Computer Science Tripos, Part IB

Foundations of Functional Programming

Lawrence C Paulson
Computer L aboratory
University of Cambridge

Copyright (© 1995 by Lawrence C. Paulson

Contents

1 Introduction

2 Equality and Normalization

3 Encoding Datain the A-Calculus

4 Writing Recursive Functionsin the A-calculus

5 The-Calculusand Computation Theory

6 ISWIM: The A-calculusasa Programming Language
7 Lazy Evaluation via Combinators

8 Compiling Methods Using Combinators

15

21

27

37

42

1

| ntroduction

This course is concerned with the A-calculus and its close relative, combinatory logic.
The A-calculusisimportant to functional programming and to computer science gen-
eraly:

1

2.

Variable binding and scoping in block-structured languages can be modelled.

Severa function calling mechanisms — call-by-name, call-by-value, and call-
by-need — can be modelled. The latter two are aso known as strict evaluation
and lazy evaluation.

The A-calculusis Turing universal, and is probably the most natural model of
computation. Church’s Thesis asserts that the ‘computable’ functions are pre-
cisely those that can be represented in the A-calculus.

All the usual data structures of functional programming, including infinite lists,
can be represented. Computation on infinite objects can be defined formally in
the A-calculus.

Its notions of confluence (Church-Rosser property), termination, and normal
form apply generally in rewriting theory.

Lisp, one of the first major programming languages, was inspired by the A-
calculus. Many functional languages, such as ML, consist of little more than the
A-caculus with additional syntax.

. The two main implementation methods, the SECD machine (for strict evalua-

tion) and combinator reduction (for lazy evaluation) exploit properties of the A-
calculus.

The A-calculus and its extensions can be used to develop better type systems,
such as polymor phism, and to investigate theoretical issues such as program syn-
thess.

Denotational semantics, which is an important method for formally specifying
programming languages, employs the A-calculus for its notation.

Hindley and Seldin [7] isaconcise introduction to the A-cal culus and combinators.
Gordon [6] isoriented towards computer science, overlapping closely with this course.
Barendregt [1] isthe last word on the A-calculus.

Acknowledgements. Reuben Thomas pointed out numerouserrorsin apreviousver-
sion of these notes.

2 1. INTRODUCTION

1.1 The M-Calculus

Around 1924, Schonfinkel developed a simple theory of functions. In 1934, Church
introduced the A-cal culus and used it to devel op aformal set theory, which turned out to
beinconsistent. More successfully, he used it to formalize the syntax of Whitehead and
Russell’s massive Principia Mathematica. 1n the 1940s, Haskell B. Curry introduced
combinatory logic, avariable-free theory of functions.

More recently, Roger Hindley developed what is now known as type inference.
Robin Milner extended this to develop the polymorphic type system of ML, and pub-
lished aproof that awell-typed program cannot suffer arun-timetype error. Dana Scott
devel oped models of the A-calculus. With hisdomain theory, he and Christopher Stra-
chey introduced denotational semantics.

Peter Landin used the A-calculus to analyze Algol 60, and introduced ISWIM asa
framework for future languages. His SECD machine, with extensions, was used to im-
plement ML and other strict functional languages. Christopher Wadsworth devel oped
graph reduction as a method for performing lazy evaluation of A-expressions. David
Turner applied graph reduction to combinators, which led to efficient implementations
of lazy evauation.

Definition 1 The terms of the A-calculus, known as A-terms, are constructed recur-
sively from a given set of variables z, y, z, They may take one of the following
forms:
r Variable
(Ax.M) abstraction, where A/ isaterm
(MN) application, where M and N areterms

We use capital letterslike L, M, N, ... forterms. Wewrite M = N to statethat M
and N areidentical A-terms. The equality between A-terms, M = N, will bediscussed
later.

1.2 Variable Binding and Substitution

In (Az.M), wecall = the bound variableand M the body. Every occurrenceof = in M
isbound by theabstraction. Anoccurrenceof avariableisfreeif itisnot bound by some
enclosing abstraction. For example, = occursbound and y occursfreein (Az.(Az.(yzx)).

Notations involving free and bound variables exist throughout mathematics. Con-
sider the integral fab f(z)dz, where z isbound, and the product I17_, p(k), where k is
bound. The quantifiers and 3 also bind variables.

The abstraction (Az. M) isintended to represent the function f suchthat f(z) = M
for al x. Applying f to N yields the result of substituting N for all free occurrences

1.3 Avoiding Variable Capture in Substitution 3

of z in M. Two examples are

(Ax.z) Theidentity function, which returns its argument un-
changed. Itisusualy called T.

(Ay.z) A constant function, which returns = when applied to
any argument.

Let us make these concepts precise.

Definition 2 BV (A1), the set of all bound variablesin A/, isgiven by
BV(z) = 0
BV(Az.M) = BV(M)| J{=}
BV(MN) = BV(M)| JBV(N)

Definition 3 FV(M), the set of al free variablesin M, is given by

FV(z) = {z}
FV(\e.M) = FV(M)—{z}
FV(MN) = FV(M)| JFV(N)

Definition 4 M[L/y], theresult of substituting 7 for all free occurrencesof y in M, is
given by

_ L if v =1
dby) = {x Iotherwiysze
. (Ax.M) ifz =
(e M)[Lfy) = { O M[L/y)) otherwise
(MN)[L/y] = (M[L/y] N[L/y])

The notations defined above are not themselves part of the A-calculus. They belong
to the metalanguage: they are for talking about the A-calculus.

1.3 Avoiding Variable Capturein Substitution

Substitution must not disturb variable binding. Consider the term (Az.(Ay.z)). It
should represent the function that, when applied to an argument N, returns the con-
gtant function (Ay. V). Unfortunately, this does not work if N = y; we have defined
substitution such that (Ay.z)[y/x] = (Ay.y). Replacing = by y in the constant function
transformsit into the identity function. The free occurrence of = turnsinto abound oc-
currence of y — an example of variable capture. If this were allowed to happen, the

4 1. INTRODUCTION

A-calculuswould beinconsistent. The substitution M [N/ z] issafe provided the bound
variablesof M are digoint from the free variables of V:

BV(M)[|FV(N) = 0.

We can always rename the bound variables of M, if necessary, to make this condi-
tion true. In the example above, we could change (Ay.x) into (Az.x), then obtain the
correct substitution (\z.x)[y/x] = (Az.y); theresult isindeed a constant function.

1.4 Conversions

The idea that A-abstractions represent functions is formally expressed through con-
version rules for manipulating them. There are o-conversions, (3-conversions and -
conversions.

The a-conversion (Az. M) —,, (Ay.M[y/x]) renamesthe abstraction’sbound vari-
ablefrom z toy. Itisvalid provided y does not occur (free or bound) in M. For exam-
ple, (Az.(22)) =, (Ay.(yz)). We shal usualy ignore the distinction between terms
that could be made identical by performing a-conversions.

The -conversion ((Ax.M)N) —; M[N/x] substitutes the argument, N, into
the abstraction’s body, M. It isvalid provided BV(M)(FV(N) = (. For exam-
ple, (Azx.(z2))(yz) =5 ((yz)(yz)). Hereisanother example: ((Az.(zy))(Az.x)) —5
(Az.z)y) =5 y.

The n-conversion (Ax.(Mz)) —, M collapses the trivial function (Az.(Mz))
downto M. Itisvalid provided » ¢ FV(M). Thus, M does not depend on z; the
abstraction does nothing but apply M to its argument. For example, (Az.((zy)x)) —,
(zy).

Observe that the functions (Ax.(Mz)) and M aways return the same answer,
(M N), when applied to any argument N. The n-conversion rule embodies a princi-
ple of extensionality: two functionsare equal if they always return equal results given
equal arguments. In some situations, this principle (and 5-conversions) are dispensed
with.

1.5 Reductions

We say that M — N, or M reducesto N, if M —5 N or M —, N. (Because a-
conversionsare not directional, and are not interesting, we generally ignorethem.) The
reduction M — N may consist of applying aconversionto somesubterm of M inorder
to create N. More formally, we could introduce inference rules for —-:

M — M’ M — M’ M — M’
(Ax. M) — (Ax.M") (MN)— (M'N) (LM) — (LM")

If aterm admits no reductions then it isin normal form. For example, Azy.y and
xyz areinnormal form. To normalize aterm means to apply reductions until a normal

1.6 Curried Functions 5

formisreached. A term has a normal formif it can be reduced to a term in normal
form. For example, (Az.2)y isnot in normal form, but it has the normal form y.

Many A-terms cannot be reduced to normal form. For instance, (Az.zz)(Az.xx)
reducesto itself by 3-conversion. Although it is unaffected by the reduction, it is cer-
tainly not in normal form. Thistermisusually called €2.

1.6 Curried Functions

The A-calculushasonly functionsof oneargument. A functionwith multiplearguments
is expressed using a function whose result is another function.

For example, supposethat 7. isaterm containing only = and y asfreevariables, and
wewish toformalizethefunction f(x,y) = L. Theabstraction (Ay.L) containsx free;
for each x, it standsfor afunction over y. Theabstraction (Ax.(Ay.L)) contains no free
variables; when applied to the arguments M and N, theresult is obtained by replacing
x by M andy by NV in L. Symbolically, we perform two 3-reductions (any necessary
«-conversions are omitted):

(Az.(Ay.L)M)N) =5 ((Ay.L[M/x])N) =5 LIM[z][N]y]

This technique is known as currying after Haskell B. Curry, and a function ex-
pressed using nested As is known as a curried function. In fact, it was introduced by
Schonfinkel. Clearly, it works for any number of arguments.

Curried functions are popular in functional programming because they can be ap-
plied to their first few arguments, returning functions that are useful in themselves.

1.7 Bracketing Conventions

Abbreviating nested abstractions and applicationswill make curried functionseasier to
write. We shall abbreviate

(Ary.(Azg. ... (A, M) ...)) & (Azyzy...2,.M)
(...(MiMy)...M,) as (MiM,...M,)

Finally, we drop outermost parentheses and those enclosing the body of an abstraction.
For example,

(Az.(z(Ay.(yx)))) can bewritten as Az.x(Ay.yx).
It isvital understand how bracketing works. We have the reduction
Az.(Ax. M)N —3 Az.M[N/z]

but the similar term Az.z(Az.M)N admits no reductions except those occurring
within M and N, because Az.M is not being applied to anything. Here is what the
application of acurried function (see above) looks like with most brackets omitted:

(Axy.LYMN —5 (Ay.LIM/z])N —5 L[M/2][N/y]

6 2. EQUALITY AND NORMALIZATION

Note that A\x. M N abbreviates Az.(M N) rather than (Az.M)N. Also, xy= abbre-
viates (zy)z rather than z(yz).

Exercise1l What happensin the reduction of (Azy.L)M N if y isfreein M?

Exercise2 Give two different reduction sequences that start at (A\x.(Ay.zy)z)y and
end with anormal form. (These normal forms must be identical: see below.)

2 Equality and Normalization

The A-calculusisan equational theory: it consists of rulesfor proving that two A-terms
are equal. A key property isthat two terms are equal just if they both can be reduced
to the same term.

2.1 Multi-Step Reduction

Strictly speaking, M — N meansthat M reducesto N by exactly one reduction step,
possibly applied to asubterm of M. Frequently, we areinterested in whether M can be
reduced to N by any number of steps. Write M — N if

M- M —-My—---— M, =N (k>0)

For example, ((Az.(zy))(Az.z)) — y. Notethat — is the relation —*, the reflex-
ive/transitive closure of —.

2.2 Equality Between \-Terms

Informally, M = M’ if M can be transformed into M’ by performing zero or more
reductions and expansions. (An expansion is the inverse of a reduction, for instance
y < (Ax.z)y.) A typica pictureisthefollowing:

M M1 M2"'Mk—1 Mk: M/
N o N N
N, N, N

For example, a((Ay.by)e) = (Az.ax)(bc) because both sides reduce to a(bc). Note
that = istherelation (— U —~')*, the least equivalence relation containing —.
Intuitively, M = M’ meansthat M and M’ have the same value. Equality, as de-
fined here, satisfies all the standard properties. First of al, it isan equivalencerelation
— it satisfies the reflexive, symmetric and associative laws:

M=M

2.3 The Church-Rosser Theorem 7

Furthermore, it satisfies congruence laws for each of the ways of constructing A-
terms:
M=M M=M M=M
(M. M) = (Ax. M) (MN)=(M'N) (LM) = (LM")

The six properties shown above are easily checked by constructing the appropriate di-
agramsfor each equality. They imply that two termswill be equal if we construct them
in the same way starting from equal terms. Put another way, if M = M’ then replacing
M by M’ inatermyields an equal term.

Definition 5 Equality of A-terms is the least relation satisfying the six rules given
above.

2.3 The Church-Rosser Theorem

This fundamental theorem states that reduction in the A-calculus is confluent: no two
sequences of reductions, starting fromone A-term, can reach distinct normal forms. The
normal form of aterm isindependent of the order in which reductions are performed.

Theorem 6 (Church-Rosser) If M = N then there exists L. such that A/ — [and
N — L.
Proof See Barendregt [1] or Hindley and Seldin [7].

For instance, (Ax.ax)((Ay.by)c) has two different reduction sequences, both |ead-
ing to the same normal form. The affected subterm isunderlined at each step:

(Az.az)((Ay.by)e) — a((Ay.by)c) — a(be)
(Az.az)((Ay.by)e) — (Ax.ax)(be) — a(be)

The theorem has several important consequences.

o If M = N and N isin normal form, then M — N; if aterm can transform
into normal form using reductions and expansions, then the normal form can be
reached by reductions aone.

e If M = N where both termsarein normal form, then M = N (up to renaming
of bound variables). Conversely, if M and N arein normal formand aredistinct,
then M # N; thereisnoway of transforming A into N. For example, Azy.x #
Axy.y.

An equational theory is inconsistent if all equations are provable. Thanks to the
Church-Rosser Theorem, we know that the A-calculus is consistent. Thereis no way
we could reach two different normal forms by following different reduction strategies.
Without this property, the A-calculus would be of little relevance to computation.

8 2. EQUALITY AND NORMALIZATION

2.4 The Diamond Property

The key step in proving the Church-Rosser Theorem is demonstrating the diamond
property — if M — M; and M — M, then there existsaterm L such that M; —» L
and M, —» L. Hereisthe diagram:

The diamond property isvital: it saysthat no matter how far we go reducing aterm
by two different strategiesit will always be possible to come together again by further
reductions. Asfor the Church-Rosser Theorem, look again at thediagramfor M = M’
and note that we can tile the region underneath with diamonds, eventually reaching a
common term:

M M, My -M_y M, =M
N N N W
N, N, Ny
NN v
Ly Ly--- Ly
N W '
K,

2.5 Provingthe Diamond Property

Note that — (one-step reduction) does not satisfy the diamond property

Consider the term (Az.z2)(1a), where I = Az.z. In one step, it reduces to
(Az.zz)a orto (Ia)(Ia). These both reduce eventualy to aa, but thereis no way to

2.6 Possibility of Nontermination 9

complete the diamond with a single-step reduction:

(Azr.zz)(Ta)

e N\
(Ia)(Ta) (Ar.zz)a

4

ada

The problem, of course, isthat (Az.zx) replicates its argument, which must then
be reduced twice. Note also that the difficult cases involve one possible reduction con-
tained inside another. Reductions that do not overlap, suichas M — M’ and N — N’
intheterm « M N, commutetrivially to produce = M’ N'.

The diamond property for — can be proved with the help of a“strip lemma’, which
considers the case where M — M, (inone step) and also M — M, (possibly many

steps):

The*strips’ can then be pasted together to complete adiamond. The detailsinvolve
an extremely tedious case analysis of the possible reductions from various forms of
terms.

2.6 Possbility of Nonter mination

Although different reduction sequences cannot yield different normal forms, they can
yield completely different outcomes: one could terminate while the other runsforever!
Typicaly, if M hasanormal form and admits an infinite reduction sequence, it contains
asubterm 7 having no normal form, and 7. can be erased by areduction.

For example, recall that €2 reduces to itself, where @ = (Az.z2)(Az.2z). There-
duction

(Ay.a)Q — a

reaches normal form, erasing the €2. This corresponds to a call-by-name treatment of
functions. the argument is not reduced but substituted ‘asis’ into the body of the ab-
straction.
Attempting to normalize the argument generates a nonterminating reduction se-
quence:
(Ay.a)Q = (Ay.a)2 — ---

10 2. EQUALITY AND NORMALIZATION

Evaluating the argument before substituting it into the body corresponds to a call-
by-value treatment of function application. In this example, the call-by-value strategy
never reaches the normal form.

2.7 Normal Order Reduction

The normal order reduction strategy is, at each step, to perform the leftmost outermost
[-reduction. (The n-reductions can be left until last.) Leftmost means, for instance, to
reduce . before N in L N. Outermost means, for instance, to reduce (Axz. M)N before
reducing M or N.

Normal order reduction correspondsto call-by-name evaluation. By the Standard-
ization Theorem, it always reaches anormal form if one exists. The proof is omitted.
However, note that reducing L first in LN may transform L into an abstraction, say
Az.M. Reducing (Az.M)N may erase N.

2.8 Lazy Evaluation

From a theoretical standpoint, normal order reduction is the optimal, since it always
yields a normal form if one exists. For practical computation, it is hopelessy ineffi-
cient. Assume that we have a coding of the natural numbers (for which see the next
section!) and define a squaring function sqr = An. mult nn. Then

sqr (sqr N) — mult (sqr N)(sqr N) — mult (mult NN)(mult NN)

and wewill haveto evaluate four copies of theterm N'! Call-by-valuewould have eval-
uated N (only once) beforehand, but, as we have seen, it can result in nontermination.

Note: multi-letter identifiers(like sqr) are set in bold type, or underlined, in order
to prevent confusion with a series of separate variables (like sqr).

Lazy evaluation, or call-by-need, never evaluates an argument more than once. An
argument is not evaluated unless the value is actually required to produce the answer;
even then, theargument isonly eval uated to the extent needed (thereby allowinginfinite
lists). Lazy evaluation can be implemented by representing the term by a graph rather
than atree. Each shared graph node represents a subterm whose vaue is needed more
than once. Whenever that subterm is reduced, the result overwrites the node, and the
other referencesto it will immediately have access to the replacement.

Graph reduction isinefficient for the A-cal culus because subtermstypically contain
freevariables. During each 3-reduction, the abstraction’s body must be copied. Graph
reduction works much better for combinators, where there are no variables. We shall
return to this point | ater.

11

3 Encoding Datain the A-Calculus

The A-calculus is expressive enough to encode boolean values, ordered pairs, natural
numbers and lists — all the data structures we may desire in a functional program.
These encodings alow us to model virtually the whole of functional programming
within the smple confines of the A-calculus.

The encodings may not seem to be at al natural, and they certainly are not com-
putationally efficient. In this, they resemble Turing machine encodings and programs.
Unlike Turing machine programs, the encodings are themsel ves of mathematical inter-
est, and return again and again in theoretical studies. Many of them involve the idea
that the data can carry its control structure with it.

3.1 TheBooleans

An encoding of the booleans must definetheterms true, false and if , satisfying (for
al M and N)

if trueMN = M
if false MN = N

The following encoding is usually adopted:

true = Jay.x
false = Azry.y
if = Apzy.pry

We have true # false by the Church-Rosser Theorem, since true and false
aredistinct normal forms. Asit happens, if isnot even necessary. Thetruth valuesare
their own conditional operators:

true MN = (Azy.x)MN - M
false M N = (Azy.y)MN - N

These reductions hold for all terms M and N, whether or not they possess normal
forms. Notethat if LM N — LM N; itisessentially an identity functionon L. The
equations given above even hold as reductions:

if trueMN — M
if false MN —» N.
All theusual operationson truth values can be defined as conditional operator. Here
are negation, conjunction and disunction:
and = Apgq.if p gfalse
or = Apgq.if ptruegq
not = Ap.if pfalse true

12 3. ENCODING DATA IN THE A\-CALCULUS

3.2 Ordered Pairs

Assume that true and false are defined as above. The function pair, which con-
structs pairs, and the projections fst and snd , which select the components of apair,
are encoded as follows:

pair = Azyf.fzy
fst = Ap.ptrue
snd = Ap.pfalse

Clearly, pair MN —» Af.f M N, packaging M and N together. A pair may be ap-
plied to any 2-place function of the form Azy. L, returning LM /z][N/y]; thus, each
pair is its own unpackaging operation. The projections work by this unpackaging op-
eration (which, perhaps, is more convenient in programming than are the projections
themselves!):

fst (pair MN) — fst(\f.fMN)
— (Af.fMN)true
— true MN

- M

Similarly, snd (pair M N) - N. Observe that the components of pair M N are
completely independent; either may be extracted even if the other has no normal form.

Ordered n-tuples could be defined analogoudly, but nested pairs are a simpler en-
coding.

3.3 TheNatural Numbers

Thefollowing encoding of the natural numbersistheoriginal one devel oped by Church.
Alternative encodings are sometimes preferred today, but Church’s numerals continue
our theme of putting the control structurein with the data structure. Such encodingsare
elegant; moreover, they work in the second-order A-calculus (presented in the Types
course by Andrew Pitts).

Define
0 = Az
1 = Ma.fx
2 = M f(fe)

M J(-- (L))

n times

Thus, for al » > 0, the Church numeral » isthe function that maps f to /. Each
numeral isan iteration operator.

|
Il

3.4 Arithmetic on Church Numerals 13

3.4 Arithmetic on Church Numerals
Using thisencoding, addition, multiplication and exponentiation can be defined imme-
diately:

add = Mmnfz.mf(nfz)

expt = Imnfr.nmfz

mult

Addition isnot hard to check:

addmn — Mz.mf(nfz)

- Az f"(f"z)
= Mz fm e

= m+4+n
Multiplication is dightly more difficult:
mult m n

- AMaz(nf)"z

= ANaz. "z
= m Xn
These derivations hold for all Church numeras m and r , but not for all terms M
and V.

Exercise 3 Show that expt performs exponentiation on Church numerals.

3.5 TheBasic Operationsfor Church Numerals

The operations defined so far are not sufficient to define all computable functionson the
natural numbers; what about subtraction? Let us begin with some simpler definitions:
the successor function and the zero test.

iszero = An.n(\x.false)true

suc

The following reductions hold for every Church numeral n :

sucn —» n+1
iszero) — true

iszero(n+1) — false

14 3. ENCODING DATA IN THE A\-CALCULUS

For example,
iszero(n+1) — n+1(Azx.false)true
— (Az.false)" true
= (Az.false)((\z.false)" true)
— false

The predecessor function and subtraction are encoded as follows:

prefn = \fp.pair (f(fstp))(fstp)
Anfz.snd (n(prefn f)(pair z2))

sub = Mmn.nprem

pre

Defining the predecessor function is difficult when each numeral is an iterator. We
must reduce an n + 1 iterator to an » iterator. Given f and =, we must find some ¢ and
y such that ¢"*'y computes f"z. A suitable g isafunction on pairsthat maps(z, z) to
(f(z),x); then

g (wx) = (f" (), f(2).
The pair behaves like a one-element delay line.

Above, prefn f constructs the function g. Verifying the following reductions

should be routine:

pre(n+1)
pre (0)

For subtraction, sub m n computes the nth predecessor of .

—»
—»

[
< |3

Exercise4 Show that Amn.m suc n performsaddition on Church numerals.

3.6 Lists

Church numerals could be generalized torepresent lists. Thelist [x4, 2, .. ., z,] would
essentially berepresented by thefunctionthat takes f and y to f1(fxa ... (fz.y)...).
Such listswould carry their own control structure with them.

Asan aternative, let usrepresent listsrather asLisp and ML do— viapairing. This
encoding is easier to understand because it is closer to real implementations. The list
[21,29,...,2,] Will berepresented by = :: x5 :: ... :: nil. To keep the operations
as smple as possible, we shall employ two levels of pairing. Each ‘conscel’ = :: y
will be represented by (false, (z,v)), where the false is a distinguishing tag field.
By rights, nil should be represented by a pair whose first component is true, such
as(true, true), but asimpler definition happensto work. Infact, we could dispense
with the tag field altogether.

15

Hereis our encoding of lists:

nil = Az.z
cons = Azy.pair false (pair 2y)
null = fst

hd = Az.fst(sndz)
tl = Az.snd(sndz)

The following properties are easy to verify; they hold for all terms M and V:

null nil — true

null (cons MN) — false
hd(cons MN) — M
tl(cons MN) — N

Notethat null nil - true happensrealy by chance, while the other laws hold
by our operations on pairs.

Recall that laws like hd (cons M N) - M and snd (pair M N) — N hold for
al M and N, even for terms that have no normal forms! Thus, pair and cons are
‘lazy’ constructors — they do not ‘evaluate their arguments’. Once we introduction
recursive definitions, we shall be able to compute with infinitelists.

Exercise5 Modify theencoding of liststo obtain an encoding of the natural numbers.

4 Writing Recursive Functionsin the A-calculus

Recursion isobvioudy essentia in functional programming. With Church numerals, it
ispossibleto define‘ nearly all’ computablefunctions on the natural numbers.! Church
numerals have an inbuilt source of repetition. From this, we can derive primitiverecur-
sion, which when applied using higher-order functions defines amuch larger classthan
the primitive recursive functions studied in Computation Theory. Ackermann’s func-
tion is not primitive recursive in the usua sense, but we can encode it using Church
numeras. If we put
ack = dm.m(Afnnf(f1))suc

then we can derive the recursion equations of Ackermann’s function, namely
ackO0n = n+1
ack(m+1)0 = ackm 1l
ack(m+1)(n+1) = ackm(ack(m+1)n)

1 The precise meaning of ‘nearly al’ involves heavy proof theory, but al ‘reasonable’ functionsare
included.

16 4. WRITING RECURSIVE FUNCTIONS IN THE A-CALCULUS

Let us check the first equation:

ack0n — 0Afnnf(fl))sucn
suc n

n-+1

¢

¢

For the other two equations, note that

ack(m+1)n — (m+1)Afnnf(fl))sucn
o Mnnf(f L) (m O\ fanf(f1))suc)n
(f1))(ack m)n

We now check

ack(m+4+1)0 —» 0(ackm)(ackm 1)

and

ack(m+41)(n+1) n+1(ack m)(ack m 1)
ack m(n(ack m)(ack m 1))

= ackm(ack(m+1)n)

Lo

The key to this computation isthe iteration of the function ack m .

4.1 Recursive Functionsusing Fixed Points

Our coding of Ackermann’sfunction works, but it hardly could be called perspicuous.
Even worse would be the treatment of afunction whose recursive callsinvolved some-
thing other than subtracting one from an argument — performing division by repeated
subtraction, for example.

General recursion can be derived in the A-calculus. Thus, we can model all recur-
sive function definitions, even those that fail to terminate for some (or al) arguments.
Our encoding of recursion is completely uniform and is independent of the details of
the recursive definition and the representation of the data structures (unlike the above
version of Ackermann’s function, which depends upon Church numerals).

The secret isto use afixed point combinator —aterm Y suchthat Y F = F(Y F)
for al terms F'. Let us explain the terminology. A fixed point of the function 7' is any
X suchthat FX = X; here, X = Y F. A combinator is any A-term containing no
free variables (also called aclosed term). To code recursion, F' represents the body of
the recursive definition; thelaw Y F' = F(Y F') permits F' to be unfolded as many
times as necessary.

4.2 ExamplesUsingY 17

4.2 ExamplesUsingY
We shall encode the factorial function, the append function on lists, and theinfinitelist
[0,0,0,...] inthe A-calculus, realising the recursion equations

fact N = if (iszero N)1(mult N(fact (pre N)))
append ZW = if (null Z)W(cons(hd Z)(append (tl

zZeroes = cons Q zZeroes

Z)W))

To redlize these, we simply put

fact = Y (Agn.if (iszeron)1l(multn(g(pren))))
append = Y (Agzw.if (null 2)w(cons(hd z)(g(tl 2)w)))
zeroes = Y (Ag.cons 0g)

In each definition, therecursivecall isreplaced by thevariablegin Y (Ag....). Let
us verify the recursion equation for zeroes ; the othersare similar:

zeroes = Y (Ag.cons 0g)
= (Ag.cons 0¢g)(Y (Ng.cons 0g))
= (MAg.cons 0 g)zeroes

— cons () zeroes

43 Usageof Y

In general, the recursion equation M = P M, where P isany A-term, is satisfied by
defining M = Y P. Let us consider the specia case where M isto be an n-argument
function. The equation Mz, ...z, = PM issatisfied by defining

M=Y (Agzy...2,.Pg)

for then
Mzy. ..z, = Y (Agxy...x,.Pg)ry.. 2,
= (Agzy...2,.Pg)Mz, ... 2,
- PM

Let usrealizethe mutual recursive definition of M and /V, with corresponding bod-
ies P and Q:

M = PMN
N = QMN

18 4. WRITING RECURSIVE FUNCTIONS IN THE A-CALCULUS

The idea is to take the fixed point of a function /' on pairs, such that F(X,Y) =
(PXY,QXY). Using our encoding of pairs, define

L = Y (Az.pair (P(fstz)(sndz))

(Qfst =)(snd 2)))
M = fstL
N = sndlL
By the fixed point property,
L = pair (P(fst L)(snd L))
(Q(fst L)(snd L))

and by applying projections, we obtain the desired
M = P(fst L)(snd L) = PMN
N=Q(fst L)(snd L) = QM N.

4.4 Defining Fixed Point Combinators

The combinator Y was discovered by Haskell B. Curry. It is defined by

Y = A.(Qz.f(zx))(Azx. f(az))
Let us calculate to show the fixed point property:
YF — (Qa.F(zx))(Az.F(zx))
= F(YF)
This consists of two -reductions followed by a 3-expansion. No reduction
Y F - F(Y F)ispossiblel There are other fixed point combinators, such as Alan
Turing's ©:
A = dxyy(zay)
0 = AA
We indeed have thereduction O F' — F(OF):
OF = AAF —» F(AAF) = F(OF)
Here is afixed point combinator discovered by Klop:
£ = Aabedefghijklmnopgstuvwayzr.r(thisisa fizedpointcombinator)
$ = LLLLLLLLLLELLLLELLLELLELLLELLL
The proof of $F* — F(S$F') isleft asan exercise. Hint: look at the occurrences of r!
Any fixed point combinator can be used to make recursive definitionsunder call-by-
name reduction. Later, we shall modify Y to get afixed point combinator that works

with a call-by-value interpreter for the A-calculus. In practical compilers, recursion
should be implemented directly because fixed point combinators are inefficient.

4.5 Head Normal Form 19

45 Head Normal Form

If M = 2M then M hasno normal form. For if M — N where N isin normal form,
then N = . N. Sincex N isalso in normal form, the Church-Rosser Theorem gives us
N = aN. But clearly N cannot contain itself as a subterm!

By similar reasoning, if M = PM then M usually has no normal form, unless P
is something like aconstant function or identity function. So anything defined with the
help of afixed point combinator, such as fact , isunlikely to have anormal form.

Although fact hasno normal form, we can still computewithit; fact 5 doeshave
anormal form, namely 120 . We can use infinite objects (including functions as above,
and also lazy lists) by computing with them for afinite time and requesting afinite part
of the result. To formalize this practice, let us define the notion of head normal form
(hnf).

Definition 7 A termisin head normal form (hnf) if and only if it lookslike this:
Axy ., yMy . M, (m, k>0)
Examples of termsin hnf include
z AryQ dzya Azz((Aa.a)e)
But A\y.(Az.a)y isnot in hnf because it admits the so-called head reduction
Ay.(Az.a)y — Ay.a.

Let usnote some obviousfacts. A terminnormal formisaso in head normal form.
Furthermore, if
Ary .. yMy oo My > N

then N must have the form
Ary ..., yNy. .. Ny

where My — Ny, ..., M — Nj. Thus, a head normal form fixes the outer structure
of any further reductions and the final normal form (if any!). And since the arguments
My, ..., M} cannot interfere with one another, they can be evaluated independently.

By reducing aterm M to hnf we obtain a finite amount of information about the
value of M. By further computing the hnfs of M, ..., M} we obtain the next layer of
thisvalue. We can continue evaluating to any depth and can stop at any time.

For example, defineze = O(pair 0). Thisisanaogousto zeroes, but usespairs.
ze = (0,(0,(0,...))). Wehave

pair 0 ze
(Azyf.fry)0ze
Af.f0ze
A.O(M.f 0ze)

ze

¢

Lol

20 4. WRITING RECURSIVE FUNCTIONS IN THE A-CALCULUS

With A\ f.f 0ze we reached a head normal form, which we continued to reduce. We
have fst (ze) - 0 and fst (snd (ze)) - 0, since the same reductionswork if ze is
afunction’sargument. These are examples of useful finite computations involving an
infinite value.

Some terms do not even have a head normal form. Recall 2, defined by 2 =
(Az.zz)(Ax.zz). A termisreduced to hnf by repeatedly performing leftmost reduc-
tions. With 2 we can only do Q — €2, which makes no progress towards an hnf. An-
other term that lacks an hnf is Ay.Q); we can only reduce \y.Q? — Ay.().

It can be shown that if M N has an hnf then so does M. Therefore, if A has no hnf
then neither does any term of the form M Ny N, ... Ni.. A term with no hnf behaves
like a totally undefined function: no matter what you supply as arguments, evaluation
never returns any information. It is not hard to see that if A has no hnf then neither
does \z. M or M[N/z], so M realy behaveslike ablack hole. The only way to get rid
of M isby areductionsuch as(Az.a)M — a. Thismotivates the following definition.

Definition 8 A term is defined if and only if it can be reduced to head normal form;
otherwiseit is undefined.

The exercises bel ow, some of which are difficult, explore this concept more deeply.

Exercise 6 Arethefollowing termsdefined? (Here K = Azy.x.)

Y Ynot K YI 20 YK Y(Kz) n

Exercise7 A term M iscaled solvableif and only if thereexist variables x4, ..., z,,
and terms Ny, ..., N,, such that

Investigate whether the terms given in the previous exercise are solvable.

Exercise 8 Show that if A has an hnf then M is solvable. Wadsworth proved that
M issolvableif and only if M hasan hnf, but the other direction of the equivalenceis
much harder.

4.6 Asde An Explanation of Y

For the purpose of expressing recursion, wemay simply exploit Y /' = F('Y F') with-
out asking why it holds. However, theoriginsof Y haveinteresting connectionswith
the development of mathematical logic.

Alonzo Churchinvented the A-calculusto formalizeanew set theory. Bertrand Rus-
sell had (much earlier) demonstrated the inconsistency of naive set theory. If we are
alowedtocongtructtheset R = {x | « € =}, then R € Rifandonly if R € R. This
became known as Russell’s Paradox.

4.7 Summary: the \-Calculus Versus Turing Machines 21

In histheory, Church encoded sets by their characteristic functions (equivalently, as
predicates). The membershiptest A € N was coded by the application N (A1), which
might be true or false. The set abstraction {= | P} was coded by Az. P, where P was
some A-term expressing a property of .

Unfortunately for Church, Russell’s Paradox was derivablein hissystem! The Rus-
sell setisencoded by R = Az.not (zx). Thisimplied RR = not (RR), whichwasa
contradiction if viewed as alogical formula. Infact, RR has no head normal form: it
is an undefined term like ().

Curry discovered this contradiction. The fixed point equation for Y followsfrom
RR = not (RR) if wereplace not by an arbitrary term /. Therefore, Y is often
called the Paradoxical Combinator.

Because of the paradox, the A-calculus survives only as an equationa theory. The
typed A-cal culus does not admit any known paradoxesand is used to formalizethe syn-
tax of higher-order logic.

4.7 Summary: the A\-Calculus Versus Turing Machines

The A-cal culus can encode the common data structures, such asbooleansand lists, such
that they satisfy natural laws. The A-calculus can also express recursive definitions.
Because the encodings are technical, they may appear to be unworthy of study, but this
iSnot so.

¢ The encoding of the natural numbers via Church numerals is valuable in more
advanced calculi, such as the second-order A-calculus.

e Theencoding of listsviaordered pairs modelstheir usua implementation on the
computer.

e Asjust discussed, the definition of Y formalizes Russell’s Paradox.

¢ Understanding recursive definitions as fixed pointsis the usual treatment in se-
mantic theory.

These constructions and concepts are encountered throughout theoretical computer
science. That cannot be said of any Turing machine program!

5 The A-Calculusand Computation Theory

The XA-calculus is one of the classical models of computation, along with Turing ma-
chines and general recursive functions. Church’'s Thesis states that the computable
functions are precisely those that are \-definable. Below, we shall see that the X-
calculus has the same power as the (total) recursive functions. We shall also see some
strong undecidability results for A-terms. The following definition isfundamental .

22 5. THE X-CALCULUSAND COMPUTATION THEORY

Definition 9 If f isan n-placefunction over the natural numbers, then f is A-definable
if there exists some A-term F' such that, for all &¢,...,%k, € N,

Fly oo by = flki,.. k).

In other words, F' maps numerasfor argumentsto numeralsfor f’sresults. By the
Church-Rosser Theorem, since numeras are in normal form, we have the reduction

Fhy oo kg > flkr,. . k).

Thus, we can computethevalueof f(ki,...,k,) by normaizingtheterm F' &, ... k, .

5.1 ThePrimitive Recursive Functions

In computation theory, the primitiverecursivefunctionsarebuilt up fromthefollowing
basic functions:

0 the constant zero
suc the successor function '
U theprojection functions, U} (z1,...,2,) = @;

New functions are constructed by substitution and primitive recursion. Substitu-
tion, or generalized composition, takes an m-place function ¢ and the n-place func-
tionshy, ..., h,; ityiedsthen-placefunction f such that

flar, ooy zn) = glha(ze, .o csxn)s oo hm(Tr, oo 2n)).

Primitiverecursiontakesan n-placefunction g and an (n+2)-placefunction /; ityields
the (n + 1)-place function f such that

f(07£l?17 ..
f(suc (y)7x17 <.

J) = g(T1, ..., 2,)
sn) = h(f(y, 1, @n) Yy Tyt 2y)

5.2 Representing the Primitive Recur sive Functions

The functions are defined in the A-calculus in the obviousway. The proof that they are
correct (with respect to our definition of A-definability) is left as an exercise.
Here are the basic functions:

e ForOuse 0, namely Afz.x.
e For suc use suc, namely Anfz.nf(fz).

o ForU! use)z ...z,.2;.

5.3 The Genera Recursive Functions 23

To handle substitution, suppose that the m-place function ¢ and n-place func-
tions hy,...,h, are \-defined by G, Hy, ..., H,,, respectively. Then, their composi-
tion f is A-defined by

F=Mvy.oooa, . G(Hyxy ooy oo (Hppaey oo xy).

To handle primitiverecursion, suppose that then-placefunction g and (n+2)-place
function /» are A-defined by G and H, respectively. The primitiverecursive function f
is A-defined by

F=Y </\fy;1;1 ...x,.1f (iszeroy)
(Gay...xp)

(H(f(prey)z: ... z,)(prey)z: .. .x,n))>.

5.3 The General Recursive Functions

Starting with the primitive recursive functions, the so-called general recursive func-
tions are obtained by adding the minimisation operator, or function inversion. Given
an n-place function ¢ it yields the »n-place function f* such that

f(z1,...,2,) =theleast y such that [¢(y, x2, ..., 2,) = 2]

and is undefined if no such y exists.
Thus, minimisation may yield a partia function. Thisleads to certain difficulties.

¢ The notion of undefined is complicated in the A-calculus. It is tedious to show
that the A-encoding of minimisation yields an undefined term if and only if the
corresponding function fails to terminate.

e Composition in the A-calculus is non-strict. For example, consider the partia
functionsr and s such that () = 0 and s(x) is undefined for all =. We may A-
definer and s by R = Az.0 and S = Az.©2. Now, r(s(0)) should be undefined,
but R(S0) — 0. Defining the strict composition of R and S istricky.

Let usrestrict attention to the total recursivefunctions. If foral x4, ..., =, thereis
some y such that ¢(y, x2,...,x,) = 21, thentheinverse of ¢ istotal. Suppose that
isaterm that A-defines g. Then theinverseis A-defined by

F=Xey...2,. Y </\hy. if (equals 21(Gyzy ... 2,)

(h(suc y))> 0

This sets up arecursive function that tests whether (Gyzx, ... z,,) equals z; for in-
creasing values of y. To start the search, thisfunctionisapplied to 0 . The equality test
for natural numbers can be defined in many ways, such as

equals = Amn.iszero (add (submn)(subnm))

24 5. THE X-CALCULUSAND COMPUTATION THEORY

This works because submn = 0 if m < n. The equality relation between arbi-
trary A-terms (not just for Church numerals) is undecidable and cannot be expressed in
the A-calculus.

Exercise 9 Find another definition of the equality test on the natural numbers.

5.4 The \-Definable Functionsare Recursive

We have just shown that all total recursive functions are A-definable. The converseis
not particularly difficult and we only sketchit. The key isto assign aunique (and recur-
sively computable!) Godel number # M to each A-term M. First, assumethat the set of
variableshastheformz, x4, x5, . . ., SO that each variableis numbered. The definition
of # M isquite arbitrary; for example, we could put

#(xiM) = 3'5%M
#(MN) = 7#M11#N

To show that al A-definable functions are recursive, suppose that we are given a
A-term F'; we must find arecursive function f such that f(k4,...,k,) = k if and only
if Pk ...k, = k. Wecando thisinauniform fashion by writing an interpreter for
the \-calculus using the language of total recursivefunctions, operating upon the Godel
numbers of A-terms. Thisissimply amatter of programming. Theresulting programis
fairly long but much easier to understand than its Turing machine counterpart, namely
the Universal Turing Machine.

Exercise 10 (Composition of partial functions) Show that n I = T for every
Church numeral n . Usethisfact to show that theterm H defined by

H=Xe.GaI(F(Guz))

A-defines the composition f o ¢ of the functions f and ¢, provided /' A-defines f and
G \-defines g. What can be said about # M if G M is undefined? Hint: recal the
definition of solvable from Exercise 7.

55 The Second Fixed Point Theorem

We shall formalizethe A-calculusinitself in order to prove some undecidability results.
The Godel numberingiseasily coded and decoded by arithmetic operations. In particu-
lar, there exist computable functions Ap and Num, operating on natural numbers, such
that

AP(#M,#N) = F#(MN)

5.5 The Second Fixed Point Theorem 25

= 7#EM#EN

#(n)
= #/\1’2 Zq. ZL’Q(' . (IQ l’l) .)
N —

n

Num(n)

These can be A-defined by terms AP and NUM , operating on Church numerals.
Let uswrite™ M ™ for (# M), whichisthe Church numeral for the Godel number of M.
Thisitself isaA-term. Using this notation, AP and NUM satisfy

AP"MT™N' = "TMN"
NUMn = "n’ (where n isany Church numeral)

Putting™ M for n in the latter equation yields acrucial property:

NUM I_M_| — I_I_M_|_|.

Theorem 10 (Second Fixed Point) If F'isany A-termthenthereexistsaterm X such
that

FrXT=X.
Proof Make the following definitions:

W = Xe.F(AP2(NUMu))
X = W't

Then, by a3-reduction and by the lawsfor AP and NUM , we get

X — F(APTW(NUMT™W))

Il
ﬁ

Therefore X = F("X 7). O

Exercise1l How doweknow that the stepsinthe proof are actually reductions, rather
than mere equalities?

What was the First Fixed Point Theorem? If F' is any A-term then there exists a
term X suchthat F'X = X. Proof: put X = Y F. Notethe similarity between Y F'
and the X constructed above. We use fixed point combinators to A-define recursive
functions; we shall use the Second Fixed Point Theorem to prove undecidability of the
halting problem.

26 5. THE X-CALCULUSAND COMPUTATION THEORY

5.6 Undecidability Resultsfor the A-Calculus
We can show that the halting problem, as expressed in the A-calculus, is undecidable.

Theorem 11 Thereisno A-term halts such that

true if M hasanormal form
false if M hasnonormal form

halts" M = {
Proof Assume the contrary, namely that halts exists. Put
D = Xz.if (halts2)Q0;
by the Second Fixed Point Theorem, there exists X such that
X =D "X7=if (halts" X Q0.
There are two possible cases; both lead to a contradiction:

o If X hasanorma formthen X = if trueQ0 = Q, which hasno normal form!

o If X hasnonormal formthen X = if false Q20 = 0, whichdoeshaveanormal
form!

O

The proof isatypical diagonalisation argument. The theorem is strong: athough
halts™ M can do anything it likes with the code of M, analysing the term’sstructure,
it cannot determine whether M has a normal form. Assuming Church’s Thesis — the
computable functions are precisely the \-definable ones — the theorem states that the
halting problem for the normalization of A-termsis computationally undecidable.

Much stronger results are provable. Dana Scott has shown that

o if Aisany non-trivial set of A-terms (which meansthat A is neither empty nor
the set of al A-terms), and

o if Aisclosed under equality (which meansthat M € Aand M = N imply
N e A

then the test for membership in A is undecidable. The halting problem follows as a
gpecia case, taking

A={M | M= N and N isinnorma form}

See Barendregt [1, page 143], for more information.

27

6 |ISWIM: The\-calculusasa ProgrammingL anguage

Peter Landin was one of thefirst computer scientiststo take notice of the A-calculusand
relate it to programming languages. He observed that Algol 60's scope rules and call-
by-name rule had counterpartsin the A\-calculus. In hispaper [9], heoutlined a skeletal
programming languagesbased on the A-calculus. Thetitlereferredto the 7001anguages
said to be aready in existence; in principle, they could all share the same A-calculus
skeleton, differing only in their data types and operations. Landin’s language, |ISWIM
(If you See What | Mean), dominated the early literature on functional programming,
and was the model for ML.

Lisp also takes inspiration from the A-calculus, and appeared many years before
ISWIM. But Lisp made severa fatal mistakes: dynamic variable scoping, an imper-
ative orientation, and no higher-order functions. Although ISWIM alows imperative
features, Lisp is essentially an imperative language, because all variables may be up-
dated.

|SWIM was designed to be extended with application-specific data and operations.
It consisted of the A-calculus plus afew additional constructs, and could be trand ated
back into the pure A-calculus. Landin called the extra constructs syntactic sugar be-
cause they made the A-calculus more palatable.

6.1 Overview of ISWIM
ISWIM started with the A-calculus:

T variable
(Ax.M) abstraction
(MN) application

It also alowed local declarations:

letx=MinN simple declaration
let fo;---2,=MinN function declaration
letrec fz,---2x = M in N recursive declaration

Local declarations could be post-hoc:

N wherez = M
Nwhere fxy---x, =M
N whererec fz - ap =M

The meanings of local declarations should be obvious. They can be trandated into the
pure A-calculus:

letz=Min N =M. N)M
let foy---axp=MinN =AfN)Axy---25.M)
letrec faq-- a2y = MinN=(ALN)(Y (Afy---2.M))

28 6. ISWIM: THEA\-CALCULUSASA PROGRAMMING LANGUAGE

Programmerswere not expected to encode data using Church numeralsand thelike.
ISWIM provided primitive data structures: integers, booleans and ordered pairs. There
being no type system, lists could be constructed by repeated pairing, asin Lisp. The
constants included

01 —-12-2... integers
+—x/ arithmetic operators
=#<><> relational operators
true false booleans
and or not boolean connectives

if I then M else N conditional

6.2 Call-by-valuein ISWIM

The call-by-value rule, rather than call-by-name, was usually adopted. This was (and
still is) easier to implement; we shall shortly see how this was done, using the SECD
machine. Call-by-valueisindispensable in the presence of imperative operations.

Call-by-vaue gives more intuitive and predictable behaviour generally. Classical
mathematics is based on strict functions; an expression is undefined unless al its parts
are defined. Under call-by-name we can define afunction f such that if f(z) = 0 for
al =, witheven f(1/0) = 0. Ordinary mathematics cannot cope with such functions;
putting them on arigorous basi s requires complex theories.

Under call-by-value, if-then-else must be taken as a special form of expression.
Treating if as afunction makes fact run forever:

letrec fact(n) = if (n=0) 1 (n x fact(n — 1))
The arguments to if are always evaluated, including the recursive call; whenn = 0
it triesto compute fact(— 1). Therefore, we take conditional expressions as primitive,

with evaluation rules that return M or N unevaluated:

if FthenMdseN — M
if Fthen M eseN — N

Our call-by-vauerule never reduces anything enclosed by a A. Sowe can trandate
the conditional expression to the application of an if -function:

if Fthen M eseN = if £ (Au.M) (Au.N) 0

Choosing some variable « not freein M or N, enclosing those expressionsin A delays
their evaluation; finally, the selected oneis applied to O.

6.3 Pairs, Pattern-Matching and Mutual Recursion 29

6.3 Pairs, Pattern-Matching and Mutual Recursion
ISWIM includes ordered pairs:

(M,N) pair constructor
fst snd projection functions

For pattern-matching, let A(p, p2). £ abbreviate
Az.(Apy p2.E)(fst z)(snd 2)
where p; and p, may themselves be patterns. Thus, we may write

let (z,y) = M in £ taking apart M’svalue
let f(x,y) = F'in N defining f on pairs

The trandation iterates to handle things like
let (w, (z,(y,2)))= M inE.
We may introduce n-tuples, writing (x4, ..., z,_1, x,) for the nested pairs
(T1y ey (T,) -).

The mutually recursive function declaration

can be trandated to an expression involving pattern-matching:
(/\(fh ceey fk)N)(Y (/\(fh cee fk)(/\fth AfZ-M27 R /\i:kMk»)

We can easily handle the general case of &£ mutually recursive functions, each with any
number of arguments. Observe the power of syntactic sugar!

6.4 FromISWIM toML

Practically all programming language features, including go to statements and pointer
variables, can be formally specified in the A-calculus, using the techniques of denota-
tional semantics. |SWIM ismuch simpler than that; itisprogramming directly inthe \-
calculus. To alow imperative programming, we can even define sequential execution,
letting M; N abbreviate (Az.N')M; the call-by-value rule will evaluate M before N .

30 6. ISWIM: THEA\-CALCULUSASA PROGRAMMING LANGUAGE

However, imperative operations must be adopted as primitive; they cannot be defined
by simple trandation into the A-calculus.

ISWIM givesusall the basic features of aprogramming language— variable scope
rules, function declarations, and local declarations. (The let declaration is particularly
convenient; many languages still make us write assignments for this purpose!) To get
areal programming language, much more needs to be added, but the languages so ob-
tained will have acommon structure.

ISWIM was far ahead of its time and never found mainstream acceptance. Itsin-
fluence on ML isobvious. Standard ML has changed the syntax of declarations, added
polymorphic types, exceptions, fancier pattern-matching and modules — but much of
the syntax is still defined by trandation. A French dialect of ML, called CAML, retains
much of the traditional ISWIM syntax [4].

6.5 The SECD Machine

Landin invented the SECD machine, an interpreter for the A-calculus, in order to exe-
cute ISWIM programs|[3, 5, 8]. A variant of the machine executes instructions com-
piled from A-terms. With afew optimisations, it can be used to implement real func-
tional languages, such as ML. SECD machines can be realized as byte-code inter-
preters, their instructions can be trand ated to native code, and they can beimplemented
directly on silicon. The SECD machine yields strict evaluation, call-by-value. A lazy
version is much slower than graph reduction of combinators, which we shall consider
later.

It is tempting to say that a value is any fully evaluated A-term, namely a term in
normal form. Thisisapoor notion of valueinfunctiona programming, for two reasons:

1. Functionsthemselves should be values, but many functionshaveno normal form.
Recursive functions, codedas Y F, satisfy Y FF = F(Y F) = F(F(Y F)) =
-+ -. Although they have no normal form, they may well yield normal forms as
results when they are applied to arguments.

2. Evaluating the body of a A-abstraction, namely the M in Az. M, serve little pur-
pose; we are seldom interested in the internal structure of afunction. Only when
itisapplied to someargument N do we demand theresult and evaluate M [N/ z].

Re (2), we clearly cannot use encodings like Az y.x for true and A f z.z for Q,
since our evaluation rule will not reduce function bodies. We must take the integers,
booleans, pairs, etc., as primitive constants. Their usual functions (+, —, x, ...) must
also be primitive constants.

6.6 Environmentsand Closures
Consider the reduction sequence

(Azy.x+y)35 = (Ay3+y)5—=3+5 8.

6.7 The SECD State 31

The 3-reduction eliminates the free occurrence of x in Ay.x + y by substitution for .
Substitution is too slow to be effective for parameter passing; instead, the SECD ma-
chinerecords+ = 3 in an environment.

With curried functions, (Azy.x + y) 3 is alegitimate value. The SECD machine
representsit by aclosure, packaging the A-abstraction with its current environment:

Clo(y .oty o, x=3)
T T T

bound variable functionbody environment

When the SECD machine applies this function value to the argument 5, it restores the
environment to » = 3, addsthe binding y = 5, and evaluates = + y in thisaugmented
environment.

A closure is so-called because it “closes up” the function body over its free vari-
ables. Thisoperationis costly; most programming languages forbid using functions as
values. Until recently, most versions of Lisp let afunction’sfree variables pick up any
values they happened to have in the environment of the call (not that of the function’s
definition!); with this approach, evaluating

letg(y) =2 +yin
let f(z) = g(1) in
(a7

wouldreturn 18, using 17 asthevalueof = in g! Thisisdynamic binding, asopposed to
the usual static binding. Dynamic binding is confusing because the scope of « in f(x)
can extend far beyond the body of f — itincludesall codereachablefrom f (including
g inthiscase).

Common Lisp, now the dominant version, corrects this long-standing Lisp defi-
ciency by adopting static binding as standard. It also allows dynamic binding, though.

6.7 The SECD State
The SECD machine has a state consisting of four components S, E, C', D:

1. The Stack is alist of values, typically operands or function arguments; it also
returns the result of afunction call.

2. The Environment hasthe form z; = ay;---; 2, = a,, expressing that the vari-
ablesxy,...,z, havethevauesay,...,a,, respectively.

3. The Control isalist of commands. For the interpretive SECD machine, a com-
mand is a A-term or the word app; the compiled SECD machine has many com-
mands.

32 6. ISWIM: THEA\-CALCULUSASA PROGRAMMING LANGUAGE

4. The Dump isempty (—) or isanother machine state of theform (S, £, C, D). A
typical state lookslike

(S1, By, Ch, (S, Ba, Oy (Spy By Cry—)..)

It is essentially alist of triples (51, F1, C1), (Sa, Fa, Cs), ..., (S, E,, Cy) and
serves as the function call stack.

6.8 State Transtions

Let us write SECD machine states as boxes:

Stack
Environment
Control
Dump

To evaluate the A-term M, the machine begins execution an theinitial state where
M isthe Control:

S| —
El —
C|\M
Dl —
If the Control is non-empty, then itsfirst command triggersastate transition. There
are cases for constants, variables, abstractions, applications, and the app command.
A constant is pushed on to the Stack:

S NS
12 £
el Randl e
D D

The value of avariable istaken from the Environment and pushed on to the Stack.
If thevariableisz and £ contains = = « then « is pushed:

S a; S
E E
x;C — C
D D

A X-abstraction is converted to a closure, then pushed on to the Stack. The closure
contains the current Environment:
S Clo(x, M
K K
C
D

.E); S

Ae.M;C
D

6.9 A SampleEvaluation 33

A function application is replaced by code to evaluate the argument and the func-
tion, with an explicit app instruction:

S S

E L E
MN:C| " |N;M;app:C

D D

The app command calls the function on top of the Stack, with the next Stack ele-
ment asitsargument. A primitivefunction, like+ or x, deliversitsresultimmediately:

fia;S f(a); S
FE FE

app; C — C
D D

The closure Clo(x, M, E') is called by creating a new state to evaluate M in the
Environment £’, extended with a binding for the argument. The old state is saved in
the Dump:

Clo(x, M, E");a; S —
E x=a; F
app; C — M
D (S,E,C,D)

The function call terminatesin a state where the Control is empty but the Dumpis
not. To return from the function, the machine restores the state (.S, <, C', D) from the
Dump, then pushes « on to the Stack. Thisisthe following state transition:

a a; S

£’ - E

— C
(S,E,C,D) D

The result of the evaluation, say «, is obtained from afinal state where the Control
and Dump are empty, and « is the sole value on the Stack:

a

Q@

6.9 A Sample Evaluation

To demonstrate how the SECD machine works, let us evaluate the expres-
son twicesqr 3, where twice is A\fx.f(fx) and sqr is a built-in squaring

34 6. ISWIM: THEA\-CALCULUSASA PROGRAMMING LANGUAGE

function. (Note that twice is just the Church numera 2). We start from the initial
state:

— — 3
N 2 g I
twice sqr 3 3; twice sqr; app twice sqr; app
3 sqr; 3
— const — abstr
- - —
sqr; twice; app; app twice; app; app
Clo(f, Az.f(fz),—); sqr;3 —
— app f = sqr Iabst\r
app; app Az f(f z)
- (37 —,app, _>
Clo(z,/(J 7)./ = sar) Clo(z, /(7 7).] = sar); 3
f = sqr rletﬂ;q - =apr;
— app
(37 —,app, _> -
r = 3, f = 8qr | applic | T = 3, f = 8qr | applic
— —
f(fz) Jx;f;app
(_7_7_7_) (_7_7_7_)
— 3 sqr;3
r=3;f=sqr | var |2=3;f=s8qr | var |2 =3;f = sqr ?,p_plgf
z; f;app; f;app | | f;app; f;app " | app;f;app
(_7_7_7_) (_7_7_7_) (_7_7_7_)
9 sqr;9 81 81
xr=3;f = sqr var, x=3;f = sqr app xr=3;f=sqr return | —
/;app app — —
(_7_7_7_) (_7_7_7_) (_7_7_7_) -

The machine terminatesin afinal state, giving avalue of 81.

6.10 The Compiled SECD Machine 35

6.10 The Compiled SECD Machine

Ittakes 17 stepstoevaluate ((Az y.z+y) 3) 5! Much faster executionisobtained by first
compiling the A-term. Write [M] for thelist of commands produced by compiling M
there are cases for each of the four kinds of A-term.

Constants are compiled to the const command, which will (during later execution
of the code) push a constant onto the Stack:

[k] = const(k)

Variables are compiled to the var command, which will push the variable's value,
from the Environment, onto the Stack:

[x] = var(x)

Abstractionsare compiled to the closure command, which will push aclosure onto
the Stack. The closure will include the current Environment and will hold M as alist
of commands, from compilation:

[Az.M] = closure(x, [M])

Applications are compiled to the app command at compile time. Under the inter-
preted SECD machine, this work occurred at run time:

[MN] = [N];[M]; app

We could add further instructions, say for conditionals. Let test(C,C3) be re-
placed by C'; or (5, depending upon whether the value on top of the Stack is true
or false:

[if E then M ese N] = [E]; test([M],[N])

To alow built-in 2-place functions such as + and x could be donein severa ways.
Those functions could be made to operate upon ordered pairs, constructed using a
pair instruction. More efficient is to introduce arithmetic instructions such as add
and mult, which pop both their operands from the Stack. Now ((Azy.x + y)3)5
compilesto

const(5); const(3); closure(x, Cp); app; app

and generates two further lists of commands:

Co = closure(y,)
Cy = var(y);var(z); add

Many further optimisations can be made, |leading to an execution model quite close
to conventional hardware. Variable names could be removed from the Environment,

36 6. ISWIM: THEA\-CALCULUSASA PROGRAMMING LANGUAGE

and bound variablesreferred to by depth rather than by name. Special instructions en-
ter and exit could efficiently handle functions that are called immediately (say, those
created by the declaration letz = Nin M), creating no closure:

[(Az.M)N] = [N]; enter; [M]; exit

Tail recursive (sometimes called iterative) function calls could be compiled to the
tailapp command, which would cause the following state transition:

Clo(z,C, E');a —
E x=a; F

tailapp — C

D D

Theusdlessstate(—, £, —, D) isnever stored on thedump, and thefunction return after
tailapp is never executed — the machine jumpsdirectly to C'!

6.11 RecursveFunctions

The usual fixed point combinator, Y , failsunder the SECD machine; it always |oops.
A modified fixed point combinator, including extra \’s to delay evaluation, does work:

M.z f(Qy.xzzy)(Ay.xz 2 y))

But itishopelessly dow! Recursive functions are best implemented by creating a clo-
sure with a pointer back to itself.

Supposethat f(x) = M isarecursive function definition. The value of f isrepre-
sented by Y (Af 2.M). The SECD machine should interpret Y (A fz.M) in aspecid
manner, applying the closurefor A f .M toadummy value, L. If the current Environ-
ment is £ then thisyields the closure

Clo(x, M, f= 1;F)

Then the machine modifies the closure, replacing the L by a pointer looping back to
the closure itself:

Clo(x, M, f = - E)

When the closureis applied, recursive callsto f in M will re-apply the same closure.
The cyclic environment supports recursion efficiently.

The technique is called “tying the knot” and works only for function definitions.
It does not work for recursive definitions of data structures, such as the infinite list
[0,0,0,...],definedas Y (M. cons 0/). Thereforestrict languageslikeML allow only
functionsto be recursive.

37

7 Lazy Evaluation via Combinators

The SECD machine employs call-by-value. It can be modified for call-by-need (lazy
evauation), as follows. When afunction is called, its argument is stored uneval uated
in a closure containing the current environment. Thus, the call M N is treated some-
thing like M (Au.N), where u does not appear in N. This closureis called a suspen-
son. When a strict, built-in functionis called, such as +, its argument is evaluated in
the usua way.

It isessential that no argument be evaluated more than once, no matter how many
timesit appearsin the function’s body:

let sgrn=nxnin N
sqr(sqr(sqr?2))

If this expression were evaluated by repeatedly duplicating the argument of sgr, the
waste would be intolerable. Therefore, the lazy SECD machine updates the environ-
ment with the value of the argument, after it isevaluated for thefirst time. But the cost
of creating suspensions makes this machine ten times slower than the strict SECD ma-
chine, according to David Turner, and compilation can give little improvement.

7.1 Graph Reduction in the A\-Calculus

Another ideaistowork directly with A-terms, using sharing and updating to ensure that
no argument is eval uated more than once. For instance, the evaluation of (An.n x n)AM
might be represented by the graph reduction

’

mult M

mult n

The difficulty here is that A-abstractions may themselves be shared. We may not
modify the body of the abstraction, replacing the bound variable by the actual argu-
ment. Instead, we must copy the body — including parts containing no occurrence of
the bound variable — when performing the substitution.

Both the lazy SECD machine and graph reduction of A-terms suffer because of the
treatment of bound variables. Combinators have the same expressive power as the A-
calculus, but no bound variables. Graph reduction in combinators does not require
copying. David Turner found an efficient method of trandating A-terms into combi-
nators, for evaluation by graph reduction [10]. Offshoots of his methods have been
widely adopted for implementing lazy functional languages.

38 7. LAZY EVALUATION VIA COMBINATORS

7.2 Introduction to Combinators

In the simplest version, there are only two combinators, K and S. Combinators are
essentially constants. It ispossibleto define K and S in the A-calculus, but combina-
tory logic (CL) exists as atheory inits own right.>

The terms of combinatory logic, written P, @), R, ..., arebuilt from K and S us-
ing application. They may contain free variables, but no bound variables. A typical
CLtermis K2(S Ka)(K S Ky)S. Although CL isnot particularly readable, it is
powerful enough to code al the computable functions!

The combinators obey the following reductions:

KPQ —, P
SPQR —. PR(QR)

Thus, the combinators could have been defined in the A-calculus by
K = J\ryx
S = lryzaz(yz)

But notethat S K does not reduce — because S requires three arguments — while
the corresponding \-term does. For thisreason, combinator reductionisknown asweak
reduction (hencethe“w” in —,).

Hereis an example of weak reduction:

SKKP—, KP(KP)—, P

Thus S K K P —»,, P forall combinator terms P; let usdefine theidentity combinator
byl = SKK.

Many of the concepts of the A-calculus carry over to combinators. A combinator
term P isinnormal formif it admitsno weak reductions. Combinatorssatisfy aversion
of the Church-Rosser Theorem: if P = () (by any number of reductions, forwards or
backwards) then there existsaterm 7 suchthat P —,, 7 and Q —,, Z.

7.3 Abstraction on Combinators

Any A-term may be transformed into a roughly equivalent combinatory term. (The
meaning of “roughly” is examined below.) The key is the transformation of a com-
binatory term P into another combinator term, writtenas A*z. P since it behaveslikea
A-abstraction.?

Definition 12 The operation A*x, where = isavariable, is defined recursively as fol-
lows:

Nz.x = 1
Xe.P = KP (z not freein P)
Nae.PQ = S(\z.P)(A2.Q)

2Itis called combinatory logic for historical reasons; we shall not treat it as alogic.
3Some authorswrite [2] P for *z.P.

7.3 Abstraction on Combinators 39

Finaly, *xq ... x,.P abbreviates *z¢.(. .. Xz, . P . ..).

Notethat A*x isnot part of the syntax of combinatory logic, but standsfor theterm
constructed as according to the definition above. Here is an example of combinatory
abstraction:

Nryyx N (Ny.yx)

Nz S (Ny.y)(Ny.x)
Na.(ST)(Kux)
SA\z.ST)(Nz.Kz)
S (K (S T))(S(\r.K
= S(K(ST)(S(KK)

J(Nz.z))
I)

Each A* can double the number of applicationsin aterm; in general, growth is ex-
ponential. Turner discovered abetter abstraction method, discussed in the next section.

Firgt, let us show that combinatory abstraction behaveslike its A-calculus cousin. Let
FV be defined for combinatory termsin an analogous manner to Definition 3.

Theorem 13 For every combinatory term P we have
FV(AX*z.P) = FV(P)—A{z}
(Nz. Pz —, P

Proof We prove both properties independently, by structural induction on P. There
arethree cases.
If Pisthevariablez,then A*z.x = 1. Clearly

FV(Xz.2)=FV(I)=0=FV(z) — {z}
Nzax)r=Te >,z
If P isany term not containing =, then *z.P = K P and
FV(X\z.P) = FV(K P) = FV(P)
(Nz.P)e= KPx —, P

If P=Q R,andzisfreein@ or R, then*z.P = S (*2.Q)(X*z.R). Thiscaseis
theinductive step and we may assume, as induction hypotheses, that the theorem holds
for Q and R:

FV(\N2.Q) = TFV(Q)—{«}
FV(X*z.R) = FV(R)-{z}

(Nz.Q)x —>», Q
(Nz.R)x —, R

40 7. LAZY EVALUATION VIA COMBINATORS

We now consider the set of free variables:

FV(\2.QR) = FV(S(\2.Q)(\z.R))
= (FV(Q) = {=H) [J(FV(R) — {=})

= FV(QR) - {z}
Finally, we consider application:
(Nz. Pz = SNz.Q)(Na.R)x
—u (Nz.Q)x((N'z.R)x)

=y Q((Nz.R)x)
-, QR

O

Using (A*z.P)x —,, P, we may derive an analogue of /3-reduction for combina-
tory logic. We a so get a strong analogue of «-conversion— changesin the abstraction
variable are absolutely insignificant, yielding identical terms.

Theorem 14 For all combinatory terms P and (),

(N2.P)Q —», P[Q/x]
XNa. P = XNy.Ply/z] ify ¢ FV(P)

Proof Both statements are routine structural inductions; the first can also be derived
from the previous theorem by a genera substitution theorem [1]. O

7.4 TheRelation Between A\-Termsand Combinators

The mapping ()¢z converts a A-term into a combinator term. It simply applies A*
recursively to al the abstractionsin the A-term; note that theinnermost abstractions are
performed first! The inverse mapping, ()., converts acombinator term into a A-term.

Definition 15 The mappings ()¢z, and (), are defined recursively as follows:

(¥)er, =
(M N)er, = (M)cr(N)er
(Ae.M)er, = XNa(M)er
(), = =«
(K), = Arya
(S)h = Myzaz(yz)
(PQ)y = (P)A(@Q)x

7.4 The Reation Between \-Terms and Combinators 41

Different versions of combinatory abstraction yield different versionsof ()¢ ,; the
present one causes exponential blow-up interm size, but it iseasy to reason about. Let
us abbreviate (M), as M¢qr, and (P), as P,. Itiseasy to check that (), and (), do
not add or delete free variables:

FV(M)=FV(Mc) FV(P)=FV(P)

Equality is far more problematical. The mappings do give atidy correspondence
between the A-calculus and combinatory logic, provided we assume the principle of
extensionality. This asserts that two functions are equal if they return equal resultsfor
every argument value. In combinatory logic, extensionality takes the form of a new
rule for proving equality:

Pr=Qx

P=0 (z not freein P or Q)

In the A-calculus, extensionality can be expressed by a similar rule or by introducing
n-reduction:
A Mz —, M (z not freein M)

Assuming extensionality, the mappings preserve equality [1]:

(Mer)y, = M in the A-calculus
(P\)er, = P in combinatory logic
M=N <= Mg, = N¢p,

P=0Q <+ P =0Q\

Normal forms and reductions are not preserved. For instance, S K isa norma
form of combinatory logic; no weak reductions apply to it. But the corresponding A-
termisnot in normal form:

(SK)h=Aryzaz(yz)(Ary.x) > Ay z.z

There are even combinatory termsin normal form whose corresponding A-term hasno
normal form! Even where both terms follow similar reduction sequences, reductions
in combinatory logic have much finer granularity than those in the A-cal culus; consider
how many steps are required to smulate a 3-reduction in combinatory logic.

Normal formsare the outputs of functional programs; surely, they ought to be pre-
served. Reduction is the process of generating the outputs. Normally we should not
worry about this, but lazy evaluation has to deal with infinite outputs that cannot be
fully evaluated. Thus, therate and granularity of reductionisimportant. Despitetheim-
perfect correspondence between \-terms and combinators, compilers based upon com-
binatory logic appear to work. Perhaps the things not preserved are insignificant for
computational purposes. More research needs to be done in the operational behaviour
of functional programs.

42 8 COMPILING METHODS USING COMBINATORS

8 Compiling Methods Using Combinators

Combinator abstraction gives us a theoretical basis for removing variables from A-
terms, and will alow efficient graph reduction. But first, we require a mapping from
A-termsto combinators that generates more compact results. Recall that * causes ex-
ponential blowup:

Neyyr=S(K(ST))(S(KK)I)

The improved version of combinatory abstraction relies on two new combinators,
B and C, to handle specia casesof S:

BPQR —., P(QR)
CPQR —., PRQ

Note that B P) R yields the function composition of P and (). Let us call the new
abstraction mapping A7, after David Turner, its inventor:

Mz = 1

Mz P = KP (= not freein P)
Mz Pz = P (= not freein P)
Mz.PQ = BPOAT2.Q) (= not freein P)
Mz PQ = C(\T2.P)Q (z not freein Q)
Mz PQ = SO\T2.P)(\T2.Q) (xfreein P and Q)

Although A7 is abit more complicated than *, it generates much better code (i.e.
combinators). Thethird case, for P z, takes advantage of extensionality; noteits simi-
larity to n-reduction. The next two cases abstract over P () according to whether or not
the abstraction variableis actually freein P or (). Let us do our example again:

Meyyr = Ma. (M yyz)
Mz .C(My.y)z
Mz .CIx

= CI

The size of the generated code has decreased by afactor of four! Here is another ex-
ample, from Paper 6 of the 1993 Examination. Let us trandate the A-encoding of the
ordered pair operator:

MNa Xy ffay MaXTy. CA\ f.fx)y
Ma My C(COf.fz)y
MaATy.C(CTa)y

Mz, C(CTa)
BC(\Nz.ClIx)

= BC(CI).

8.1 Combinator Terms as Graphs 43

Unfortunately, AT can still cause aquadratic blowup in code size; additional primi-
tive combinators should be introduced (See Field and Harrison [5, page 286]. Further-
more, al the constants of the functional language — numbers, arithmetic operators, ...
— must be taken as primitive combinators.

Introducing more and more primitive combinators makes the code smaller and
faster. Thisleads to the method of super combinators, where the set of primitive com-
binatorsis extracted from the program itself.

Exercise 12 Show B P1 = P using extensionality.

Exercise 13 Verify that C I behaves like the A\-term Az y.y when applied to two
arguments.

Exercise 14 What would A"z .y 2 yield if we did not apply thethird case in the def-
inition of \T?

8.1 Combinator Termsas Graphs

Consider the ISWIM program
let sgr(n) =n x ninsqr(5)
Let ustrandateit to combinators:

ATff5) (M nmultnn) = CI5(SATn.multn)(A\ n.n))
= CI5(SmultI)

Thisisaclosed term— it containsno freevariables (and no bound variabl es, of course).
Therefore it can be evaluated by reducing it to normal form.

Graph reduction works on the combinator term’s graph structure. This resem-
bles a binary tree with branching at each application. The graph structure for
C I5(S multI)isasfollows:

C I I
S mult

Repeated arguments cause sharing in the graph, ensuring that they are never eval-
uated more than once.

44 8 COMPILING METHODS USING COMBINATORS

8.2 ThePrimitive Graph Transfor mations

Graph reduction deals with terms that contain no variables. Each term, and its sub-
terms, denote constant values. Therefore we may transform the graphs destructively
— operands are never copied. The graph isreplaced by its normal form!

The primitive combinators reduce as shown in Figure 1. The sharing in the reduc-
tionfor S iscrucial, for it avoids copying R.

We also require graph reduction rulesfor the built-in functions, such as mult . Be-
cause mult isastrict function, the graph for mult P ¢) can only be reduced after P
and) have been reduced to numeric constants m and n. Then mult m n isreplaced
by the constant whose value is m x n. Graph reduction proceeds by walking down
the graph’s leftmost branch, seeking something to reduce. If the leftmost symbol isa
combinator like I, K, S, B, or C, with the requisite number of operands, then it
applies the corresponding transformation. If the leftmost symbol is a strict combina-
tor like mult , then it recursively traverses the operands, attempting to reduce them to
numbers.

Figure 2 presents the graph reduction sequence for the ISWIM program

let sgr(n) =n x nin sqr(5).

The corresponding term reductions are as follows:

CI5(Smultl) — I(Smultl)5
— S mult I5

mult 5 (I5)

mult55

25

L 44

Clearly visiblein the graphs, but not in the terms, isthat the two copies of 5 are shared.
If, instead of 5, the argument of s¢r had been alarge combinatory term P compiled
from the program, then P would have been evaluated only once. Graph reduction can
also discard terms by therule K P Q —,, P; here () isnever evaluated.

8.3 Booleansand Pairing

The A-calculus encodings of ordered pairs, Church numerals and so forth work with
combinators, but areimpractical to usefor compiling afunctional language. New com-
binators and new reductions are introduced instead.

With lazy evaluation, if-then-else can betreated like afunction, with the two reduc-
tions

if truePQ —, P
if false PQ —, Q.

8.3 Booleans and Pairing 45

A —

I P

ﬁ

/<\Q
K P
—
R
Q P
s P
R
—
R P
Q Q R
B P
" /<\Q
Q P R
c P

Figure 1: Graph reduction for combinators

46 8.

S mult

S mult

mult

COMPILING METHODS USING COMBINATORS

— —
5
I
I
S mult
— —
mult
5
25

Figure 2: A graph reduction sequence

84 Recursion: Cyclic Graphs 47

Thesereductionsdiscard P or) if itisnot required; thereisno need for tricksto delay
their evaluation. The first reduction operates on graphs as shown.

)
Q

P
if true
Pairing isaso lazy, asit isin the A-calculus; we introduce the reductions

fst (pair PQ) —, P
snd (pair PQ) —, Q.

The corresponding graph reductions should be obvious:

—_—

TV <

fst
pair P

8.4 Recursion: Cyclic Graphs

Trandating Y into combinator form will work, yielding a mult-step reduction
resembling*

-

Y P

Y
P

Thisisgrossly inefficient; 'Y must repeat its work at every recursive invocation!
Instead, take Y as a primitive combinator satisfying Y P —,, P(Y P) and adopt a
graph reduction rule that replacesthe Y by acycle:

T

Since P isnever copied, reductionsthat occur init yiel d permanent simplifications
— they are not repeated when the function is entered recursively.
To illustrate this, consider the ISWIM program

letrec from(n) = pairn(from(1 4+ n))in from(1).

“The pictureis an over-simplification; recall that wedonothave Y P — P(Y P)!

48 8 COMPILING METHODS USING COMBINATORS

The result should be theinfinitelist (1, (2,(3,...))). We trandate frominto combina-
tors, starting with
Y (AT fn.pairn(f(add 1n))

and obtain (verify this)
Y (B(S pair)(C B(add 1)))

Figures 3 and 4 give the graph reductions. A cyclic node, labelled 6, quickly
appears. Its rather tortuous transformations generate a recursive occurrence of from
deeper inthe graph. The series of reductions presumesthat the environment is demand-
ing evaluation of theresult; inlazy evaluation, nothing happensuntil it isforced to hap-
pen.

Graph reduction will leavetheterm add 1 1 unevauated until something demands
itsvalue; theresult of from(1)isredly (1,(1 +1,(1 +1+1,...))). Graphreduction
worksabit like macro expansion. Non-recursive function calls get expanded once and
for al thefirst time they are encountered; thus, programmers are free to define lots of
simple functionsin order to aid readability. Similarly, constant expressions are evalu-
ated once and for al when they are first encountered. Although this behaviour avoids
wasteful recomputation, it can cause the graph to grow and grow, consuming all the
store— aspace leak. The displayed graph reduction illustrates how this could happen.

Exercise15 Trandate Y tocombinatorsand do some steps of thereductionof Y P.

84 Recursion: Cyclic Graphs 49

—
1
Y
B
S pair C B add

—
from

1

S pair C B add 1

—
from /\ 1

S@\
B

C add 1

Figure 3: Reductions involving recursion

50

B

8 COMPILING METHODS USING COMBINATORS

—_—
pair 1
from
S pair
C B add 1
—
1 pair
from 1
from add 1 add 1

Figure 4: Reductions involving recursion (continued)

REFERENCES ol

References

[1]

[2]

(3]
[4]

(3]

6]

[7]

8]

[9]

[10]

H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland,
1984.

Richard Bird and Philip Wadler. Introduction to Functional Programming.
Prentice-Hall, 1988.

W. H. Burge. Recursive Programming Techniques. Addison-Wesley, 1975.

G. Cousineau and G. Huet. The CAML primer. Technical report, INRIA, Rocquencourt,
France, 1990.

Anthony J. Field and Peter G. Harrison. Functional Programming. Addison-Wesley,
1988.

Michael J. C. Gordon. Programming Language Theory and its Implementation.
Prentice-Hall, 1988.

J. Roger Hindley and Jonathon P. Seldin. Introduction to Combinatorsand A-Calculus.
Cambridge, 1986.

P. J. Landin. The mechanical evauation of expressions. Computer Journal, 6:308-320,
January 1964.

P. J. Landin. The next 700 programming languages. Communicationsof the ACM,
9(3):157-166, March 1966.

David A. Turner. A new implementation technique for applicative languages.
Software—Practice and Experience, 9:31-49, 1979.

	Introduction
	The lambda-Calculus
	Variable Binding and Substitution
	Avoiding Variable Capture in Substitution
	Conversions
	Reductions
	Curried Functions
	Bracketing Conventions

	Equality and Normalization
	Church-Rosser Theorem
	Diamond Property
	Possibility of Nontermination
	Normal Order Reduction
	Lazy Evaluation

	Encoding Data
	Booleans
	Ordered Pairs
	Natural Numbers
	Lists

	Writing Recursive Functions
	Fixed Points
	Usage of Y
	Defining Fixed Point Combinators
	Head Normal Form
	Lambda-Calculus versus Turing Machines

	Lambda-Calculus and Computation Theory
	Primitive Recursive Functions
	General Recursive Functions
	The Lambda-Definable Functions are Recursive
	Second Fixed Point Theorem
	Undecidability Results

	ISWIM
	Lazy Evaluation via Combinators
	Graph Reduction in the Lambda-Calculus
	Introduction to Combinators
	Abstraction on Combinators
	Lambda-Terms and Combinators

	Compiling Methods Using Combinators
	Combinator Terms as Graphs
	Primitive Graph Transformation
	Booleans and Pairing
	Recursion: Cyclic Graphs

	References

