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Preliminaries

(planar) straight-line drawing of a graph = (crossing-free) drawing on the 

plane such that vertices are depicted as points and edges as straight-line 

segments that connect the corresponding endpoints

(planar) straight-line grid drawing= (crossing-free) straight-line drawing such 

that every point representing a vertex has integer coordinates



Problem definition, 
motivation, and state of the art



The (Planar) Slope Number of a Graph G

minimum number of edge slopes to compute a (planar) straight-line

drawing of G
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The (Planar) Slope Number of a Graph G
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minimum number of edge slopes to compute a (planar) straight-line

drawing of G
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Given a family of (planar) graphs, find upper and lower bounds on the

(planar) slope number of any graph G in the family

The (Planar) Slope Number Problem 



The (Planar) Slope Number Problem 

we focus on graphs of bounded degree Δ

Δ
𝟐

≤ sl(G) ≤ m        sl(G) ≤ psl(G)

Given a family of (planar) graphs, find upper and lower bounds on the

(planar) slope number of any graph G in the family



Motivation and State of the Art

Problem introduced by Wade and Chu in 1994:

“some lines produce an undesired zig-zag effect…only lines with certain 

slopes appear smooth”…more in general minimizing the number of 

slopes is a desirable aesthetics requirement



Motivation and State of the Art

Wade and Chu: The slope number of Kn is n

[The Computer Journal, 1994]

Problem introduced by Wade and Chu in 1994:

“some lines produce an undesired zig-zag effect…only lines with certain 

slopes appear smooth”…more in general minimizing the number of 

slopes is a desirable aesthetics requirement



State of the Art: planar graphs

Keszegh, Pach and Pálvölgyi: planar bounded-degree graphs have 

bounded planar slope number - psl(G) O(2O(D)) -

[GD 2010; SIAM J. On Discrete Mathematics, 2013]



State of the Art: planar graphs

Keszegh, Pach and Pálvölgyi: planar bounded-degree graphs have 

bounded planar slope number - psl(G) O(2O(D)) -

[GD 2010; SIAM J. On Discrete Mathematics, 2013]

It relies on the following result.

Malitz and Papakostas: every triangulated planar 

graph with maximum degree Δ has a disk contact 

representation such that the ratio of the radii of 

any two tangent disks is at least αD-2 (α≈0,15)

[SIAM J. On Discrete Mathematics, 1994]



State of the Art: planar graphs

Keszegh, Pach and Pálvölgyi: planar bounded-degree graphs have 

bounded planar slope number - psl(G) O(2O(D)) -

[GD 2010; SIAM J. On Discrete Mathematics, 2013]

1 – Triangulate the graph by adding vertices and edges 

so that the degree of each vertex increases only by a 

factor of at most three

2 - Compute a disk contact representation 

3 – Place in each disk a grid whose side length is 

proportional to the radius of the disk

4 – Replace each disk center by the nearest grid point 

and connect the corresponding pairs of grid points



State of the Art: planar graphs

Keszegh, Pach and Pálvölgyi: planar bounded-degree graphs have 

bounded planar slope number - psl(G) O(2O(D)) -

[GD 2010; SIAM J. On Discrete Mathematics, 2013]

Since the grids are of "comparable size", it can 

be proved that the number of slopes is bounded 

in Δ

However the proof is not constructive



State of the Art: planar graphs

Graphs Upper bound Lower bound References

Planar O(2O(Δ)) 3Δ-6 Keszegh et al., 2013

Planar partial 3-trees O(Δ5) Δ+1 Jelínek et al., 2013

Outer 1-planar O(Δ2) Δ+1 Di Giacomo et al., 2014

Partial 2-trees 2Δ Δ+1 Lenhart et al., 2013

Outerplanar Δ-1 Δ-1 Knauer et al., 2014

Subcubic (Δ=3) planar 4 4 Di Giacomo et al., 2014

Reserch direction: Can we improve the upper bound for planar graphs? 



The planar slope number of 
subcubic (Δ=3) planar graphs



Previous results

In 1992, Kant claimed that every subcubic planar graph (except for K4) 

has a straight-line drawing with at most 3 slopes (except for one bent 

edge) and with every vertex angle at least π/3.
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In 2007, Dujmović et al. disproved this claim.
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In 1992, Kant claimed that every subcubic planar graph (except for K4) 

has a straight-line drawing with at most 3 slopes (except for one bent 

edge) and with every vertex angle at least π/3.

In 2007, Dujmović et al. disproved this claim.

Kant & (ind.) Dujmović et al.: If G is cubic and 3-connected,

then psl(G) = 3, but 3 edges on the outerface that need bends

[WG 1992; Computational Geometry, 2007]



Previous results

In 1992, Kant claimed that every subcubic planar graph (except for K4) 

has a straight-line drawing with at most 3 slopes (except for one bent 

edge) and with every vertex angle at least π/3.

In 2007, Dujmović et al. disproved this claim.

Jelínek et al.: If G is subcubic and series-parallel, then psl(G) = 3 

[GD 2009]

Kant & (ind.) Dujmović et al.: If G is cubic and 3-connected,

then psl(G) = 3, but 3 edges on the outerface that need bends

[WG 1992; Computational Geometry, 2007]



New result

Jelínek et al.: Can we find a tight bound for the planar slope number of 
subcubic planar graphs?

[GD 2009]



New result

Jelínek et al.: Can we find a tight bound for the planar slope number of 

subcubic planar graphs?

[GD 2009]

Di Giacomo, Liotta, M.: If G is a subcubic planar graph and n ≥ 5, then 

psl(G)≤4 and this bound is worst case optimal

[LATIN 2014]

psl(G)=4G



An interesting byproduct

Formann et al.: Does every subcubic planar graph has a planar straight-

line drawing such that the smallest vertex angle is a constant? 

[FOCS 1990; SIAM J. on Computing, 1993]

Kant: Does every subcubic planar graph has a planar straight-line drawing 

such that the smallest vertex angle is at least 
𝝅

𝟒
? 

[WG 1993]



An interesting byproduct

Formann et al.: Does every subcubic planar graph has a planar straight-

line drawing such that the smallest vertex angle is a constant? 

[FOCS 1990; SIAM J. on Computing, 1993]

Kant: Does every subcubic planar graph has a planar straight-line drawing 

such that the smallest vertex angle is at least 
𝝅

𝟒
? 

[WG 1993]

Di Giacomo, Liotta, M.: If G is a subcubic planar graph with n vertices, 

then G has a straight-line planar drawing with smallest vertex angle at 

least 
𝝅

𝟒
on a grid of size O(n2)

[LATIN 2014]
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proof technique
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Prove psl(G) ≤ 4 for 2-connected subcubic graphs

Prove psl(G) ≤ 4 for 1-connected subcubic graphs
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Overview of proof technique

Prove psl(G) ≤ 4 for 2-connected subcubic graphs

Ingredients:

• The four canonical slopes {0,
𝜋

4
,
𝜋

2
,
3𝜋

4
}

• SPQR-tree decomposition

• Canonical ordering



The four canonical slopes

0

𝝅

𝟒

𝟑𝝅

𝟒

𝝅

𝟐



SPQR-tree decomposition

G is a 2-connected (subcubic planar) graph

G

Recursive decomposition based on the 

split pairs (separation pairs or pairs of 

adjacent vertices)

Four types of nodes: S,P,Q,R



SPQR-tree decomposition
r

G

The root of T is Q-node, whose corresponding edge is the reference edge

Q
T

sr

tr



SPQR-tree decomposition

sµ

tµ

G

rQ
T

µ

Gµ = pertinent graph of µ

The pertinent graph Gµ of µ is the subgraph of G whose SPQR-tree is 

the subtree of T rooted at µ



SPQR-tree decomposition

sµ

tµ

P

G

P-node = the split pair (sµ,tµ) of Gµ generates at least two split components

rQ
T

µ

new split components

Gµ = pertinent graph of µ



SPQR-tree decomposition

P

S

G = pertinent graph of 

G

P

rQ
T

S-node = G is not 2-connected and contains at least a cut vertex

µ


cut vertex

s

t 



SPQR-tree decomposition

P

S

G

P

rQ
T

µ

 S

cut vertex

sη

tη

η

Gη = pertinent graph of η



SPQR-tree decomposition

P

S S

PQ Q

G

P

rQ
T

µ

 η



SPQR-tree decomposition

P

S S

PQ Q Q QR

G

P

rQ
T

R-node = none of the other case is applicable. The decomposition recurs 

on each maximal split component.

µ

 ηtξ

sξ



SPQR-tree decomposition

P

S S

PQ Q Q QR

Q QS QS

G

P

rQ
T

µ

 η



SPQR-tree decomposition

P

S S

PQ Q Q QR

S S

G

P

rQ
T

µ



Q QS QS

η



SPQR-tree decomposition

P

S S

PQ Q Q QR

S S Q QS QS

Q Q Q QQ Q Q Q

G

P

rQ
T

µ



The leaves of T are all Q-nodes and represents the edges in the graph G.

η



2-connected subcubic graphs:
Proof scheme



2-connected subcubic graphs:
Proof scheme

Let T be an SPQR-tree of G



2-connected subcubic graphs:
Proof scheme

Visit the nodes of T in a bottom-up order:

for each node µ of T 

draw Gµ by suitably combining the drawings of the children of µ

Let T be an SPQR-tree of G



2-connected subcubic graphs:
Proof scheme

Invariants:

1. Γµ is planar and uses the slopes {0,
𝝅

𝟒
,
𝝅

𝟐
,
𝟑𝝅

𝟒
} 

2. Γµ is contained in an isosceles right triangle

3. The area of Γµ is O(nµ) x O(nµ)

sµ tµ

Visit the nodes of T in a bottom-up order:

for each node µ of T 

draw Gµ by suitably combining the drawings of the children of µ

Let T be an SPQR-tree of G



How to draw S-nodes



How to draw S-nodes

sµ tµ

key property 1: The leftmost and the rightmost children of an S-node 

(different from the child of the root) are two Q-nodes (their pertinent graph 

is simply an edge)

S

PQ Q…



How to draw S-nodes

sµ tµ

S

PQ Q…

key property 1: The leftmost and the rightmost children of an S-node 

(different from the child of the root) are two Q-nodes (their pertinent graph 

is simply an edge)



How to draw S-nodes

sµ tµ

The three invariants hold

S

PQ Q…

key property 1: The leftmost and the rightmost children of an S-node 

(different from the child of the root) are two Q-nodes (their pertinent graph 

is simply an edge)



How to draw S-nodes

sµ tµ

Inner triangle S

PQ Q…

key property 1: The leftmost and the rightmost children of an S-node 

(different from the child of the root) are two Q-nodes (their pertinent graph 

is simply an edge)

The three invariants hold



How to draw P-nodes
key property 2: The children of a P-node are either two S-nodes or an S-

node and a Q-node

sµ tµ

P

S S

The three invariants hold



canonical ordering

G is a 3-connected cubic planar graph

G



canonical ordering

δ = {V1

v1 v2

V1 = {v1,v2}

G

v2

v1
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v1 v2

G

v2

v1

Gi-1

Vi can be a  CHAIN

leftmost  pred. rightmost pred.

The leftmost and the rightmost predecessors appear consecutive walking 

clockwise along the outerface

δ = {V1,….,Vi



canonical ordering

v1 v2

G

v2

v1

Gi-1

leftmost  pred. rightmost pred.

The leftmost and the rightmost predecessors appear consecutive walking 

clockwise along the outerface

Vi can be a  SINGLETON

δ = {V1,….,Vi
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canonical ordering

v1 v2

G

v2

v1

V3

SINGLETON

δ = {V1,V2,V3



canonical ordering

v1 v2

G

v2

v1

δ = {V1,V2,V3,V4

V4

CHAIN



canonical ordering

v1 v2

G

v2

v1

δ = {V1,V2,V3,V4,V5

V5

SINGLETON



canonical ordering

v1 v2

vn
VK = {vn}

(v1,vn)

G

v2

v1

vn

δ = {V1,V2,V3,V4,V5,Vk}



canonical ordering

v1 v2

vn

G

v2

v1

δ = {V1,V2,V3,V4,V5,Vk}

vn



How to draw R-nodes



How to draw R-nodes

R

Q QS QS

Frame graph: substitute the pertinent graphs of the children of the node 

with a (virtual) edge: we obtain a 3-connected cubic graph (minus the 

edge between the poles)

tξ

sξ

ξ



How to draw R-nodes

R

Q QS QS

tξ

sξ

ξ

Frame graph: substitute the pertinent graphs of the children of the node 

with a (virtual) edge: we obtain a 3-connected cubic graph (minus the 

edge between the poles)



How to draw R-nodes

R

Q QS QS

tξ

sξ

ξ

Frame graph: substitute the pertinent graphs of the children of the node 

with a (virtual) edge: we obtain a 3-connected cubic graph (minus the 

edge between the poles)



How to draw R-nodes

R

Q QS QS

tξ

sξ

ξ

Frame graph: substitute the pertinent graphs of the children of the node 

with a (virtual) edge: we obtain a 3-connected cubic graph (minus the 

edge between the poles)



How to draw R-nodes

R

Q QS QS

tξ

sξ

ξ

Frame graph: substitute the pertinent graphs of the children of the node 

with a (virtual) edge: we obtain a 3-connected cubic graph (minus the 

edge between the poles)



How to draw R-nodes
1. Compute the frame Fµ of Gµ

2. Draw the Fµ exploiting the canonical ordering (add a dummy edge 

between the poles)

3. Replace the virtual edges of Fµ with the drawings of the related 

pertinent graphs



How to draw R-nodes

Gµ

tµ

sµ

1. Compute the frame Fµ of Gµ (the maximal split pairs are shown in blue)



How to draw R-nodes

tµ

sµ

Gµ

1. Compute the frame Fµ of Gµ (the maximal split pairs are shown in blue)



How to draw R-nodes

Gµ

1. Compute the frame Fµ of Gµ (the maximal split pairs are shown in blue)

tµ

sµ



How to draw R-nodes

1. Compute the frame Fµ of Gµ (the maximal split pairs are shown in blue)

Fµ

tµ

sµ



How to draw R-nodes

sµ = v1 tµ = v2

V1 = {v1,v2}

2. Draw the frame

v2

v1

Fµ



How to draw R-nodes

V2 placed between the poles

sµ = v1 tµ = v2

v2

v1

Fµ

2. Draw the frame



How to draw R-nodes

SINGLETON

sµ = v1 tµ = v2

v2

v1

Fµ

2. Draw the frame



How to draw R-nodes

CHAIN

sµ = v1 tµ = v2

1 v2

v1

Fµ

2. Draw the frame



How to draw R-nodes

sµ = v1 tµ = v2

v2

v1

Fµ

2. Draw the frame



How to draw R-nodes

sµ = v1 tµ = v2

vn

v2

v1

vn

Fµ

2. Draw the frame



How to draw R-nodes

sµ = v1 tµ = v2

vn

v2

v1

vn

Fµ

2. Draw the frame



How to draw R-nodes

3. Replace the virtual edges with their drawings

ROTATE
ROTATE

key property 3: The children of an R-node are either S-nodes or Q-nodes



How to draw R-nodes

Replace the virtual edges with their drawings

Problem: How to guarantee quadratic area?

key property 3: The children of an R-node are either S-nodes or Q-nodes



How to draw R-nodes

Solution: expansion operation

∆𝑥

leftmost  

predecessor rightmost 

predecessor



How to draw R-nodes

∆𝑥 + 𝑁∗

leftmost  

predecessor

rightmost 

predecessor

Solution: expansion operation



How to draw R-nodes

What’s the value of N*? Some geometry may help…



How to draw R-nodes

Problem: how can I expand the drawing without breaking some slope?



How to draw R-nodes

Solution: there exists a set of horizontally drawn edges that separate

the drawing in two parts, one containing the leftmost pred. and one 

containing the rightmost pred.

Problem: how can I expand the drawing without breaking some slope?



Back to the state of the art…



State of the Art: nonplanar graphs

Barát et al. & (ind.) Pach, Pálvölgyi: Bounded-degree (Δ ≥ 5) non-planar

graphs can have arbitrarily large slope number (unb. in Δ)

[The Electronic J. of Combinatorics, 2006]



State of the Art: nonplanar graphs

Mukkamala and Pálvölgyi: non-planar graphs with Δ = 𝟑 can be drawn 

with at most 4 slopes.

[GD 2011]

Barát et al. & (ind.) Pach, Pálvölgyi: Bounded-degree (Δ ≥ 5) non-planar

graphs can have arbitrarily large slope number (unb. in Δ)

[The Electronic J. of Combinatorics, 2006]



State of the Art: nonplanar graphs

Graphs Upper bound Lower bound References

Δ = 3 4 2 Barát et al. & (ind.) Pach, Pálvölgyi, 2006

Δ = 4 bounded? unbounded? -

Δ ≥ 5 unbounded unbounded Mukkamala and Pálvölgyi, 2013

Outer 1-planar 6Δ+12 Δ -1 Di Giacomo et al., 2014

Reserch direction: Is the slope number of “nearly-planar” graphs 

bounded in D?



Our research

outer 1-planar graphs: graphs that admit drawings where each edge is 

crossed at most once and each vertex is on the boundary of the outer face



Our research

• there exists a linear-time algorithm for testing outer 1-planarity (returns 

an o1p embedding)

[Auer et al., GD 2013] [Hong et al., GD 2013]

K4

o1p drawing



Our research

• there exists a linear-time algorithm for testing outer 1-planarity (returns 

an o1p embedding)

• o1p graphs are planar partial 3-trees

[Auer et al., GD 2013] [Hong et al., GD 2013]

K4

o1p drawing planar drawing



New results
Di Giacomo, Liotta, M.: The o1p slope number, o1p-sl(G), of o1p graphs 

with maximum degree Δ is at most 6Δ +12 

[GD 2014] 

- This result also generalizes the result on the planar s. n. of outerplanar

graphs which is Δ – 1

[Knauer et al., COCOON 2012 - CGTA, 2014] 
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New results
Di Giacomo, Liotta, M.: The o1p slope number, o1p-sl(G), of o1p graphs 

with maximum degree Δ is at most 6Δ +12 

[GD 2014] 

- This result also generalizes the result on the planar s. n. of outerplanar

graphs which is Δ – 1

[Knauer et al., COCOON 2012 - CGTA, 2014]

Di Giacomo, Liotta, M.: The planar slope number of o1p graphs with 

maximum degree Δ is O(Δ2)

[GD 2014] 
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Overview of proof technique

• Prove the result for 2-connected o1p graphs

• Extend the result to 1-connected o1p graphs 



Overview of proof technique

• Prove the result for 2-connected o1p graphs

• Define a universal set of slopes

• Decompose the graph by SQPR-tree

• Draw each pertinent graph (bottom-up) using only the universal 

slopes

• Extend the result to 1-connected o1p graphs 



A universal set of slopes



A universal set of slopes

𝟒𝜟 red slopes
r -i = bi - ε
r +i = bi + ε

𝟐𝜟 blue slopes
bi = (i-1)α

α=
𝜋

2𝛥

In the following: edges using blue (red) slopes will never (always) receive

crossings

b1

b𝛥+1

r +1

r -1



SPQR-tree decomposition

P

S S

PQ Q Q QR

G

P

Q
T

S

QQ

S

QQ

S

QQ

Q QQ Q Q

G is a 2-connected (outer 1-plane) graph



SPQR-tree decomposition

sµ

tµ

G

The skeleton of µ is the biconnected (multi)graph obtained from Gµ by collapsing 
the pertinent graphs of the children of µ with a virtual edge, plus the ref. edge

P

S S

PQ Q Q QR

P

Q
T

µ

S

QQ

S

QQ

S

QQ

Q QQ Q Q



SPQR-tree decomposition

P

S S

PQ Q Q QR

G

P

Q
T

S

QQ

S

QQ

S

QQ

Q QQ Q Q

key property 1: internal P-nodes have at most three children and, in 

this case, two are S-nodes that cross and the other one is either a Q-

node or an S-node



SPQR-tree decomposition

P

S S

PQ Q Q QR

G

P

Q
T

S

QQ

S

QQ

S

QQ

Q QQ Q Q

key property 2: the skeleton of an R-node is isomorphic to K4 and 

embedded with one crossing



SPQR-tree decomposition

P

S S

PQ Q Q QR

G

P

Q
T

S

QQ

S

QQ

S

QQ

Q QQ Q Q



key property 3: two Q-nodes at different levels of T cross only if one of 

them is the child of an S-node and the other one the grandchild of a 

P-node that is also a child of 



SPQR-tree decomposition:
Postprocessing

P

S S

S* Q Q QR

G

P

Q
T

S

QQ

S

QQ

S

QQ

Q QQ Q Q

S*-node = merge of a P-node + a Q-node that are children of the same 

S-node and that ‘cross’ each other

Q





2-connected o1p graphs:
Proof scheme

Let T be an SPQR-tree of an embedded o1p graph G

Visit the nodes of T in a bottom-up order:

for each node µ of T 

draw Gµ by combining the drawings of the children of µ

Invariants:

I1. Γµ is o1p

I2. Γµ uses only slopes of the universal slope set

I3.
sµ tµ

βµ < [Δ(sµ)+1]α

γµ < [Δ(tµ)+1]αβµ
γµ 



How to draw S-nodes

sµ tµ

S

P …R

All the invariants are maintained

βµ γµ 

βµ < [Δ(sµ)+1] α

γµ < [Δ(tµ)+1] α

P



How to draw P-nodes



How to draw P-nodes

P

S S

sµ tµ

Q

Q Q… …



How to draw P-nodes

P

S S

sµ tµ

Q

Q Q… …



How to draw P-nodes

b2Δb2

P

S S

sµ tµ

Q

Q Q… …



How to draw P-nodes

r -2
r +2Δ

b2Δb2

P

S S

sµ tµ

Q

Q Q… …



How to draw P-nodes

sµ tµ

b2 b2Δ

r -2r +2Δ

P

S SQ

Q Q… …

r -2
r +2Δ

b2Δb2



How to draw P-nodes

sµ tµ

b2 b2Δ

r -2r +2Δ

b1

P

S SQ

Q Q… …



How to draw P-nodes

sµ tµ

b2 b2Δ

r -2r +2Δ

The drawing is o1p (I1.) and uses only slopes in the univ. slope set (I2.)
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How to draw P-nodes

sµ tµ

b2 b2Δ

r -2r +2Δ

The drawing is contained in a triangle that respects the third invariant (I3.)

βµ < [Δ*(sµ)+1] α + α < [Δ(sµ)+1] α

γµ < [Δ*(tµ)+1] α + α < [Δ(tµ)+1] α
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How to draw S*-nodes
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How to draw S*-nodes
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The drawing is o1p (I1.) and uses only slopes in the univ. slope set (I2.)



How to draw S*-nodes

sµ

b2Δ
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Is the drawing contained in a triangle that respects the third invariant (I3.)?

tµ

S*

S S SQ



How to draw S*-nodes

sµ

b2Δ

r -2r +2Δ

We need the line with slope b3 passing through sµ not to intersect τ*: the 

height of τ* depends on ε

b3

βµ < [Δ(sµ)+1] α = 2α = b3

tµ

βµ 

τ*

S*

S S SQ



How to draw S*-nodes

τ*

0 < ε < α



How to draw R-nodes

sµ

r -2r +2Δ
tµ

Similar construction as for S*-nodes



Open problems



Open problems: (non-)planar graphs
Planar graphs:

• Improve the upper bound O(2O(Δ)) (or prove a better lower bound 

than 3Δ-6) for the planar slope number of planar graphs

• Fill the gap between upper - O(Δ5) - and lower - 2Δ - bound for 

planar partial 3-trees

Non-planar graphs:

• The case for Δ =𝟒 is still open

• Investigate new nearly-planar models (e.g., the 1-planar slope 

number)



Open problems: toroidal graphs

Study the toroidal slope number of toroidal graphs

(…since toroidal graphs can be drawn with straight-line edges in a 

rectangle with periodic boundary conditions…)
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