ��
 ���

�� � ���
 � ��� �

Normal forms and reductions are not preserved. For instance, � � is a normal
form of combinatory logic; no weak reductions apply to it. But the corresponding � -
term is not in normal form:

�
� � ��� � �

��� ����� � � � �+����� � ��� � � ��� � ������� �
There are even combinatory terms in normal form whose corresponding � -term has no
normal form! Even where both terms follow similar reduction sequences, reductions
in combinatory logic have much finer granularity than those in the � -calculus; consider
how many steps are required to simulate a � -reduction in combinatory logic.

Normal forms are the outputs of functional programs; surely, they ought to be pre-
served. Reduction is the process of generating the outputs. Normally we should not
worry about this, but lazy evaluation has to deal with infinite outputs that cannot be
fully evaluated. Thus, the rate and granularity of reduction is important. Despite the im-
perfect correspondence between � -terms and combinators, compilers based upon com-
binatory logic appear to work. Perhaps the things not preserved are insignificant for
computational purposes. More research needs to be done in the operational behaviour
of functional programs.

42 8. COMPILING METHODS USING COMBINATORS

8 Compiling Methods Using Combinators

Combinator abstraction gives us a theoretical basis for removing variables from � -
terms, and will allow efficient graph reduction. But first, we require a mapping from

� -terms to combinators that generates more compact results. Recall that �
 causes ex-
ponential blowup:

�
 � � � �+� � �
� � �

� � ��� � � � � � � � �
The improved version of combinatory abstraction relies on two new combinators,�
and

�
, to handle special cases of � :

�
 � � ���
 � � �!��
 � � ���
 � �
Note that

�
 � � yields the function composition of
 and � . Let us call the new
abstraction mapping ��� , after David Turner, its inventor:

������� � � �
��������
 � �
 (� not free in
)
��������
�� �
 (� not free in
)
��������
 � � �
 � ��������� � (� not free in
)
��������
 � � � �

��������
 ��� (� not free in �)
��������
 � � �

�
��������
 � � ��������� � (� free in
 and �)

Although ��� is a bit more complicated than �
 , it generates much better code (i.e.
combinators). The third case, for
 � , takes advantage of extensionality; note its simi-
larity to � -reduction. The next two cases abstract over
 � according to whether or not
the abstraction variable is actually free in
 or � . Let us do our example again:

� � � � � �+� � � � ��� � � � � � �+���
� � � ��� � �

� � � � �����
� � � ��� �	� �
� �	�

The size of the generated code has decreased by a factor of four! Here is another ex-
ample, from Paper 6 of the 1993 Examination. Let us translate the � -encoding of the
ordered pair operator:

� � ��� � � � � � � � � � � � � � � ��� � � � � � �
� � � � � �����

� � � ��� � � � � � � � �
� � � � � �������

� � � ��� � � � � � � � � �����
� � � ��� � � � � ���
� � � �

� � ��� �	� ���
� � � � � � � �

8.1 Combinator Terms as Graphs 43

Unfortunately, ��� can still cause a quadratic blowup in code size; additional primi-
tive combinators should be introduced (See Field and Harrison [5, page 286]. Further-
more, all the constants of the functional language — numbers, arithmetic operators, . . .
— must be taken as primitive combinators.

Introducing more and more primitive combinators makes the code smaller and
faster. This leads to the method of super combinators, where the set of primitive com-
binators is extracted from the program itself.

Exercise 12 Show
�
 � �
 using extensionality.

Exercise 13 Verify that
�	�

behaves like the � -term ��� � � �+� when applied to two
arguments.

Exercise 14 What would ����� � � �+� yield if we did not apply the third case in the def-
inition of ��� ?

8.1 Combinator Terms as Graphs

Consider the ISWIM program

let �����
�
���+� � � � in �����

�
���

Let us translate it to combinators:

�
� � � � � ��� � � � � ���
	���
�� ��� � �	� � � � � � � � ���
	���
���� � � � � � �����

� �	� � � � �
	���
 � �
This is a closed term — it contains no free variables (and no bound variables, of course).
Therefore it can be evaluated by reducing it to normal form.

Graph reduction works on the combinator term’s graph structure. This resem-
bles a binary tree with branching at each application. The graph structure for�	� � � � �
	���
 � � is as follows:

C I

5

S mult

I

Repeated arguments cause sharing in the graph, ensuring that they are never eval-
uated more than once.

44 8. COMPILING METHODS USING COMBINATORS

8.2 The Primitive Graph Transformations

Graph reduction deals with terms that contain no variables. Each term, and its sub-
terms, denote constant values. Therefore we may transform the graphs destructively
— operands are never copied. The graph is replaced by its normal form!

The primitive combinators reduce as shown in Figure 1. The sharing in the reduc-
tion for � is crucial, for it avoids copying � .

We also require graph reduction rules for the built-in functions, such as �
	���
 . Be-
cause �
	���
 is a strict function, the graph for �
	���

 � can only be reduced after

and � have been reduced to numeric constants � and � . Then �
	���
 � � is replaced
by the constant whose value is � � � . Graph reduction proceeds by walking down
the graph’s leftmost branch, seeking something to reduce. If the leftmost symbol is a
combinator like

�
,
�

, � ,
�

, or
�

, with the requisite number of operands, then it
applies the corresponding transformation. If the leftmost symbol is a strict combina-
tor like �
	���
 , then it recursively traverses the operands, attempting to reduce them to
numbers.

Figure 2 presents the graph reduction sequence for the ISWIM program

let �����
�
���+� � � � in �����

�
��� �

The corresponding term reductions are as follows:
�	� � � � �
	���
 � � � � � � �
	���
 � ���

� � �
	���
 � �
� �
	���
 �

� � ���
� �
	���
 � �
� � �

Clearly visible in the graphs, but not in the terms, is that the two copies of 5 are shared.
If, instead of 5, the argument of ����� had been a large combinatory term
 compiled
from the program, then
 would have been evaluated only once. Graph reduction can
also discard terms by the rule

�
 �����
 ; here � is never evaluated.

8.3 Booleans and Pairing

The � -calculus encodings of ordered pairs, Church numerals and so forth work with
combinators, but are impractical to use for compiling a functional language. New com-
binators and new reductions are introduced instead.

With lazy evaluation, if-then-else can be treated like a function, with the two reduc-
tions

���
���	��
 � ���

���	����� ���
 � ��� � �

8.3 Booleans and Pairing 45

I P
P

K P

Q
P

S P

Q

R

P Q

R

B P

Q

R

RQ

P

C P

Q

R

P

Q

R

Figure 1: Graph reduction for combinators

46 8. COMPILING METHODS USING COMBINATORS

C I

5

S mult

I
I

5

S mult

I

5

S mult

I

5

mult I

5
mult

25

Figure 2: A graph reduction sequence

8.4 Recursion: Cyclic Graphs 47

These reductions discard
 or � if it is not required; there is no need for tricks to delay
their evaluation. The first reduction operates on graphs as shown.

Q

if true

P

P

Pairing is also lazy, as it is in the � -calculus; we introduce the reductions

� �

�
����� �
 � � ���

����

� ����� �
 � � ��� � �

The corresponding graph reductions should be obvious:

fst

pair

Q

P

P

8.4 Recursion: Cyclic Graphs

Translating � into combinator form will work, yielding a mult-step reduction
resembling �

Y P

Y
P

This is grossly inefficient; � must repeat its work at every recursive invocation!
Instead, take � as a primitive combinator satisfying �
 ���
 � �

 � and adopt a
graph reduction rule that replaces the � by a cycle:

Y P P

Since
 is never copied, reductions that occur in it yield permanent simplifications
— they are not repeated when the function is entered recursively.

To illustrate this, consider the ISWIM program

letrec ������� � ���+� ����� ��� � ������� � � � ����� in ������� � � � �
�
The picture is an over-simplification; recall that we do not have

�

	
�� �
�
 !

48 8. COMPILING METHODS USING COMBINATORS

The result should be the infinite list
� � � � � � � � �������
����� . We translate from into combina-

tors, starting with
�
�

� � � � � ����� ��� � � � ��
�
 � �����
and obtain (verify this)

�
� � �

� ����� ��� � � � �
��
�
 � �����

Figures 3 and 4 give the graph reductions. A cyclic node, labelled � , quickly
appears. Its rather tortuous transformations generate a recursive occurrence of from
deeper in the graph. The series of reductions presumes that the environment is demand-
ing evaluation of the result; in lazy evaluation, nothing happens until it is forced to hap-
pen.

Graph reduction will leave the term ��
�
 �	�
unevaluated until something demands

its value; the result of ������� � � � is really
� � � � � � � � � � � �

�
� �������
����� . Graph reduction

works a bit like macro expansion. Non-recursive function calls get expanded once and
for all the first time they are encountered; thus, programmers are free to define lots of
simple functions in order to aid readability. Similarly, constant expressions are evalu-
ated once and for all when they are first encountered. Although this behaviour avoids
wasteful recomputation, it can cause the graph to grow and grow, consuming all the
store — a space leak. The displayed graph reduction illustrates how this could happen.

Exercise 15 Translate � to combinators and do some steps of the reduction of �
 .

8.4 Recursion: Cyclic Graphs 49

B

B

Y

1

S pair C B add 1

1

S pair C B add 1

from

1

S pair

C B add 1

from

Figure 3: Reductions involving recursion

50 8. COMPILING METHODS USING COMBINATORS

pair 1

S pair

from

B add 1

1

fromB

C

pair

add 1

from

add 1

1

Figure 4: Reductions involving recursion (continued)

REFERENCES 51

References

[1] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
1984.

[2] Richard Bird and Philip Wadler. Introduction to Functional Programming.
Prentice-Hall, 1988.

[3] W. H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

[4] G. Cousineau and G. Huet. The CAML primer. Technical report, INRIA, Rocquencourt,
France, 1990.

[5] Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley,
1988.

[6] Michael J. C. Gordon. Programming Language Theory and its Implementation.
Prentice-Hall, 1988.

[7] J. Roger Hindley and Jonathon P. Seldin. Introduction to Combinators and � -Calculus.
Cambridge, 1986.

[8] P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6:308–320,
January 1964.

[9] P. J. Landin. The next 700 programming languages. Communications of the ACM,
9(3):157–166, March 1966.

[10] David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experience, 9:31–49, 1979.

	Introduction
	The lambda-Calculus
	Variable Binding and Substitution
	Avoiding Variable Capture in Substitution
	Conversions
	Reductions
	Curried Functions
	Bracketing Conventions

	Equality and Normalization
	Church-Rosser Theorem
	Diamond Property
	Possibility of Nontermination
	Normal Order Reduction
	Lazy Evaluation

	Encoding Data
	Booleans
	Ordered Pairs
	Natural Numbers
	Lists

	Writing Recursive Functions
	Fixed Points
	Usage of Y
	Defining Fixed Point Combinators
	Head Normal Form
	Lambda-Calculus versus Turing Machines

	Lambda-Calculus and Computation Theory
	Primitive Recursive Functions
	General Recursive Functions
	The Lambda-Definable Functions are Recursive
	Second Fixed Point Theorem
	Undecidability Results

	ISWIM
	Lazy Evaluation via Combinators
	Graph Reduction in the Lambda-Calculus
	Introduction to Combinators
	Abstraction on Combinators
	Lambda-Terms and Combinators

	Compiling Methods Using Combinators
	Combinator Terms as Graphs
	Primitive Graph Transformation
	Booleans and Pairing
	Recursion: Cyclic Graphs

	References

