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Preliminaries

(planar) straight-line drawing of a graph = (crossing-free) drawing on the
plane such that vertices are depicted as points and edges as straight-line
segments that connect the corresponding endpoints

(planar) straight-line grid drawing= (crossing-free) straight-line drawing such
that every point representing a vertex has integer coordinates




Problem definition,
motivation, and state of the art
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The (Planar) Slope Number of a Graph G

minimum number of edge slopes to compute a (planar) straight-line
drawing of G

G MG) psl(G)=5
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Given a family of (planar) graphs, find upper and lower bounds on the
(planar) slope number of any graph G in the family



The (Planar) Slope Number Problem

Given a family of (planar) graphs, find upper and lower bounds on the
(planar) slope number of any graph G in the family

we focus on graphs of bounded degree 4

[ﬂs sl(G) <m sl(G) < psl(G)



Motivation and State of the Art

Problem introduced by Wade and Chu in 1994

“some lines produce an undesired zig-zag effect...only lines with certain
slopes appear smooth”...more in general minimizing the number of
slopes is a desirable aesthetics requirement

i
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FIGURE 1. Lines with slopes 1 to 10 (LaTeX).
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“some lines produce an undesired zig-zag effect...only lines with certain
slopes appear smooth”...more in general minimizing the number of
slopes is a desirable aesthetics requirement
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FIGURE 1. Lines with slopes 1 to 10 (LaTeX).

Wade and Chu: The slope number of K is n
[The Computer Journal, 1994]
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State of the Art: planar graphs

Keszegh, Pach and Palvolgyi: planar bounded-degree graphs have
bounded planar slope number - psl(G) € O(2°@) -
[GD 2010; SIAM J. On Discrete Mathematics, 2013]

It relies on the following result. | ’ i
Malitz and Papakostas: every triangulated planar BES, _ %;H
graph with maximum degree A has a disk contact e
representation such that the ratio of the radii of X
any two tangent disks is at least a4-?(a=0,15) | Z\#\
[SIAM J. On Discrete Mathematics, 1994] \ |
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State of the Art: planar graphs

Keszegh, Pach and Palvolgyi: planar bounded-degree graphs have
bounded planar slope number - psl(G) e O(2°(4)) -
[GD 2010; SIAM J. On Discrete Mathematics, 2013]

1 — Triangulate the graph by adding vertices and edges
so that the degree of each vertex increases only by a

factor of at most three

f{_\/’ . X/—
A
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2 - Compute a disk contact representation

/
3 — Place in each disk a grid whose side length is Z
proportional to the radius of the disk

— \

NI
il

4 — Replace each disk center by the nearest grid point —
and connect the corresponding pairs of grid points —




State of the Art: planar graphs

Keszegh, Pach and Palvolgyi: planar bounded-degree graphs have
bounded planar slope number - psl(G) € O(2°@) -
[GD 2010; SIAM J. On Discrete Mathematics, 2013]

Since the grids are of "comparable size", it can

-
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be proved that the number of slopes is bounded
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However the proof is not constructive




State of the Art: planar graphs

Upper bound

Planar O(204)) 3A-6 Keszegh et al., 2013
Planar partial 3-trees  O(4°) A+1 Jelinek et al., 2013
Outer 1-planar O(A4?) A+1 Di Giacomo et al., 2014
Partial 2-trees 2 A+1 Lenhart et al., 2013
Outerplanar A-1 A-1 Knauer et al., 2014
Subcubic (A=3) planar 4 4 Di Giacomo et al., 2014

Reserch direction: Can we improve the upper bound for planar graphs?



The planar slope number of
subcubic (A=3) planar graphs



Previous results

In 1992, Kant claimed that every subcubic planar graph (except for K,)
has a straight-line drawing with at most 3 slopes (except for one bent
edge) and with every vertex angle at least /3.
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Previous results

In 1992, Kant claimed that every subcubic planar graph (except for K,)
has a straight-line drawing with at most 3 slopes (except for one bent
edge) and with every vertex angle at least /3.

In 2007, Dujmovic et al. disproved this claim.

Kant & (ind.) Dujmovic et al.: If G Is cubic and 3-connected,
then psl(G) = 3, but 3 edges on the outerface that need bends
IWG 1992; Computational Geometry, 2007]

Jelinek et al.: If G is subcubic and series-parallel, then psl(G) = 3
[GD 2009]



New result

Jelinek et al.: Can we find a tight bound for the planar slope number of
subcubic planar graphs?
[GD 2009]



New result

Jelinek et al.: Can we find a tight bound for the planar slope number of
subcubic planar graphs?
[GD 2009]

Di Giacomo, Liotta, M.: If G Is a subcubic planar graph and n = 5, then
psl(G)=4 and this bound is worst case optimal

[LATIN 2014]

G psl(G)=4




An interesting byproduct

Formann et al.: Does every subcubic planar graph has a planar straight-
Ine drawing such that the smallest vertex angle is a constant?
FOCS 1990; SIAM J. on Computing, 1993]
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An interesting byproduct

Formann et al.: Does every subcubic planar graph has a planar straight-
Ine drawing such that the smallest vertex angle is a constant?
FOCS 1990; SIAM J. on Computing, 1993]

Kant: Does every subcubic planar graph has a planar straight-line drawing
such that the smallest vertex angle is at least %?

WG 1993]

Di Giacomo, Liotta, M.: If G Is a subcubic planar graph with n vertices,
then G has a straight-line planar drawing with smallest vertex angle at

least % on a grid of size O(n?)
[LATIN 2014]
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Overview of proof technique

Prove psl(G) £4 for 2-connected subcubic graphs

Ingredients:

T T 3TT

« The four canonical slopes {O’Z’E’T

« SPQR-tree decomposition

« Canonical ordering



The four canonical slopes

e

N




SPQR-tree decomposition

G Is a 2-connected (subcubic planar) graph

Recursive decomposition based on the
split pairs (separation pairs or pairs of
adjacent vertices)

Four types of nodes: S,P,Q,R



SPQR-tree decomposition

Sp

The root of T Is Q-node, whose corresponding edge is the reference edge



SPQR-tree decomposition

T @&
U

G, = pertinent graph of p

Sy

The pertinent graph G, of i Is the subgraph of G whose SPQR-tree Is
the subtree of T rooted at L



SPQR-tree decomposition

T @&
P M
new split components

G, = pertinent graph of p

Sy

P-node = the split pair (s,t,) of G, generates at least two split components



SPQR-tree decomposition

L cut vertex >/
| %4

G, = pertinent graph of v

S

1 4

S-node = G, Is not 2-connected and contains at least a cut vertex



SPQR-tree decomposition

cut vertex

G, = pertinent graph of n



SPQR-tree decomposition



SPQR-tree decomposition

R-node = none of the other case Is applicable. The decomposition recurs
on each maximal split component.



SPQR-tree decomposition
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SPQR-tree decomposition

The leaves of T are all Q-nodes and represents the edges in the graph G.



2-connected subcubic graphs:
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2-connected subcubic graphs:
Proof scheme

Let T be an SPQR-tree of G

Visit the nodes of T in a bottom-up order:

foreach node pof T
draw G, by suitably combining the drawings of the children of p

Invariants:

T3

1. I‘pl IS planar and uses the slopes {0,4,5,7

2. [, Is contained in an isosceles right triangle SA%
3. Theareaofl isO(ny ) x O(n,)



How to draw S-nodes



How to draw S-nodes

key property 1: The leftmost and the rightmost children of an S-node
(different from the child of the root) are two Q-nodes (their pertinent graph

IS simply an edge)

>< s

@5 @
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How to draw S-nodes

key property 1: The leftmost and the rightmost children of an S-node
(different from the child of the root) are two Q-nodes (their pertinent graph
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How to draw S-nodes

key property 1: The leftmost and the rightmost children of an S-node
(different from the child of the root) are two Q-nodes (their pertinent graph

IS simply an edge)

>< Inner triangle (s
N

&/ \*
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\S
S, ® A ) ot

The three invariants hold




How to draw P-nodes

key property 2: The children of a P-node are either two S-nodes or an S-

node and a Q-node

X PR
WA N

The three invariants hold




canonical ordering

G Is a 3-connected cubic planar graph




canonical ordering

o ={V,
Vi ={vy,Vo}
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canonical ordering

5=1{V,....V.

V., can be a CHAIN

leftmost pred. rightmost pred. G

Gi-l Vs

A Vo

The leftmost and the rightmost predecessors appear consecutive walking
clockwise along the outerface



canonical ordering

0={Vy,....,V,
V. can be a SINGLETON

leftmost pred. rightmost pred. G

Gi-l Vs

A Vo

The leftmost and the rightmost predecessors appear consecutive walking
clockwise along the outerface



canonical ordering
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canonical ordering

0 ={V,V,

CHAIN




canonical ordering

0 ={V1,V,,V;

SINGLETON




canonical ordering

0 ={V1,V,, V3.V,

CHAIN




canonical ordering

0 ={V1,V2,V3,Vy, Vs

SINGLETON




canonical ordering
0 ={V1,V,,V3,V,, Ve, Vi)

Vi VK - {Vn}

(Vl ’Vn)




canonical ordering
0 ={V1,V,,V3, V4, Ve, Vi)

Vi
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Frame graph: substitute the pertinent graphs of the children of the node
with a (virtual) edge: we obtain a 3-connected cubic graph (minus the

edge between the poles)

t
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How to draw R-nodes

Frame graph: substitute the pertinent graphs of the children of the node
with a (virtual) edge: we obtain a 3-connected cubic graph (minus the

edge between the poles)

$ o f
9 = @ ) %&c
O N / oo



How to draw R-nodes

1. Compute the frame F, of G,

2. Draw the F, exploiting the canonical ordering (add a dummy edge

between the poles)

3. Replace the virtual edges of F, with the drawings of the related

pertinent graphs
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1. Compute the frame F, of G, (the maximal split pairs are shown in blue)
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1. Compute the frame F, of G, (the maximal split pairs are shown in blue)




How to draw R-nodes

2. Draw the frame




How to draw R-nodes

2. Draw the frame

><

V, placed between the poles
Sy= Vi@ o O O oL=V,



How to draw R-nodes

2. Draw the frame

>< SINGLETON
Su= V1@ OA. o




How to draw R-nodes

2. Draw the frame




How to draw R-nodes

2. Draw the frame

S,= V1@ 0/< ot,=V,



How to draw R-nodes

2. Draw the frame

.tu:VZ




How to draw R-nodes

2. Draw the frame

><

& s= Vv @

.tu:VZ




How to draw R-nodes

3. Replace the virtual edges with their drawings

ROTATE %

key property 3: The children of an R-node are either S-nodes or Q-nodes

ROTATE




How to draw R-nodes

Replace the virtual edges with their drawings

Problem: How to guarantee quadratic area?

key property 3: The children of an R-node are either S-nodes or Q-nodes



How to draw R-nodes

Solution: expansion operation

leftmost AN

/
predecessor -

- ‘ rightmost

| predecessor
Ax




How to draw R-nodes

Solution: expansion operation

leftmost AN
/7 N\
predecessor - -—= »

7
'/
/ |
rightmost
predecessor

Ax + N*



How to draw R-nodes

What's the value of N*? Some geometry may help...

Vil—1

>t w(ej)
= ;
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2044+ B+C)— Ay Ay
A — Zlvl 1wl B = max{w(ey). w(ew,)}

C = max{Ay +1-—d, # — 1} @ 204+ B+ C)— Ay — Ax




How to draw R-nodes

Problem: how can | expand the drawing without breaking some slope?



How to draw R-nodes

Problem: how can | expand the drawing without breaking some slope?
v,

(0h]
®

Solution: there exists a set of horizontally drawn edges that separate
the drawing in two parts, one containing the leftmost pred. and one
containing the rightmost pred.




Back to the state of the art...



State of the Art: nonplanar graphs

Barat et al. & (ind.) Pach, Palvolgyi: Bounded-degree (A 2 5) non-planar
graphs can have arbitrarily large slope number (unb. in 4)
[The Electronic J. of Combinatorics, 2006]



State of the Art: nonplanar graphs

Barat et al. & (ind.) Pach, Palvolgyi: Bounded-degree (A 2 5) non-planar
graphs can have arbitrarily large slope number (unb. in 4)
[The Electronic J. of Combinatorics, 2006]

Mukkamala and Palvolgyi: non-planar graphs with A = 3 can be drawn
with at most 4 slopes.
[GD 2011]



State of the Art: nonplanar graphs

oo o

Barat et al. & (ind.) Pach, Palvolgyi, 2006

A=4 -
A=5 unbounded unbounded Mukkamala and Palvélgyi, 2013
QOuter 1-planar 6A+12 A-1 Di Giacomo et al., 2014

Reserch direction: Is the slope number of “nearly-planar” graphs
bounded in A4?



Our research

outer 1-planar graphs: graphs that admit drawings where each edge Is
crossed at most once and each vertex is on the boundary of the outer face




Our research

 there exists a linear-time algorithm for testing outer 1-planarity (returns
an olp embedding)

[Auer et al., GD 2013] [Hong et al., GD 2013]

>

olp drawing

Kq



Our research

 there exists a linear-time algorithm for testing outer 1-planarity (returns
an olp embedding)

* 0lp graphs are planar partial 3-trees

[Auer et al., GD 2013] [Hong et al., GD 2013]

Kq

U/

olp drawing planar drawing




New results

Di Giacomo, Liotta, M.: The olp slope number, o01p-sl(G), of olp graphs
with maximum degree A is at most 64 +12
[GD 2014]

- This result also generalizes the result on the planar s. n. of outerplanar
graphs whichisA-1
[Knauer et al., COCOON 2012 - CGTA, 2014]
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Di Giacomo, Liotta, M.: The planar slope number of olp graphs with
maximum degree A is O(A?)
[GD 2014]
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Overview of proof technique

* Prove the result for 2-connected olp graphs
« Define a universal set of slopes
« Decompose the graph by SQPR-tree

« Draw each pertinent graph (bottom-up) using only the universal
slopes

« Extend the result to 1-connected olp graphs



A universal set of slopes



A universal set of slopes

2A blue slopes 4 A red slopes
b, = (i-1)o b1 r,=b;-€
a= — r+=b+e¢

24

!

\

In the following: edges using blue (red) slopes will never (always) receive
Crossings



SPQR-tree decomposition

G Is a 2-connected (outer 1-plane) graph



SPQR-tree decomposition

’/‘ ;.;@

Sy

The skeleton of i is the biconnected (multi)graph obtained from G by collapsing
the pertinent graphs of the children of n with a virtual edge, plus the ref. edge



SPQR-tree decomposition

key property 1: internal P-nodes have at most three children and, in
this case, two are S-nodes that cross and the other one Is either a Q-
node or an S-node



SPQR-tree decomposition

key property 2: the skeleton of an R-node is isomorphic to K, and
embedded with one crossing



SPQR-tree decomposition

AN

‘\/‘

key property 3: two Q-nodes at different levels of T cross only if one of
them is the child of an S-node v and the other one the grandchild of a
P-node that is also a child of v



SPQR-tree decomposition:
Postprocessing

S*-node = merge of a P-node + a Q-node that are children of the same
S-node and that ‘cross’ each other



2-connected olp graphs:
Proof scheme

Let T be an SPQR-tree of an embedded olp graph G

Visit the nodes of T in a bottom-up order:

for each node pof T
draw G, by combining the drawings of the children of u

Invariants:
11. [',iso0lp
12. I, uses only slopes of the universal slope set

B.<[A(s)+1l]a
13. Sty By @L  Yu<lA{t)+1]a




How to draw S-nodes

B.<[A(s)+1] a
v, <[A(t)+1] a

Su% O

All the Invariants are maintained



How to draw P-nodes



How to draw P-nodes
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How to draw P-nodes
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How to draw P-nodes

\\\\\\



How to draw P-nodes




How to draw P-nodes

The drawing is olp (I1.) and uses only slopes in the univ. slope set (12.)



How to draw P-nodes

B,< [A%(s,)+1] a+ a<[A(s,)+1]

v.<[A*t)+] a+ a<[At)+]a

The drawing Is contained in a triangle that respects the third invariant (13.)



How to draw S™-nodes



How to draw S™-nodes
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How to draw S™-nodes

The drawing is olp (I1.) and uses only slopes in the univ. slope set (12.)



How to draw S™-nodes

|s the drawing contained in a triangle that respects the third invariant (13.)?



How to draw S™-nodes

B.<[A(s)+l]a=2a=b;

We need the line with slope b; passing through s, not to intersect 1*: the

height of T* depends on €



How to draw S*-nodes

€ < o — arctan (

tan (@)

2tan (2a) tan (o) —2tan (o) tan (o) +1

)

O<e<a

-~

tan (av)ox



How to draw R-nodes

Similar construction as for S*-nodes



Open problems



Open problems: (non-)planar graphs

Planar graphs:

« Improve the upper bound O(2°4) (or prove a better lower bound
than 3A-6) for the planar slope number of planar graphs

* Fill the gap between upper - O(A°) - and lower - 24 - bound for
planar partial 3-trees

Non-planar graphs:
« The case for A =4 is still open

* Investigate new nearly-planar models (e.g., the 1-planar slope
number)



Open problems: toroidal graphs

Study the toroidal slope number of toroidal graphs

(...since toroidal graphs can be drawn with straight-line edges in a
rectangle with periodic boundary conditions...)

Castelli Aleardi, Fusy, Kostrygin,
LATIN 2014




