Orienting triangulations: on a conjecture of Barát and Thomassen

Kolja Knauer LIF Marseille Boris Albar, Daniel Gonçalves LIRMM Montpellier

EGOS, November 7, 2014

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f/2

vertices edges faces

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Thm[Radó '25] Every S admits a T**Obs** All T on S have the same eg(T)

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface with Euler genus 2 or larger admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of T: eg(T) = 2 - n + m - f

Every triangulation of a closed surface with Euler genus 2 or larger admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of *T*: eg(T) = 2 - n + m - f \longrightarrow m = 3n - 6 + 3eg(T)

Every triangulation of a closed surface with Euler genus 2 or larger admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of *T*: eg(T) = 2 - n + m - f \longrightarrow m = 3n - 6 + 3eg(T)

Every triangulation of a closed surface with Euler genus 2 or larger admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

triangulation T of surface S: simple graph G imbedded in S such that components of $S \setminus G$ aka faces are triangles.

Euler genus of *T*: eg(T) = 2 - n + m - f \longrightarrow m = 3n - 6 + 3eg(T)

 $m \geq 3n$

Euler genus requirement necessary and Conjecture best-possible.

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

original motivation: *claw-decompositions* non-zero outdegree divisible by three gives claw-decomposition and each vertex a center

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

original motivation: *claw-decompositions* non-zero outdegree divisible by three gives claw-decomposition and each vertex a center

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

original motivation: *claw-decompositions* non-zero outdegree divisible by three gives claw-decomposition and each vertex a center

Thm[Barát, Thomassen '06]:

Every triangulation of a closed surface admits an orientation with all vertices of outdegree *divisible by three*. On torus and Klein-bottle outdegrees non-zero.

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

original motivation: *claw-decompositions* non-zero outdegree divisible by three gives claw-decomposition and each vertex a center

Thm[Barát, Thomassen '06]:

Every triangulation of a closed surface admits an orientation with all vertices of outdegree *divisible by three*. On torus and Klein-bottle outdegrees non-zero.

additional motivation: generalizations of Schnyder Woods

Orientation and red-green-blue-coloring of

inner edges such that:

at *inner* vertices:

Orientation and red-green-blue-coloring of

inner edges such that:

at *inner* vertices:

Thm[Schnyder '89]: Schnyder Woods exist

Orientation and red-green-blue-coloring of

inner edges such that:

at *inner* vertices:

Thm[Schnyder '89]: Schnyder Woods exist

Orientation and red-green-blue-coloring of

inner edges such that:

at *inner* vertices:

Thm[Schnyder '89]: Schnyder Woods exist

Thm[de Fraysseix and Ossona de Mendez '01]: Schnyder Woods in bijection with *inner* outdegree 3-orientations \implies carry distributive lattice structure.

Orientation and red-green-blue-coloring of

inner edges such that:

at *inner* vertices:

Thm[Schnyder '89]: Schnyder Woods exist

Thm[de Fraysseix and Ossona de Mendez '01]: Schnyder Woods in bijection with *inner* outdegree 3-orientations

with *inner* outdegree 3-orientations \implies carry distributive lattice structure.

Applications in: Small Grid Drawings, Compact Encoding, Dimension of Incidence Posets , ..., tool for the study of planar graphs

Orientation and red-green-blue-coloring of

inner edges such that:

at *inner* vertices:

Thm[Schnyder '89]: Schnyder Woods exist

Thm[de Fraysseix and Ossona de Mendez '01]: Schnyder Woods in bijection with *inner* outdegree 3-orientations

with *inner* outdegree 3-orientations \implies carry distributive lattice structure.

Applications in: Small Grid Drawings, Compact Encoding, Dimension of Incidence Posets , ..., tool for the study of planar graphs

How about generalizations to higher genus?

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough and slightly wrong idea:

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough and slightly wrong idea:

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough and slightly wrong idea:

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough and slightly wrong idea:

stack on edg

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough and slightly wrong idea:

stack on edg

- peel off vertices of the triangulation
- reversing this process gives a construction sequence
- build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- reversing this process gives a construction sequence neighboring paths.
 build the desired orientation from an analysis. build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- reversing this process gives a construction sequence neighboring paths
 build the desired orientation from an analysis of the sequence of the • build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- reversing this process gives a construction sequence neighboring paths
 build the desired orientation from an analysis. • build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- reversing this process gives a construction sequence neighboring paths
 build the desired orientation from security of the se • build the desired orientation from some starting configuration on the fly

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

- reversing this process gives a construction sequence neighboring paths
 build an auxiliary structure from some difference in the stack on edge

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough idea:

- reversing this process gives a construction sequence neighboring paths
 build an auxiliary structure from some state in the sequence of the s

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough idea:

- reversing this process gives a construction sequence neighboring paths
 build an auxiliary structure from some state.

partition T into:

- initial graph I: starting configuration ... later
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- *last-correction path* G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

Every triangulation of a closed surface different from sphere and projective plane admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

how to prove something like that?

very rough idea:

- reversing this process gives a construction sequence neighboring paths
 build an auxiliary structure from some start.

partition T into:

- initial graph I: starting configuration ... later
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- *last-correction path* G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

what is this good for?

- \circ initial graph I: starting configuration \ldots later
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- ∘ *non-zero graph* **R**: $(T \setminus G \cup ends)$ outdegree ≥ 1

- $\circ~$ initial graph I: starting configuration \ldots later
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \odot correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

wrt *T*. • ensures non-zero outdegree

• will be part of final orientation

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \odot correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \bigcirc correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
ensures non-zero outdegree

• initial graph I: starting configuration ... later

- \odot correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

 \circ use out-edges to correct outdegree to $0 \mod 3$

will be part of final orientation
ensures non-zero outdegree

I has to deal with problems of others

partition T into:
 initial graph I: starting configuration ... later

- \odot correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph \mathbf{R} : $(T \setminus \mathbf{G} \cup \mathsf{ends})$ outdegree ≥ 1

- \circ order $T \setminus \mathbf{I}$ sth everybody has fw-degree 2 wrt T.
- process left-to-right

will be part of final orientation
 ensures non-zero outdegree

 \circ use out-edges to correct outdegree to $0 \mod 3$

I has to deal with problems of others

- maximal outerplanar graph $D + e^* = uv$
- $\circ \ u, v$ are deg 2 in D
- $\circ \, u, v$ are ends of ${f G}$
- some more stuff later

orient e^* and **G** sth v has *demand* 1

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

repair orientation as on ${\bf B}$ earlier

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

repair orientation as on ${\bf B}$ earlier

all others outdeg divisble by $3 \implies$ sum of demands on last triangle divisible by 3

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

repair orientation as on ${\bf B}$ earlier

all others outdeg divisble by $3 \implies$ sum of demands on last triangle divisible by 3

demand of v is 1 \implies other two 1, 1 or 0, 2 \implies can do!

orient e^* and **G** sth v has *demand* 1

starting from u get outdegree 2 except on last triangle

repair orientation as on ${\bf B}$ earlier

all others outdeg divisble by $3 \implies$ sum of demands on last triangle divisible by 3

demand of v is 1 \implies other two 1, 1 or 0, 2 \implies can do!

- \circ initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u,v ends of ${\bf G}$ and deg 2 in D
- \circ correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph \mathbf{R} : $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

then T satisfies Barát & Thomassen.

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph \mathbf{R} : $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

then T satisfies Barát & Thomassen.

for existence need more properties for $\mathbf{I}!$

- \circ initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u,v ends of ${\bf G}$ and deg 2 in D
- \circ correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

then T satisfies Barát & Thomassen.

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$ non-contractible
 - -u, v ends of G and deg 2 in D

induced

- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- *last-correction path* G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

then T satisfies Barát & Thomassen.

for existence need more properties for I!

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- \circ correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- ∘ *non-zero graph* **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- ∘ *non-zero graph* **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

- remove interiors of 3-sided disks
- replace interiors of chordless 4-sided disks by diagonal

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- \circ correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

- remove interiors of 3-sided disks
- replace interiors of chordless 4-sided disks by diagonal

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

- remove interiors of 3-sided disks
- replace interiors of chordless 4-sided disks by diagonal

- planar triangulation
- find Schnyder Wood
- \circ interior vertices outdeg 3
- $\circ\,$ outer vertices outdeg 0
- boundary not oriented

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

- remove interiors of 3-sided disks
- replace interiors of chordless 4-sided disks by diagonal similar

- planar triangulation
- find Schnyder Wood
- \circ interior vertices outdeg 3
- $\circ\,$ outer vertices outdeg $0\,$
- boundary not oriented

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- last-correction path G: either fw or bw directed
- ∘ non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

- initial graph I:
 - maximal outerplanar graph $D + e^* = uv$
 - u, v ends of G and deg 2 in D
 - induced
 - non-contractible
- correction graph **B**: acyclic orientation $T \setminus \mathbf{I}$ outdegree 2
- \circ last-correction path G: either fw or bw directed
- ∘ non-zero graph **R**: $(T \setminus \mathbf{G} \cup \{u, v\})$ outdegree ≥ 1

Explore T by stacking vertices to edges mantaining $\ensuremath{\mathsf{Invariants}}$

- interior vertices happy wrt partition
- boundary angles
 - happy wrt ${\bf B}$
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

Explore T by stacking vertices to edges mantaining **Invariants**

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

Explore T by stacking vertices to edges mantaining **Invariants**

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

Explore T by stacking vertices to edges mantaining **Invariants**

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

D maximal induced disk stack v to any edge

D maximal induced disk stack v to any edge

genus $\implies v$ doesnt have boundary cycle

D maximal induced disk stack v to any edge

genus $\implies v$ doesnt have boundary cycle

maximality $\implies v$ has several boundary paths

D maximal induced disk stack v to any edge

genus $\implies v$ doesnt have boundary cycle

maximality $\implies v$ has several boundary paths

maximality \implies no contractible cycle through v

D maximal induced disk stack v to any edge

genus $\implies v$ doesnt have boundary cycle

maximality $\implies v$ has several boundary paths

maximality \implies no contractible cycle through v

D induced, D + vinduced, no cycle through v and D is contractible

 $D \max$ imal induced disk stack v to any edge

genus $\implies v$ doesnt have boundary cycle

maximality $\implies v$ has several boundary paths

maximality \implies no contractible cycle through v

 \implies there is only one u_i

 \implies there is only one u_i

 \implies there is only one u_i

minimality \implies in $D - (vu_i)_i$ everybody neighbor on other side \implies there is only one u_i

no separating 3 and 4-disks \implies no vertices inside D

D induced, D + vinduced, no cycle through v and D is contractible

Take an inclusion minimal such D + v

minimality \implies no chords at u_i

 \mathcal{U}

 e^*

There is:

 u_1

 $\begin{array}{rcl} \text{minimality} \implies \text{ in } D - (vu_i)_i \text{ everybody neighbor on other side} \\ \implies \text{ there is only one } u_i \end{array}$

no separating 3 and 4-disks \implies no vertices inside D

initial graph I:

• maximal outerplanar graph

 $D + e^* = u_1 v$

- induced
- non-contractible

- interior vertices happy wrt partition
- boundary angles
 - happy wrt ${\bf B}$
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt ${f B}$
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

start with I distinguish different situations of stacking

- interior vertices happy wrt partition
- boundary angles
 - happy wrt ${f B}$
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

always stack some \boldsymbol{x} to some \boldsymbol{e} such that

- $\circ\,$ not both ends of e have ${\bf G}$ request
- $\circ\,$ if x is in unexplored disk, then either adjacent to all boundary or has exactly one neighboring path not covering all free angles
- create new unexplored disks as late as possible

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt B
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- $\circ~$ interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case B: *x* not in unexplored disk

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case B: *x* not in unexplored disk

- several neighboring paths
- wlog no free angles
- satisfy all requests on inner angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

- several neighboring paths
- wlog no free angles
- satisfy all requests on inner angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case B: x not in unexplored disk

- several neighboring paths
- wlog no free angles
- satisfy all requests on inner angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case B: *x* not in unexplored disk

- several neighboring paths
- wlog no free angles
- satisfy all requests on inner angles

- $\circ~$ interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case B: *x* not in unexplored disk

if x closes unexplored disk it appears several times on boundary, otherwise there would have been x' closing no unexplored disk

- interior vertices happy wrt partition
- boundary angles
 - happy wrt ${\bf B}$
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

- interior vertices happy wrt partition
- boundary angles
 - happy wrt ${\bf B}$
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

- only one neighboring path
- $\circ~$ neighboring path contains ≤ 2 free angles
- $\circ\,$ satisfy x 's requests using free and outer
- satisfy all requests on inner angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

- only one neighboring path
- $\circ~$ neighboring path contains ≤ 2 free angles
- $\circ~$ satisfy x's requests using free and outer
- $\circ\,$ satisfy all requests on inner angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

- only one neighboring path
- $\circ~$ neighboring path contains ≤ 2 free angles
- $\circ~$ satisfy $x{\rm 's}$ requests using free and outer
- satisfy all requests on inner angles

- interior vertices happy wrt partition
- boundary angles
 - happy wrt \mathbf{B}
 - have either ${\bf R}$ or ${\bf G}$ request or none
 - G requests consecutive on boundary
- $\circ\,$ unexplored disks have at least 3 free angles

case C:

 \boldsymbol{x} in unexplored disk and has neighboring path

two G requests

- only one neighboring path
- $\circ~$ neighboring path contains ≤ 2 free angles
- $\circ~$ satisfy $x{\rm 's}$ requests using free and outer
- satisfy all requests on inner angles

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

Questions:

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

Questions:

Schnyder Woods on orientable sufaces:

Lattice structure on orientations: Orientation and red-green-blue-coloring of inner edges such that:

at all vertices: -

Outdegree 3 orientations of planar graph carry distributive lattice structure. How about higher genus surfaces?

Every triangulation of a closed surface *different from sphere and projective plane* admits an orientation with all vertices of *non-zero* outdegree *divisible by three*.

Questions:

- Schnyder Woods on orientable sufaces:
- Lattice structure on orientations:

- Orientation and red-green-blue-coloring of inner edges such that:
 - at all vertices: -
- Outdegree 3 orientations of planar graph carry distributive lattice structure. How about higher genus surfaces?

Conjecture [Barát&Thomassen '06]:

Every planar 4-edge-connected graph with number of edges divisible by 3 has an orientation with oudegrees divisble by 3.