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How about generalizations to higher genus?
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¥ o maximal outerplanar
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o u,v are deg 2 in D

o u,v are ends of

o some more stuff later
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Existence:
o initial graph I:
— maximal outerplanar graph D + e¢* = uv

— u,v ends of (= and deg 2 in D
— induced

— non-contractible

o correction graph B: acyclic orientation 7'\ I outdegree 2
o [ast-correction path C: either fw or bw directed
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Explore T' by stacking vertices to edges mantaining Invariants
o interior vertices happy wrt partition
> boundary angles

— happy wrt B
— have either R or (& request or none
— requests consecutive on boundary
o unexplored disks have at least 3 free angles

U
6*
vV
\
I satisfies invariants ... existence of 17
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D induced, D + v

induced, no cycle
There is: through v and D is
contractible

| €
D . . o
Take an inclusion minimal such D + v

minimality = no chords at u;

minimality = in D — (vu;); everybody neighbor on other side
—> there is only one u;

no separating 3 and 4-disks

.. initial graph 1.
— no vertices inside D

o maximal outerplanar graph
D + ef =uv

o Induced

o non-contractible
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Explore T' by stacking vertices to edges mantaining Invariants
o interior vertices happy wrt partition
> boundary angles

— happy wrt B
— have either R or G request or none
— requests consecutive on boundary
o unexplored disks have at least 3 free angles

X

always stack some x to some e such that
o not both ends of e have (- request
o if x is in unexplored disk, then either adjacent to all boundary

or has exactly one neighboring path not covering all free angles
o create new unexplored disks as late as possible
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Explore 1" by stacking vertices to edges mantaining Invariants
o interior vertices happy wrt partition
o boundary angles

case B:
= liieyeppy Wi B x not in unexplored disk
— have either R or (& request or none P

— (& requests consecutive on boundary
o unexplored disks have at least 3 free angles

| | |
Y Y K4

Y

if x closes unexplored disk it appears several times on boundary,
otherwise there would have been 2’ closing no unexplored disk
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Every triangulation of a closed surface different from sphere and projective plane
admits an orientation with all vertices of non-zero outdegree divisible by three.

Questions:
Schnyder Woods on Orientation and red- -blue-coloring of
orientable sufaces: inner edges such that:. A

at all vertices:

Lattice structure

on orientations:
Outdegree 3 orientations of planar graph carry distributive lattice structure.
How about higher genus surfaces?

Conjecture [Barat& Thomassen '06]:

Every planar 4-edge-connected graph with number of edges
divisible by 3 has an orientation with oudegrees divisble by 3.



