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Face-width

Surfaces

Definition
A surface is a compact, connected 2-manifold without
boundary.

Genus
The genus of a surface is its number of handles.
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Embedded graphs

Embedding

An embedding of a graph G on a surface S is a proper
drawing of G on S.

2-cell embedding

An embedding is a 2-cell embedding if the surface after
cutting along the graph is an union of disks.
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Euler Characteristic

Definition
let S be a surface of genus g and G a graph with v vertices,
e edges and f faces, then:

χ(S) = v − e+ f = 2− 2g

χ(S) = 1− 2 + 1 = 2− 2 ∗ 1 = 0
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Splitting cycle

3 kinds of cycles:
õ Contractile and separating cycles (C1).
õ Non-contractile and non-separating cycles (C2).
õ Non-contractile and separating cycles also called

splitting cycles (C3).

C1

C3
C2
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Status of the problem

Complexity (Colin de Verdière et al. 2008)

Deciding if a combinatorial surface has a splitting cycle is
NP-complete.

Conjecture (Barnette, 1982)

Every triangulation of a surface of genus at least 2 has a
splitting cycle.

Conjecture (Mohar et Thomassen, 2001)

For all triangulation S of genus g and all h ∈ [[1, g − 1]], there
is a splitting cycle that separates S into two pieces of
genera h and g − h.
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Triangulations

Definition
A triangulation of a surface S is a simplicial complex C and
a homeomorphism between S and C.

This definition excludes:
õ Loop edges.
õ 2 edges with the same end points.
õ 2 faces that share their 3 vertices.
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Face-width

Irreducible triangulations

A triangulation is irreducible if none of its edges can be
contracted.

It is known that, for a fixed genus g, there is a finite number
of irreducible triangulations with bounded number of
vertices.

Consequence

The conjecture is decidable for fixed genus.
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Low genus irreducible triangulations

Genus 2:
Number of maps: 396 785
Average length of the shortest splitting cycle: 5.31
Maximal length: 8 (map with 10 vertices)

11 vertices, genus 3:
Number of maps: 9 709
Average length of the shortest splitting cycle: 4.67
Maximal length: 6
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Face-width

Idea

Kn has
(
n
2

)
edges.

Example of K5:
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Face-width

K5

Number of edges:
(
5
2

)
= 10
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Face-width

K5

Number of edges:
(
5
2

)
= 10

Number of faces: 3e = 2f ⇒ f = 2
3e =

20
3 /∈ N
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General case

χ(S) = v − e+ f = n− n(n− 1)

2
+

2

3
· n(n− 1)

2
= 2− 2g

g =
(n− 3)(n− 4)

12

(n− 3)(n− 4) ≡ 0[12]⇔ n ≡ 0, 3, 4 or 7[12]

Theorem (Ringel et Youngs, ∼1970)

Kn can triangulate a surface if and only if n ≡ 0, 3, 4 or 7[12].
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Known results

We talk about Kn with n = 12 · s+ i.

õ i = 0, 3, 4 and 7, there is an embedding (Ringel and
Youngs 1972).

õ i = 3, 4 and 7, there are O(4s) non-isomorphic
embeddings (Korzhik and Voss 2001).

õ n = 12 (NO), there are exactly 182 200 non-isomorphic
embeddings (Ellingham and Stephen 2003).

õ n = 13 (NO), there are exactly 243 088 286
non-isomorphic embeddings (Ellingham and Stephen
2003).

õ i = 3 and 7 and for an infinite numbers of values of n,
there are at least nc·n

2
2-colorable non-isomorphic

embeddings (Granell and Knor 2012).
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Face-width

Computation time

n 12 15 16 19
Computation time 2 sec. 1 h. 12 h. ∼10 years
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Face-width

Computation time

n 12 15 16 19 31 43
duration 10 s. 20 s. 25 sec. 1 m. 25 m. 10 h.
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Results, case of K19

Genera Shortest splitting cycle #cycles
1→ 19 10 2080
2→ 18 14 1374
3→ 17 18 278
4→ 16 19 38
5→ 15 ⊥ 0
6→ 14 ⊥ 0
7→ 13 ⊥ 0
8→ 12 ⊥ 0
9→ 11 ⊥ 0
10→ 10 ⊥ 0
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• 15 19 27 28 31 39 40 43 36 NO
1 8 10 12 12 8 12 10 8 7
2 11 14 16 17 13 15 15 11 8
3 12 18 19 18 17 20 18 12 13
4 13 19 20 ⊥ 19 24 19 15 14
5 14 ⊥ 27 ⊥ 20 26 24 18 17
6 ⊥ ⊥ ⊥ 25 30 26 23 19
7 ⊥ ⊥ ⊥ 26 32 28 26 21
8 ⊥ ⊥ ⊥ 26 ⊥ 30 26 22
9 ⊥ ⊥ ⊥ ⊥ ⊥ 33 28 24
10 ⊥ ⊥ ⊥ ⊥ ⊥ 35 34 27
11 ⊥ ⊥ ⊥ ⊥ 36 34 28
12 ⊥ ⊥ ⊥ ⊥ 38 35 29
13 ⊥ ⊥ ⊥ ⊥ 40 35 ⊥
14 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
K31: only 78 of the 130 980 splitting cycles are separating
the surface into 2 pieces of genera 8 and 55.
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Perspectives

õ Prove that the embedding of K19 do not have a splitting
cycle that separates the surfaces into 2 pieces of
genera 10.

õ Give a complexity for the algorithm in the case of
complete graphs.
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Example n ≡ 7

1

2

5

9 1

23

4

5

67

8

9

Rotation scheme of 0:

0 : (9, 7, 8, 3, 13, 15, 14, 11, 18, 4, 17, 10, 16, 5, 1, 12, 2, 6)

The other rotation scheme comes from the addition in
Z/19Z:

1 : (10, 8, 9, 4, 14, 16, 15, 12, 0, 5, 18, 11, 17, 6, 2, 13, 3, 7)
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Face-width

Let G be a graph with a 2-cell embedding on a surface S.

Definition (Face-width)

The face-width of G is the minimum number of intersection
between any non-contractile cycle of S and the graph G.

Theorem
Let f a face, k ∈ N∗ and Ef,k = {f ′, d(f, f ′) ≤ k}. If
fw(G) > 2k + 1 then there is a disk D such that:

Ef,k ⊂ D and ∂D ⊂ ∂Ef,k
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Face-width

Face-width

Theorem
Let f a face, k ∈ N∗ and Ef,k = {f ′, d(f, f ′) ≤ k}. If
fw(G) > 2k + 1 then there is a disk D such that:

Ef,k ⊂ D and ∂D ⊂ ∂Ef,k

f

k

f

k



Splitting
Cycles in

Triangulations

Vincent
DESPRE

Definitions
Surfaces

Embedded graphs

The problem
Definition

Different cuttings

Preliminary results

Complete
graph
embeddings
Idea

Case of K5
General case

Non-isomorphic
embeddings

Algorithms
and results
Naïve algorithm

Final algorithm

Results

Theoretical
points
Perspectives

Example n ≡ 7

Face-width

Conjectures

Conjecture (Zha, 1991)

Every combinatorial map of genus at least 2 and face-width
at least 3 has a splitting cycle.

Conjecture (Zha, 1991)

Every combinatorial map of genus g ≥ 2 and face-width at
least 3 has a splitting cycle that split the surface into one
surface of genus h and one of genus g − h, for all 0 < h < g.
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Face-width

Optimality

A combinatorial map of genus 2 and face-width 2 without
splitting cycle:
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Face-width

Results

In the orientable case:
õ The conjecture is true for face-width at least 6 (Zha

and Zhao 1993).
õ The conjecture is true for genus 2 and face-width

at least 4 (Ellingham and Zha 2003).
In the non-orientable case:

õ The conjecture is true for face-width at least 5 (Zha
and Zhao 1993).

õ The conjecture is true for genus 2 (Robertson and
Thomas 1991).
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Face-width

This is
the end
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