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Polynomials and monodromy groups

One can regard a polynomial f (z) ∈ C[z ] as a branched covering
C→ C, or S2 → S2 where we identify the 2-sphere S2 with the
extended complex plane C ∪ {∞} by stereographic projection. .

If deg f = n then |f −1(w)| = n for all except finitely many w (the
critical values of f ), where |f −1(w)| < n (i.e. f ′(z) = 0).

Thus f is an n-sheeted covering, branched over these critical
values, where two or more sheets come together at a critical point.

Lifting a small loop around a critical value w gives a permutation
gw of the sheets (more precisely, of the fibre Φ := f −1(w0) over
some non-critical base-point w0 ∈ C), called the monodromy
permutation for f at w . These permutations gw generate the
monodromy group G of f , the group of all permutations of Φ
induced by lifting closed paths in C avoiding the critical values.



Example 1

Let
w = f (z) = zn,

with n ≥ 2. There is one critical value in C, namely w = 0. The
fibre over a base-point, such as w0 = 1, is

Φ = f −1(1) = {z ∈ C | zn = 1} = {ζkn | k = 0, . . . , n − 1},

where
ζn := e2πi/n.

If w goes once round the unit circle, starting and finishing at 1,
then z = w1/n goes from ζkn to ζk+1

n (k ∈ Zn). Thus the
monodromy permutation g0 is an n-cycle, and the monodromy
group G is a cyclic group Cn of order n, permuting Φ regularly.



Example 2
Let

w = f (z) = z4 − 2z2 + 1.

Then f ′(z) = 4z(z2 − 1) so the critical points are at the roots
z = 0,±1 of f ′(z) = 0, with critical values w = 1, 0, 0. Now
w = (z2 − 1)2, so writing

z =

√
1 +
√
w

shows that

I g0 is a double transposition (since taking w around 0
multiplies

√
w by −1), and

I g1 is a transposition (since taking w around 1 multiplies z by
−1 if

√
w ≈ −1, but not if

√
w ≈ 1).

In this case G ∼= D4, the dihedral group of order 8, acting naturally
with degree 4.



Example 2 illustrated
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G = 〈g0, g1〉 ∼= D4



Monodromy at ∞

For any polynomial f , going once round every critical value
w1, . . . ,wk ∈ C in a suitable order is homotopically equivalent to
going once round a large circle containing w1, . . . ,wk , i.e. round a
small circle in S2 enclosing ∞ (with the reverse orientation).

Homotopic paths induce the same monodromy permutations.

If deg(f ) = n, then f (z) behaves like zn near ∞ (see Example 1),
so G contains an n-cycle (called a full cycle)

g−1∞ = gw1 . . . gwk
.

In particular, G is transitive on Φ.

Example 2, revisited Here g0g1 = (b, c).(a, b)(c, d) = (a, b, d , c).



Primitivity
A permutation group is imprimitive if it preserves a non-trivial
equivalence relation (not the identity or universal relation),
permuting the equivalence classes. Otherwise it is primitive.

Example 3 If V is a vector space over a field F , then the general
linear group GL(V ) is transitive on V \ {0}, but imprimitive if
|F | > 2: define u ∼ v if 〈u〉 = 〈v〉, or equivalently v = λu for
some λ ∈ F ∗ = F \ {0}.
Every 2-transitive group is primitive, since one can destroy a
non-trivial equivalence relation by sending two equivalent points to
two inequivalent points. Thus:

Example 4 Sn and An are primitive for all n.

Example 5 GL(V ) is 2-transitive and hence primitive on the
projective geometry P(V ) = (V \ {0})/F ∗ formed from the
1-dimensional subspaces of V , inducing the projective general
linear group PGL(V ) = GL(V )/{λI | λ ∈ F ∗} on P(V ).



Primitivity of monodromy groups

Theorem (Ritt, 1922)

The monodromy group G of a polynomial f is imprimitive if and
only if f is a composition of polynomials of lower degrees.

For instance, if deg f is prime then G is primitive.

In Example 1, with f (z) = zn, G = Cn is primitive if and only if n
is prime.

In Example 2, with f (z) = z4 − 2z2 + 1 = (z2 − 1)2, the group
G = D4 is imprimitive (2-colour the vertices of a square).

By contrast, a generic (i.e. typical) polynomial of degree n has a
primitive monodromy group G = Sn.

Ritt’s theorem allows us to assume primitivity from now on.



Theorem (Müller, 1995)

Apart from An and Sn, the only primitive monodromy groups of
polynomials with k ≥ 3 critical values are the following (with their
degrees and the cycle structures of the monodromy generators):

1. PGL3(2) with n = 7, k = 3, cycle-structures 2213, 2213, 2213;

2. PGL3(3) with n = 13, k = 3, cycle-structures 2415, 2415, 2415;

3. PGL4(2), with n = 15, k = 3, cycle-structures 2613, 2417, 2417.

Sacha: ”What about the topological conjugacy of the associated
polynomials?” He and I worked on this here in Bordeaux, and we
published a paper in the Moscow Mathematical Journal, 2002.

(Here, polynomials f1 and f2 are topologically conjugate if there are
orientation-preserving self-homeomorphisms h1, h2 of S2 such that
h1 ◦ f1 = f2 ◦ h2. This is equivalent to f1 and f2 having the same
monodromy group, with their generating k-tuples equivalent under
the action of the k-string braid group Bk on critical values.)



Primitive groups containing a full cycle

Problem Which primitive permutation groups contain a full cycle?

Examples of primitive groups G containing a full cycle:

(a) Obvious examples: G = Sn for all n, or An for all odd n.

(b) Affine examples: subgroups G of the affine general linear
group

AGL1(p) := {t 7→ at + b | a, b ∈ Fp, a 6= 0},

containing the translation group {t 7→ t + b} ∼= Cp, p prime.

(c) Sporadic examples: PSL2(11) acting on the n = 11 cosets of
a subgroup H ∼= A5 (known to Galois!), and the Mathieu
groups M11 for n = 11, and M23 for n = 23, each acting on
the n points of the associated Steiner system.

[In fact, any transitive group of prime degree is primitive and
contains a full cycle, as in (b) and (c).]



(d) Projective examples: these are primitive groups G ≤ PΓLd(q)
containing Singer cycles.

Identify the d-dimensional vector space V = (Fq)d with the
additive group of Fqd ; the multiplicative group F∗

qd
∼= Cqd−1

acts linearly on V , and regularly on V \ {0}, inducing a full
cycle on the n = (qd − 1)/(q − 1) points in the projective
space

Pd−1(Fq) = P(V ) = (V \ {0})/F∗q.

These permutations, and their conjugates in

AutPd−1(Fq) = PΓLd(q) = PGLd(q) oGalFq,

are called Singer cycles. Various subgroups G ≤ PΓLd(q) act
primitively on Pd−1(Fq) and contain Singer cycles.



Feit’s Theorem

Building on classical results of Galois, Burnside, Schur and Ritt,
and using the classification of finite simple groups (asserted around
1979, announced in 1983, finally proved in 2004 !) Feit proved:

Theorem (Feit, 1980, CFSG)

The only primitive permutation groups containing a full cycle are
the examples given in (a) to (d).

However, his formulation of (d) was rather vague, not specifying
which primitive groups G ≤ PΓLd(q) contain Singer cycles.

Theorem (J, 2002)

The groups in (d) are those satisfying PGLd(q) ≤ G ≤ PΓLd(q).

Since PΓL2(q)/PGLd(q) ∼= GalFq
∼= Ce , where q = pe for some

prime p, there is one group G for each divisor of e. This completes
the classification of primitive groups containing a full cycle.



Another problem from Sacha

Sacha’s work with Fedor Pakovich on polynomials and weighted
trees (his talk, later today!) motivated a more general question:

Problem Which primitive groups of degree n contain a cycle of
length m ≤ n (i.e. with n −m fixed points) ?

Theorem (Jordan)

If G is a primitive group of degree n, containing a cycle of prime
length m ≤ n − 3, then G ≥ An (so G = An or Sn).

See Wielandt, Finite Permutation Groups, Theorem 13.9.

This theorem is a simple corollary of two theorems in Jordan’s
papers of 1871 and 1873, though it is not explicitly stated there.



Applying and extending Jordan’s Theorem

Jordan’s Theorem is often useful in providing particular generating
sets for alternating and symmetric groups. For example, Conder
(1980) used it to show that if n ≥ 168 then An is a Hurwitz group,
that is, it attains Hurwitz’s upper bound 84(g − 1) for the order of
the automorphism group of a Riemann surface of genus g > 1.

However, the primality condition on m can be troublesome. After
improvements by Rowlinson and Williamson (1974) and Neumann
(1975), it was eventually removed. Building on earlier results of
Feit (1980) and Müller (1996), and using CFSG, we have:

Theorem (J, 2014)

If G is a primitive permutation group of degree n containing a cycle
of length m, then either G ≥ An, or m ≥ n − 2 and G is known.



Specifically, the ‘known’ groups G 6= An or Sn are as follows:

1. if m = n the cycle is full, so G is as described in cases (b) to
(d) of Feit’s Theorem;

2. if m = n − 1 then (as shown by Müller, 1996)
I AGLd(q) ≤ G ≤ AΓLd(q) with n = qd , or

I G = PSL2(p) or PGL2(p) with n = p + 1, or

I G = M11,M12 or M24 with n = 12, 12 or 24;

3. if m = n − 2 then PGL2(q) ≤ G ≤ PΓL2(q) with n = q + 1
(J, 2014).

In all cases in (2) and (3) except M11, G is acting naturally, on an
affine or projective geometry or a Steiner system, whereas M11 is
acting on the n = 12 cosets of a subgroup H ∼= PSL2(11).



An application

Here is a typical application (with no assumption of primitivity):

Lemma
If G is a transitive permutation group of degree n, containing an
m-cycle with m coprime to n and n/2 < m ≤ n − 3, then G ≥ An.

Proof An easy argument, considering the action of the cycle on
equivalence classes, shows that the conditions m > n/2 and
gcd(m, n) = 1 imply that G is primitive. Since m ≤ n − 3, the
preceding Theorem implies that G ≥ An. �

This result has recently been applied to algebraic geometry,
constructing examples of algebraic varieties called Beauville
surfaces from cartesian powers of alternating groups (J, 2015).



Corollary

If n ≥ 9 there are mutually coprime integers r , s and t such that
An has generators x and y of orders r and s, with xy of order t.

Proof If n is odd, take a cycle x of length m = n − 4, and join the
remaining four points to it by a product y of four 2-cycles, so xy is
an n-cycle. Then x , y and xy are even permutations of mutually
coprime orders n − 4, 2 and n. By the Lemma they generate An.

If n is even, take a cycle x of length m = n − 3, join the remaining
three points to it by 2-cycles, and include a fourth 2-cycle in y to
transpose two successive elements of the m-cycle. Then xy is an
(n − 1)-cycle, with n − 3, 2 and n − 1 mutually coprime. Being
2-transitive, G is primitive, and since m < n − 2, 〈x , y〉 = An. �

Useful fact Up to conjugacy in Sn there are Θ(n3) choices for x
and y , mutually inequivalent under AutAn = Sn. Hence the group
Ak
n = An × · · · × An also has such generators x , y , for k = Θ(n3).



Diolch i chi am wrando!
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C. Jordan, Théorèmes sur les groupes primitifs, J. Math. Pures
Appl. (2) 16 (1871), 383–408.

C. Jordan, Sur la limite de transitivité des groupes non
alternés, Bull. Soc. Math. France 1 (1873), 40–71.

P. Müller, Reducibility behavior of polynomials with varying
coefficients, Israel J. Math. 94 (1996), 59–91.

F. Pakovich and A. K. Zvonkin, Minimum degree of the
difference of two polynomials over Q, and weighted plane
trees, Selecta Math. (N.S.) 20 (2014), 1003–1065.

J. F. Ritt, Prime and composite polynomials,
Trans. Amer. Math. Soc. 23 (1922), 51–66,

H. Wielandt, Finite Permutation Groups, Academic Press,
New York, 1964.


