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m ≥ 3n
Euler genus requirement necessary and Conjecture best-possible.
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Digression: Schnyder Woods
of planar triangulations

Orientation and red-green-blue-coloring of
inner edges such that:

at inner vertices:

Thm[de Fraysseix and Ossona
de Mendez ’01]:
Schnyder Woods in bijection
with inner outdegree 3-orientations =⇒ carry distributive lattice structure.

Applications in:
Small Grid Drawings, Compact Encoding, Dimension of Incidence Posets

, . . . , tool for the study of planar graphs

How about generalizations to higher genus?

Thm[Schnyder ’89]:
Schnyder Woods exist
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Explore T by stacking vertices to edges mantaining Invariants
◦ interior vertices happy wrt partition
◦ boundary angles

– happy wrt B
– have either R or G request or none
– G requests consecutive on boundary

◦ unexplored disks have at least 3 free angles

I satisfies invariants . . . existence of I?



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible



There is:

D D

D

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge

genus =⇒ v doesnt have boundary cycle



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge

genus =⇒ v doesnt have boundary cycle

maximality =⇒ v has several boundary paths



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge

genus =⇒ v doesnt have boundary cycle

maximality =⇒ v has several boundary paths

maximality =⇒ no contractible cycle through v



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge

genus =⇒ v doesnt have boundary cycle

maximality =⇒ v has several boundary paths

maximality =⇒ no contractible cycle through v



There is:

D D

D

v

D induced, D + v
induced, no cycle
through v and D is
contractible

D maximal induced disk
stack v to any edge

genus =⇒ v doesnt have boundary cycle
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induced, no cycle
through v and D is
contractible

Take an inclusion minimal such D + v

minimality =⇒ no chords at ui

u1

u2

minimality =⇒ in D − (vui)i everybody neighbor on other side
=⇒ there is only one ui

no separating 3 and 4-disks
=⇒ no vertices inside D

initial graph I:
◦ maximal outerplanar graph
D + e∗ = u1v

◦ induced
◦ non-contractible
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– have either R or G request or none
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◦ unexplored disks have at least 3 free angles

always stack some x to some e such that
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◦ if x is in unexplored disk, then either adjacent to all boundary

or has exactly one neighboring path not covering all free angles
◦ create new unexplored disks as late as possible
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◦ interior vertices happy wrt partition
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– happy wrt B
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case C:
x in unexplored disk and
has neighboring path

◦ only one neighboring path
◦ neighboring path contains ≤ 2 free angles
◦ satisfy x’s requests using free and outer
◦ satisfy all requests on inner angles

two G requests

no free angles one free angle no free anglestwo free angles
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Theorem[Albar, Gonçalves, K ’14]:
Every triangulation of a closed surface different from sphere and projective plane
admits an orientation with all vertices of non-zero outdegree divisible by three.

Questions:

Orientation and red-green-blue-coloring of
inner edges such that:

at all vertices:

Schnyder Woods on
orientable sufaces:

Lattice structure
on orientations:
Outdegree 3 orientations of planar graph carry distributive lattice structure.
How about higher genus surfaces?

Every planar 4-edge-connected graph with number of edges
divisible by 3 has an orientation with oudegrees divisble by 3.

Conjecture [Barát&Thomassen ’06]:


