Structure of Schnyder woods in higher genus

Benjamin Lévêque

CNRS, LIRMM, Montpellier, France

Schnyder (1989)

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

For every inner vertex

Planar graph \iff Incident poset has DM-dimension ≤ 3

Poulalhon and Schaeffer (2003)

Poulalhon and Schaeffer (2003)

Poulalhon and Schaeffer (2003)

110101110100101001101000

Poulalhon and Schaeffer (2003)

110101110100101001101000 \rightsquigarrow 6n bits

Poulalhon and Schaeffer (2003)

110101110100101001101000 \rightsquigarrow 6n bits ...1w10w10w0...

Poulalhon and Schaeffer (2003)

11010111010010100101000 \rightsquigarrow 6n bits ...1w10w10w0...

Poulalhon and Schaeffer (2003)

110101110100101001101000 \rightsquigarrow 6n bits ...1w10w10w0...

Poulalhon and Schaeffer (2003)

110101110100101001101000 ...1w10w10w0...

Poulalhon and Schaeffer (2003)

100110000010000 ...1w10w10w0...

Poulalhon and Schaeffer (2003)

 $1001100000010000 \rightsquigarrow 4n \text{ bits} \\ \dots 1w10w10w0\dots$

Poulalhon and Schaeffer (2003)

 $100110000010000 \rightsquigarrow 4n \text{ bits } (n \text{ bits } 1) \dots 1w10w10w0...$

Poulalhon and Schaeffer (2003)

1001100000010000 \rightsquigarrow 4n bits (n bits 1) \rightsquigarrow 3,25n bits ...1w10w10w0...

Poulalhon and Schaeffer (2003)

Poulalhon and Schaeffer (2003)

Felsner (2001), Miller (2002)

For every vertex

Felsner (2001), Miller (2002)

For every vertex

Felsner (2001), Miller (2002)

For every vertex

AND

Felsner (2001), Miller (2002)

For every vertex

AND

Felsner (2001), Miller (2002)

For every vertex

AND

Felsner (2001), Miller (2002)

For every vertex

AND

Dual rules

Felsner (2001), Miller (2002)

For every vertex

AND

Dual rules

Felsner (2001), Miller (2002)

For every vertex

AND

Dual rules

Felsner (2001), Miller (2002)

For every vertex

AND

Dual rules

 \Leftarrow \Rightarrow 5/14

5/14

 \Leftarrow \Rightarrow 5/14

 \Leftarrow \Rightarrow 5/14

Orthogonal surfaces

z

A generalization of Schnyder woods to higher genus

A generalization of Schnyder woods to higher genus

Castelli Aleardi, Fusy, Lewiner (2009) : applications to encoding

i) a small set \mathcal{E}^s of *special* edges, (u, v, w)doubly oriented and colored $tarta = t most 2 \cdot 2g$ multiple vertices (incident to special edges) ii) a new local condition for edges in a sector incident to a multiple vertex $\mathcal{E}^s = \{e_1, e_2\}$

	Genus	Triangulation
Plane	0	m = 3n - 6

	Genus	Triangulation
Plane	0	m = 3n - 6

	Genus	Triangulation	
Plane	0	m = 3n - 6	
Torus	1	m = 3n	

	Genus	Triangulation
Plane	0	m = 3n - 6
Torus	1	m = 3n

	Genus	Triangulation
Plane	0	m = 3n - 6
Torus	1	m = 3n
Double torus	2	m = 3n + 6

	Genus	Triangulation
Plane	0	m = 3n - 6
Torus	1	m = 3n
Double torus	2	m=3n+6
	g	m=3n+6(g-1)

	Genus	Triangulation
Plane	0	m = 3n - 6
Torus	1	m = 3n
Double torus	2	m=3n+6
	g	m=3n+6(g-1)
^		

	Genus	Triangulation
Plane	0	m = 3n - 6
Torus	1	m = 3n
Double torus	2	m=3n+6
	g	m=3n+6(g-1)

	Genus	Triangulation
Plane	0	m=3n-6
Torus	1	m = 3n
Double torus	2	m=3n+6
	g	m=3n+6(g-1)

Euler's formula in genus g : n - m + f = 2 - 2g

14

	Genus	Triangulation
Plane	0	m = 3n - 6
Torus	1	m = 3n
Double torus	2	m=3n+6
	g	m=3n+6(g-1)

		Genus	Triangulation
-	Plane	0	m=3n-6
	Torus	1	m = 3n
-	Double torus	2	m=3n+6
-		g	m=3n+6(g-1)
*			

		Genus	Triangulation
-	Plane	0	m=3n-6
	Torus	1	m = 3n
-	Double torus	2	m=3n+6
-		g	m=3n+6(g-1)
*			

Euler's formula in genus g : n - m + f = 2 - 2g

Theorem Barát, Thomassen (2006) Triangulation on a surface \implies orientation of the edges such that $d^+(v) = 0 \mod 3$

Euler's formula in genus g : n - m + f = 2 - 2g

Theorem Albar, Gonçalves, Knauer (2014) Triangulation on a surface \implies orientation of the edges such that $d^+(v) = 0 \mod 3$, $d^+(v) > 0$

 $\mathsf{Plane}: \mathsf{Schnyder} \mathsf{ wood } \iff \mathsf{3-orientation}$

 $\mathsf{Plane}: \mathsf{Schnyder} \mathsf{ wood } \iff \mathsf{3-orientation}$

Higher genus : Schnyder wood \iff (0 mod 3)-orientation ?

 $\mathsf{Plane}: \mathsf{Schnyder} \mathsf{ wood } \iff \mathsf{3-orientation}$

Higher genus : Schnyder wood \iff (0 mod 3)-orientation ? False !

 $\mathsf{Plane}: \mathsf{Schnyder} \mathsf{ wood } \iff \mathsf{3-orientation}$

Higher genus : Schnyder wood \iff (0 mod 3)-orientation ? False !

Theorem Lévêque, Gonçalves, Knauer (2014) Schnyder wood \iff (0 mod 3)-orientation and $\gamma(C) = 0 \mod 3$ for any cycle

Theorem Lévêque, Gonçalves, Knauer (2014) Schnyder wood \iff (0 mod 3)-orientation and $\gamma(C) = 0 \mod 3$ for any cycle Homology \rightsquigarrow Check γ only for a base

Transformations
\neq 2 Schnyder woods

 \neq 2 Schnyder woods \rightsquigarrow Set of edges ${\it T}$

 \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree

+ T Eulerian

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree
- + T Eulerian
- + same value γ for a basis

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree
- + T Eulerian
- + same value γ for a basis + T homology zero

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree
- + T Eulerian
- + same value γ for a basis + T homology zero \rightsquigarrow Lattice

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous + T Eulerian
- + same out degree

+ same value γ for a basis + T homology zero \rightsquigarrow Lattice

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous + T Eulerian
- + same out degree

+ same value γ for a basis + T homology zero \rightsquigarrow Lattice

Torus : 3 proofs of existence

Nothing in higher genus !

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree
- + T Eulerian + same value γ for a basis + T homology zero \rightsquigarrow Lattice

Torus : 3 proofs of existence

Nothing in higher genus !

- \neq 2 Schnyder woods \rightsquigarrow Set of edges $T = T_1, T_2, T_3$ homologous
- + same out degree
- + T Eulerian + same value γ for a basis + T homology zero \rightsquigarrow Lattice

Torus : 3 proofs of existence

Nothing in higher genus !

Gluing 2 planar Schnyder woods to make a toroidal one.

Gluing 2 planar Schnyder woods to make a toroidal one.

Theorem Fijavz

Gluing 2 planar Schnyder woods to make a toroidal one.

Theorem Fijavz

Gluing 2 planar Schnyder woods to make a toroidal one.

Theorem Fijavz

Gluing 2 planar Schnyder woods to make a toroidal one.

Theorem Fijavz

Gluing 2 planar Schnyder woods to make a toroidal one.

Theorem Fijavz

Simple toroidal triangulation \implies Three non contractible and non homotopic cycles that all intersect on one vertex and disjoint otherwise.

 \implies one-point-crossing Schnyder wood

By edge contraction

By edge contraction

By edge contraction

By edge contraction

By edge contraction

By edge contraction

Theorem Goncalves, Lévêque (2014) A toroidal map admits a crossing Schnyder wood if and only if it is essentially 3-connected.
Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Start with a 3-orientation

Lemme A middle walk ends on a middle cycle.

+ characterization theorem

Start with a 3-orientation

Lemme A middle walk ends on a middle cycle.

+ characterization theorem

 \implies Schnyder wood

 $\langle = = \rangle$ 13/14

Orthogonal surfaces

Orthogonal surfaces

Orthogonal surfaces

Theorem A simple toroidal map admits a straight line representation in a grid of size $O(n^2) \times O(n^2)$

Existence for higher genus ?

► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property

- ► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property
- A kind of crossing properties ?

- ► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property
- A kind of crossing properties ?
 Question Maximum number of non homotopic and non contractible closed curves such that they pairwise intersect on at most one point ?

- ► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property
- A kind of crossing properties ?
 Question Maximum number of non homotopic and non contractible closed curves such that they pairwise intersect on at most one point ?
- Color connectivity ?

- ► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property
- A kind of crossing properties ?
 Question Maximum number of non homotopic and non contractible closed curves such that they pairwise intersect on at most one point ?

Color connectivity ?
 Question One component for each color for simple triangulations ?

- ► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property
- A kind of crossing properties ?
 Question Maximum number of non homotopic and non contractible closed curves such that they pairwise intersect on at most one point ?
- Color connectivity ?
 Question One component for each color for simple triangulations ?
- Other applications ?

- ► Existence for higher genus ?
 Conjecture Triangulation on an oriented surface ⇒ orientation and coloring of the edges such that every vertex satisfies k ≥ 1 times the Schnyder property
- A kind of crossing properties ?
 Question Maximum number of non homotopic and non contractible closed curves such that they pairwise intersect on at most one point ?
- Color connectivity ?
 Question One component for each color for simple triangulations ?
- Other applications ?
 Enumeration, Compression, Spanners,...