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A weighted bicolored plane tree is an object like that:

5

3

2

2

Vertices are bicolored.

Edges are endowed with weights (integers). Weights not indicated

are equal to 1.

A degree of a vertex is the sum of the weights of incident edges.

Planar structure: the cyclic order of branches at each vertex is

taken into account.
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I. Polynomials
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1965: B. J. Birch, S. Chowla, M. Hall Jr., A. Schinzel

Let A and B be two coprime polynomials, A,B ∈ C[x]. What is the

minimum possible degree of the difference R = A3 −B2?

Example (N. Elkies, 2000)

P = (x10 − 2x9 +33x8 − 12x7 +378x6 +336x5 +2862x4

+ 2652x3 +14397x2 +9922x+ 18553)3,

Q = (x15 − 3x14 + 51x13 − 67x12 + 969x11 +33x10 +10963x9

+ 9729x8 +96507x7 +108631x6 + 580785x5 +700503x4

+ 2102099x3 +1877667x2 + 3904161x+1164691)2,

R = P −Q deg(P −Q) =?
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1965: B. J. Birch, S. Chowla, M. Hall Jr., A. Schinzel

Let A and B be two coprime polynomials, A,B ∈ C[x]. What is the

minimum possible degree of the difference R = A3 −B2?

Example (N. Elkies, 2000)

P = (x10 − 2x9 +33x8 − 12x7 +378x6 +336x5 +2862x4

+ 2652x3 +14397x2 +9922x+ 18553)3,

Q = (x15 − 3x14 + 51x13 − 67x12 + 969x11 +33x10 +10963x9

+ 9729x8 +96507x7 +108631x6 + 580785x5 +700503x4

+ 2102099x3 +1877667x2 + 3904161x+1164691)2,

R = P −Q

= 26 315(5x6 − 6x5 + 111x4 + 64x3 + 795x2 + 1254x+5477).

Verification is trivial. What can be said about computation?

Let us try a straightforward approach. . .
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Let us make a short Maple session:

zvonkin@sacha-laptop:~$ maple
|\^/| Maple 11 (IBM INTEL LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2007
\ MAPLE / All rights reserved. Maple is a trademark of
<____ ____> Waterloo Maple Inc.

| Type ? for help.

First, write a polynomial A of degree 10 with indeterminate

coefficients:

> A:=sum(a[i]*x^i,i=0..10);

2 3 4 5 6
A := a[0] + a[1] x + a[2] x + a[3] x + a[4] x + a[5] x + a[6] x

7 8 9 10
+ a[7] x + a[8] x + a[9] x + a[10] x

Now, write a polynomial B of degree 15, also with indeterminate

coefficients:

> B:=sum(b[j]*x^j,j=0..15);
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2 3 4 5 6
B := b[0] + b[1] x + b[2] x + b[3] x + b[4] x + b[5] x + b[6] x

7 8 9 10 11 12
+ b[7] x + b[8] x + b[9] x + b[10] x + b[11] x + b[12] x

13 14 15
+ b[13] x + b[14] x + b[15] x

Take R = A3 −B2:

> R:=A^3-B^2;

2 3 4 5 6
R := (a[0] + a[1] x + a[2] x + a[3] x + a[4] x + a[5] x + a[6] x

7 8 9 10 3 2
+ a[7] x + a[8] x + a[9] x + a[10] x ) - (b[0] + b[1] x + b[2] x

3 4 5 6 7 8 9
+ b[3] x + b[4] x + b[5] x + b[6] x + b[7] x + b[8] x + b[9] x

10 11 12 13 14 15
+ b[10] x + b[11] x + b[12] x + b[13] x + b[14] x + b[15] x

2
)



We have 11+16 = 27 unknowns but we will get only 24 equations.

Therefore, using Elkies’s result as a prompting, we set

> a[10]:=1;
a[10] := 1

> b[15]:=1;
b[15] := 1

> a[9]:=-2;
a[9] := -2

Let us now compute the coefficients of R = A3 − B2 in front of

the degrees from 7 to 30. They will give us our 24 equations: we

must make them all equal to zero.

> R:=collect(R,x):
> for k from 7 to 30 do c[k]:=expand(coeff(R,x,k)) end do;

c[7] := -2 b[3] b[4] - 2 b[5] b[2] - 2 b[6] b[1] - 2 b[0] b[7]

2 2
+ 6 a[6] a[0] a[1] + 6 a[5] a[0] a[2] + 3 a[5] a[1] + 3 a[7] a[0]



2 2
+ 6 a[4] a[2] a[1] + 6 a[4] a[0] a[3] + 3 a[1] a[3] + 3 a[3] a[2]

2
c[8] := 6 a[7] a[0] a[1] + 3 a[8] a[0] - 2 b[0] b[8] - 2 b[1] b[7]

2
- 2 b[3] b[5] - b[4] - 2 b[6] b[2] + 6 a[4] a[1] a[3]

2 2
+ 6 a[6] a[0] a[2] + 6 a[5] a[2] a[1] + 3 a[6] a[1] + 3 a[0] a[4]

2 2
+ 3 a[4] a[2] + 3 a[2] a[3] + 6 a[5] a[0] a[3]

2
c[9] := -6 a[0] + 6 a[8] a[0] a[1] - 2 b[2] b[7] - 2 b[3] b[6]

2 2
- 2 b[4] b[5] - 2 b[8] b[1] - 2 b[9] b[0] + 3 a[7] a[1] + 3 a[5] a[2]

2
+ 3 a[4] a[1] + 6 a[2] a[6] a[1] + 6 a[2] a[4] a[3] + 6 a[5] a[1] a[3]

3
+ 6 a[7] a[0] a[2] + 6 a[6] a[0] a[3] + 6 a[5] a[0] a[4] + a[3]



2
c[10] := 3 a[0] - 12 a[0] a[1] - 2 b[2] b[8] - 2 b[3] b[7] - 2 b[4] b[6]

2
- b[5] - 2 b[9] b[1] - 2 b[10] b[0] + 6 a[7] a[2] a[1]

+ 6 a[7] a[0] a[3] + 6 a[6] a[0] a[4] + 6 a[6] a[1] a[3]
2

+ 6 a[5] a[4] a[1] + 6 a[5] a[2] a[3] + 6 a[8] a[0] a[2] + 3 a[6] a[2]

2 2 2 2
+ 3 a[8] a[1] + 3 a[0] a[5] + 3 a[4] a[3] + 3 a[2] a[4]

2
c[11] := 6 a[0] a[1] - 12 a[0] a[2] - 6 a[1] - 2 b[0] b[11] - 2 b[1] b[10]

- 2 b[2] b[9] - 2 b[3] b[8] - 2 b[4] b[7] - 2 b[5] b[6]

2 2 2
+ 6 a[4] a[0] a[7] + 3 a[4] a[3] + 3 a[1] a[5] + 3 a[5] a[3]

2
+ 3 a[7] a[2] + 6 a[8] a[2] a[1] + 6 a[4] a[5] a[2] + 6 a[6] a[0] a[5]

+ 6 a[6] a[4] a[1] + 6 a[6] a[2] a[3] + 6 a[1] a[7] a[3]



+ 6 a[8] a[0] a[3]

2
c[12] := 6 a[0] a[2] - 12 a[0] a[3] + 3 a[1] - 12 a[2] a[1] - 2 b[1] b[11]

2
- 2 b[2] b[10] - 2 b[5] b[7] - b[6] - 2 b[8] b[4] - 2 b[9] b[3]

- 2 b[12] b[0] + 6 a[2] a[6] a[4] + 6 a[4] a[7] a[1] + 6 a[4] a[5] a[3]

2 2
+ 6 a[6] a[5] a[1] + 6 a[2] a[7] a[3] + 3 a[2] a[8] + 3 a[2] a[5]

2 2 3
+ 3 a[0] a[6] + 3 a[6] a[3] + 6 a[4] a[0] a[8] + a[4]

+ 6 a[8] a[1] a[3] + 6 a[7] a[0] a[5]

2
c[13] := 6 a[0] a[3] - 12 a[0] a[4] - 12 a[1] a[3] + 6 a[2] a[1] - 6 a[2]

- 2 b[0] b[13] - 2 b[1] b[12] - 2 b[2] b[11] + 6 a[7] a[0] a[6]

2
- 2 b[6] b[7] - 2 b[8] b[5] - 2 b[9] b[4] - 2 b[10] b[3] + 3 a[7] a[3]



2 2
+ 3 a[5] a[4] + 3 a[6] a[1] + 6 a[4] a[1] a[8] + 6 a[2] a[6] a[5]

+ 6 a[0] a[8] a[5] + 6 a[4] a[6] a[3] + 6 a[2] a[8] a[3]

2
+ 6 a[7] a[5] a[1] + 6 a[7] a[4] a[2] + 3 a[5] a[3]

2
c[14] := 6 a[0] a[4] - 12 a[0] a[5] + 6 a[1] a[3] + 3 a[2] - 12 a[2] a[3]

- 12 a[4] a[1] - 2 b[0] b[14] - 2 b[1] b[13] - 2 b[2] b[12]

2
- 2 b[3] b[11] - b[7] - 2 b[8] b[6] - 2 b[9] b[5] - 2 b[10] b[4]

+ 6 a[8] a[0] a[6] + 6 a[5] a[6] a[3] + 6 a[8] a[5] a[1]

+ 6 a[5] a[7] a[2] + 6 a[8] a[4] a[2] + 6 a[7] a[4] a[3]

2 2 2
+ 6 a[7] a[6] a[1] + 3 a[8] a[3] + 3 a[5] a[4] + 3 a[0] a[7]

2 2
+ 3 a[2] a[6] + 3 a[6] a[4]



c[15] := 6 a[8] a[5] a[2] + 6 a[0] a[5] - 12 a[0] a[6] - 2 b[0]

2
+ 6 a[2] a[3] - 6 a[3] + 6 a[4] a[1] - 12 a[4] a[2] - 12 a[5] a[1]

- 2 b[1] b[14] - 2 b[2] b[13] - 2 b[3] b[12] - 2 b[8] b[7]

3
- 2 b[9] b[6] - 2 b[10] b[5] - 2 b[11] b[4] + 6 a[8] a[6] a[1] + a[5]

2
+ 3 a[6] a[3] + 6 a[8] a[4] a[3] + 6 a[3] a[7] a[5] + 6 a[6] a[7] a[2]

2 2
+ 6 a[8] a[0] a[7] + 6 a[6] a[5] a[4] + 3 a[7] a[4] + 3 a[7] a[1]

2
c[16] := 6 a[3] a[8] a[5] + 6 a[0] a[6] - 12 a[0] a[7] - 2 b[1] + 3 a[3]

+ 6 a[4] a[2] - 12 a[4] a[3] + 6 a[5] a[1] - 12 a[5] a[2]

2
- 12 a[6] a[1] - 2 b[2] b[14] - 2 b[3] b[13] - 2 b[4] b[12] - b[8]

- 2 b[9] b[7] - 2 b[10] b[6] - 2 b[11] b[5] + 6 a[4] a[7] a[5]



2
+ 6 a[3] a[7] a[6] + 6 a[2] a[8] a[6] + 6 a[1] a[7] a[8] + 3 a[2] a[7]

2 2 2 2
+ 3 a[0] a[8] + 3 a[4] a[8] + 3 a[4] a[6] + 3 a[6] a[5]

c[17] := 6 a[0] a[7] - 12 a[0] a[8] - 2 b[2] - 12 a[2] a[6] + 6 a[4] a[3]

2
- 6 a[4] + 6 a[5] a[2] - 12 a[5] a[3] + 6 a[6] a[1] - 12 a[7] a[1]

- 2 b[3] b[14] - 2 b[4] b[13] - 2 b[8] b[9] - 2 b[10] b[7]

- 2 b[11] b[6] - 2 b[12] b[5] + 6 a[3] a[8] a[6] + 6 a[4] a[8] a[5]

2 2
+ 3 a[1] a[8] + 6 a[2] a[7] a[8] + 6 a[4] a[7] a[6] + 3 a[3] a[7]

2 2
+ 3 a[7] a[5] + 3 a[5] a[6]

c[18] := 6 a[5] a[7] a[6] + 12 a[0] + 6 a[0] a[8] - 12 a[1] a[8] - 2 b[3]

2
+ 6 a[2] a[6] + 3 a[4] + 6 a[5] a[3] - 12 a[5] a[4] - 12 a[6] a[3]



+ 6 a[7] a[1] - 12 a[7] a[2] - 2 b[4] b[14] - 2 b[5] b[13]

2
- 2 b[8] b[10] - b[9] - 2 b[11] b[7] - 2 b[12] b[6] + 6 a[4] a[8] a[6]

2 2 2 3
+ 6 a[3] a[7] a[8] + 3 a[2] a[8] + 3 a[4] a[7] + 3 a[8] a[5] + a[6]

c[19] := -12 a[0] + 12 a[1] + 6 a[1] a[8] - 2 b[4] - 12 a[2] a[8]

2
+ 6 a[5] a[4] - 6 a[5] + 6 a[6] a[3] - 12 a[6] a[4] + 6 a[7] a[2]

- 12 a[7] a[3] - 2 b[5] b[14] - 2 b[6] b[13] - 2 b[7] b[12]

2
- 2 b[8] b[11] - 2 b[9] b[10] + 6 a[8] a[7] a[4] + 3 a[8] a[3]

2 2
+ 6 a[8] a[6] a[5] + 3 a[5] a[7] + 3 a[7] a[6]

2
c[20] := 3 a[0] - 12 a[1] + 12 a[2] - 2 b[5] + 6 a[2] a[8] + 3 a[5]

+ 6 a[6] a[4] - 12 a[6] a[5] + 6 a[7] a[3] - 12 a[7] a[4]



2
- 12 a[8] a[3] - 2 b[7] b[13] - 2 b[8] b[12] - 2 b[9] b[11] - b[10]

2 2
- 2 b[14] b[6] + 6 a[8] a[7] a[5] + 3 a[8] a[6] + 3 a[6] a[7]

2
+ 3 a[4] a[8]

c[21] := 3 a[1] - 12 a[2] + 12 a[3] - 2 b[6] - 12 a[4] a[8] + 6 a[6] a[5]

2
- 6 a[6] + 6 a[7] a[4] - 12 a[7] a[5] + 6 a[8] a[3] - 2 b[8] b[13]

- 2 b[9] b[12] - 2 b[10] b[11] - 2 b[14] b[7] + 6 a[7] a[8] a[6]

2 3
+ 3 a[8] a[5] + a[7]

2
c[22] := 3 a[2] - 12 a[3] + 12 a[4] - 2 b[7] + 6 a[4] a[8] + 3 a[6]

+ 6 a[7] a[5] - 12 a[7] a[6] - 12 a[8] a[5] - 2 b[8] b[14]

2 2 2
- 2 b[10] b[12] - b[11] - 2 b[13] b[9] + 3 a[8] a[6] + 3 a[8] a[7]



c[23] := -2 b[13] b[10] - 2 b[14] b[9] - 2 b[8] - 2 b[11] b[12] - 12 a[4]

2 2
- 12 a[8] a[6] + 12 a[5] - 6 a[7] + 3 a[7] a[8] + 6 a[8] a[5]

+ 6 a[7] a[6] + 3 a[3]

2
c[24] := -2 b[14] b[10] - 2 b[9] - b[12] - 2 b[13] b[11] + 3 a[4]

2 3
+ 6 a[8] a[6] - 12 a[5] + 3 a[7] - 12 a[7] a[8] + 12 a[6] + a[8]

2
c[25] := -2 b[13] b[12] - 2 b[14] b[11] - 2 b[10] - 6 a[8] - 12 a[6]

+ 12 a[7] + 6 a[7] a[8] + 3 a[5]

c[26] :=

2 2
-12 a[7] + 12 a[8] + 3 a[8] + 3 a[6] - b[13] - 2 b[14] b[12] - 2 b[11]



c[27] := -2 b[12] - 2 b[13] b[14] + 3 a[7] - 12 a[8] - 8

2
c[28] := -2 b[13] - b[14] + 12 + 3 a[8]

c[29] := -2 b[14] - 6

c[30] := 0

Let us now compute the degrees of all these equations:

> for k from 7 to 29 do d[k]:=degree(c[k]) end do;

d[7] := 3

d[8] := 3

d[9] := 3

d[10] := 3

d[11] := 3



d[12] := 3

d[13] := 3

d[14] := 3

d[15] := 3

d[16] := 3

d[17] := 3

d[18] := 3

d[19] := 3

d[20] := 3

d[21] := 3

d[22] := 3

d[23] := 3

d[24] := 3

d[25] := 2



d[26] := 2

d[27] := 2

d[28] := 2

d[29] := 1

The degree of the whole system is the product of the degrees of

the above equations:

> N:=mul(d[k],k=7..29);

N := 6198727824

> quit;
bytes used=762104, alloc=589716, time=0.05
zvonkin@sacha-laptop:~$

We thus obtain a system of algebraic equations of degree

N = 6198727824.



All this is rather discouraging, and even more so since in fact there

are exactly four non equivalent solutions.

The problem is that our system does not ensure that the result-

ing polynomials are coprime. But if we add the condition of co-

primality to the system, we will make it even more complicated.

If we try to further push down the degree of A3−B2, we may well

write the system but there will be no solutions at all.

It is also quite surprising that we have got a solution in Q.

A “positive observation”: all solutions must be algebraic

numbers.
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Two conjectures (1965): Let

degA = 2k, degB = 3k,

so that

degA3 = degB2 = 6k;

then

1. deg(A3 −B2) ≥ k +1;

2. This bound is sharp.

In the previous example k = 5.

1965: The first conjecture was proved by H. Davenport.

1981: W. W. Stothers proved that the bound is attained for all k.

We see that the second conjecture turned out to be more difficult:

it remained open for 16 years.
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1995: The problem is generalized by U. Zannier:

Let two partitions of an integer n be given:

α = (α1, α2, . . . , αp), β = (β1, β2, . . . , βq),

p
∑

i=1

αi =
q
∑

j=1

βj = n,

and let P and Q be two coprime polynomials of degree n with

complex coefficients, such that

P(x) =
p
∏

i=1

(x− ai)
αi, Q(x) =

q
∏

j=1

(x− bj)
βj .

Denote R = P −Q.

Question: What is the minimum possible degree of R?

In the initial problem α = (3,3, . . . ,3), β = (2,2, . . . ,2).
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Two technical assumptions:

1. The greatest common divisor of α1, . . . , αp, β1, . . . , βq is 1.

2. p+ q ≤ n+1.

(We can do without them, but the statements would become more

cumbersome.)

Theorem (U. Zannier, 1995)

1. degR ≥ (n+1)− (p+ q).

2. This bound is attained for any pair of partitions α, β ⊢ n

satisfying the above assumptions.

In the “cubes and squares” problem, n = 6k, p = 2k, q = 3k.

In fact, an equivalent result in terms of permutations was proved by

G. Boccara in 1982. But Boccara did not know about the relations

of his result to polynomials.
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2010: F.Beukers, C. Stewart: a problem which is much more

interesting from the number-theoretic point of view, namely:

Search for polynomials A and B such that

1. The degree of the difference Ak −Bl attains its minimum;

2. A and B are defined over Q.

11



We call a pair of polynomials (P,Q) of degree n such that

P(x) =
p
∏

i=1

(x− ai)
αi, Q(x) =

q
∏

j=1

(x− bj)
βj ,

and

deg(P −Q) = (n+1)− (p+ q)

a Davanport-Zannier pair, or a DZ-pair, and we call the pair of

partitions (α, β), α, β ⊢ n, its passport.
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II. Maps and hypermaps
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A hypermap is a map with an additional structure: bicoloring of

the vertices.

A face degree is defined as a half of the number of surrounding
edges.

Thus, the sum of degrees of the black vertices, of the white
vertices, and of the faces, is equal to the number of edges.

All hypermaps in this talk will be planar.
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The passport of a hypermap is the triple of partitions of n,

π = (α, β, γ), α, β, γ ⊢ n

where n is the number of edges,

α = (α1, α2, . . . , αp),
p
∑

i=1

αi = n,

is the set of degrees of the black vertices,

β = (β1, β2, . . . , βq),
q
∑

j=1

βj = n,

is the set of degrees of the white vertices, and

γ = (γ1, γ2, . . . , γr+1),
r+1
∑

k=1

γi = n,

is the set of degrees of the faces.

We denote the number of faces by r + 1 and not by r since we

would like to distinguish the outer face. Note that r is determined

by p and q by virtue of Euler’s formula.
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An ordinary map, with only one sort of vertices, is a particular

case of a hypermap: all its white vertices are of degree 2.

Remark. Two notions of the face degree are coherent.
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In this talk we will be specially interested in the

hypermaps with all their faces

(except the outer one)

being of degree 1:
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For the hypermaps of this type, the partition γ corresponding to

the face degrees is as follows:

γ = (n− r,1,1, . . . ,1
︸ ︷︷ ︸

r

) = (n− r,1r).

In this case, the partition γ is completely determined by α and

β (and even by the numbers p and q of their parts). Therefore,

we will usually omit γ and write the passport of the hypermap as

(α, β).
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It is very convenient to represent the hypermaps of the above type

as weighted trees: the trees are much easier to handle.

5

3

2

2

The weight of an edge is a positive integer.

The degree of a vertex is the sum of the weights of the edges

incident to this vertex.

The total weight of a tree is equal to the number of edges of the

underlying hypermap.
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The same object may be drawn if various ways:

2= =

The same hypermap drawn in three different ways.

White vertices are always there but they may become “invisible”

(or implicit).
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2

2

2
2

2

2

2

2
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III. Belyi functions
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Let C denote the complex Riemann sphere, C = C ∪ {∞}, and let

f : C → C be a rational function with complex coefficients.

A critical value of f is a point y ∈ C such that the equation

f(x) = y

has multiple roots.

Belyi function is a rational function which has only three critical

values, namely,

y = 0, y = 1, and y = ∞.

The choice of 0,1,∞ is a mere tradition. Indeed, any three points

can be placed to any three given positions by making a linear

fractional transformation.
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Let us take a Belyi function f and consider the preimage

M = f−1([0,1]).

0 1 *8
Then we get the following object:

• M is a planar hypermap with n edges, where n = deg f .

• Black vertices are the points x ∈ f−1(0), and their degrees are

equal to the multiplicities of the roots of f(x) = 0.

• White vertices are the points x ∈ f−1(1), and their degrees are

equal to the multiplicities of the roots of f(x) = 1.

• Inside each face there is exactly one pole x ∈ f−1(∞), and the

degree of the face is equal to the multiplicity of this pole.
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In the opposite direction:

• Theorem. For any planar hypermap M there exists a Belyi

function f such that M is isomorphic to f−1([0,1]).

This function is unique up to a linear fractional transformation

of the variable x.

• This statement is a particular case of Riemann’s Existence

Theorem.

• The coefficients of f can be made algebraic numbers.

• A striking consequence: the Galois group Γ = Aut(Q|Q) acts

on maps.

• The theory of dessins d’enfants (“children’s drawings” in

French) studies combinatorial and other invariants of this

action.
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Example

f(x) =
50000

27
· x

6 (x− 1)3 (x+1)

(x2 + 4x− 1)5
,

f(x)− 1 =
1

27
· (11 x3 + x2 − 3 x+3)2 (413 x4 − 906 x3 + 352x2 − 54x+ 3)

(x2 + 4x− 1)5
.

No other critical values except 0, 1 and ∞.

26



–0.4

–0.2

0

0.2

0.4

–1 –0.5 0 0.5 1 1.5

The dessin d’enfant obtained as f−1([0,1]) for

f(x) =
50000

27
· x

6 (x− 1)3 (x+1)

(x2 +4 x− 1)5
.

Here the coefficients of f are rational, so f is defined over Q. In

general, the coefficients of Belyi functions are algebraic numbers.
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IV. Back to polynomials
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Recall the notation:

P(x) =
p
∏

i=1

(x− ai)
αi, Q(x) =

q
∏

j=1

(x− bj)
βj , P −Q = R.

The main idea:

Instead of P −Q = R write P −R = Q

Divide both parts of this equality by R

f =
P

R
, f − 1 =

Q

R
.

The key observation is that f has already at least three critical

values, namely, 0, 1 and ∞.

So, what if f is a Belyi function?
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First, what if it is not?

Denote:

• n = deg f ;

• r = the number of distinct roots of R;

• ny = the number of distinct preimages of y ∈ C.

Then the Riemann-Hurwitz formula implies that

r = (n+1)− (p+ q) +
∑

y /∈{0,1,∞}
(n− ny).

Notice that we have already proved the bound

degR ≥ (n+1)− (p+ q).
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r = (n+1)− (p+ q) +
∑

y /∈{0,1,∞}
(n− ny).

What do we need in order to attain the lower bound

degR = (n+1)− (p+ q) ?

The following two conditions are necessary and sufficient:

• No critical values except 0, 1 and ∞, so that the sum

∑

y /∈{0,1,∞}
(n− ny)

vanishes. Hence, f is indeed a Belyi function.

• All roots of R are simple, so that r = degR.

All roots of R are simple ⇐⇒ all inner faces are of degree 1
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• The corresponding hypermap has n = deg f edges

and p+ q vertices:

– p black vertices, of degrees α1, . . . , αp;

– q white vertices, of degrees β1, . . . , βq;

• Euler’s formula:

(p+ q)− n+#(faces) = 2,

#(faces) = (n+2)− (p+ q);

• the outer face corresponds to the pole at ∞;

the inner faces correspond to the roots of R;

• Conclusion: degR = (n+1)− (p+ q).
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First result (A. Z.) A great simplification of Zannier’s proof.

For a given (α, β), the existence of a tree implies the

attainablity of the lower bound for degR.

It is much easier to draw trees than to work directly with

polynomials.
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Let us look how it works in the particular case

P = A3, Q = B2, R = A3
− B2.

We should draw a map with the following characteristics:

• all its black vertices are of degree 3;

• all its white vertices are of degree 2;

a very nice situation: we may forget about the white vertices and think of

ordinary maps with only black vertices;

• all its faces except the outer one are of degree 1.

Recall that this is a problem which was studied by five fa-

mous mathematicians, and several less famous but still quite

professional mathematicians, and nevertheless it remained

open for 16 years (from 1965 to 1981).
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Solution:

First stage Second stage

(1) Draw a tree with inner nodes of degree 3. (2) Attach a loop

to each leaf. Theorem is proved. �

The general case, that of arbitrary partitions α, β ⊢ n, is slightly

more elaborate but not much more difficult.
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V. A number-theoretic application
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Catalan’s conjecture (1844): 23 and 32 are the only consecutive

powers. (Proved in 2002.)

Hall’s conjecture (1971): For any ε > 0 there exist infinitely many

pairs of integers (a, b) such that

|a3 − b2| ≤ C(ε) · a1/2+ε.

Theorem (Danilov, 1982): There exist infinitely many pairs of

integers (a, b) such that

|a3 − b2| ≤ C · a1/2.

The fundamental role in the proof is played by the following picture:

2
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2

(2x2 − 10)3 − (2x2 − 6x+2)2(2x2 − 12x+20) = 432x− 1080.

Substituting integer values of x we get “almost” a cube minus a

square. We may also note that

432x− 1080 < C · (2x2 − 10)1/2.

Let us try to make 2x2 − 12x+20 a perfect square.
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2x2 − 12x+20 = 2(x− 3)2 +2 = 2z2 +2.

2z2 +2 = y2 ⇔ y2 − 2z2 = 2.

The equation y2−2z2 = 2 is a Pell-like equation. It has infinitely

many solutions.

The smallest solution is (yo, zo) = (2,1). All the other solutions

are obtained as
(

yn
zn

)

=

(

3 4
2 3

)n

·
(

yo
zo

)

.
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VI. Galois theory
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In general, coefficients of Belyi functions are algebraic numbers.

Replace simultaneously all these numbers by their algebraic conju-

gates: we get another Belyi function, and hence another dessin.

This is the Galois action on the dessins.

The number field to which the coefficients belong is not arbitrary:

it is an objective characteristic of a dessin. It is called field of

moduli of the dessin.

The degree of the field of moduli is equal to the size of the Galois

orbit.

(In general, there are some technical difficulties concerning this

field, but in our particular case of weighted trees these difficulties

do not appear.)
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Example: a Galois orbit of de degree 4

2

2 2

2

P = x4(x+1)2(x2 + ax+ b)

Q = (x2 + cx+ d)3(x2 + ex+ f)

R = gx+ h

a, b, c, d, e, f, g, h ∈ Q

(√

−455 + 952
√
−14

)

.
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More exactly, this means that

a = a0 + a1t+ a2t
2 + a3t

3,

b = b0 + b1t+ b2t
2 + b3t

3,

c = c0 + c1t+ c2t
2 + c3t

3,

· · · · · ·
h = h0 + h1t+ h2t

2 + h3t
3,

where all the coefficients a0, a1, . . . , h3 in the right-hand side are

rational, and substituting in these expressions four values

t = ±
√

−455± 952
√
−14

we get four Belyi functions corresponding to the above maps.

43



There are many combinatorial Galois invariants:

• Passport = triple (α, β, γ) of partitions of n which represent

the degrees of black vertices, of white vertices, and of faces.

In our case γ is determined by α and β: γ = (n − r,1r) where

r = (n+1)− (p+ q).

• Symmetry.

• Composition of coverings.

• Monodromy group.

• Self-duality.

• Etc.
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ba

d
c

Here degA = 10, degB = 15, deg(A3 −B2) = 6. Computations:

(a) B. Birch 1965 defined over Q

(d) N. Elkies 2000 defined over Q

(b, c) T. Shioda 2005 defined over Q(
√
−3)
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3

1
3

2 2 1
3

3
1

3
2 2 1

3

3

33
3

33

3

3 3

1
3

3

3

3
3

3
3 3

3
1

1

Here degA = 3, degB = 10, deg(A10 −B3) = 18.

All three trees are defined over Q.

Computation: Beukers & Stewart, 2010.

46



Proposition. If, for a given passport (α, β), the corresponding tree

is unique, then it is defined over Q.

We call such trees unitrees.

Second result (F. Pakovich, A. Z.): A complete classification of

unitrees. There are:

• 10 infinite series, and

• 10 sporadic trees.

A very long and cumbersome proof. Pictures follow. . .
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l
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Third result (F. Pakovich, A. Z.): Belyi functions for all unitrees

are computed.

For individual trees the computation may be difficult but a verifi-

cation is trivial.

For infinite series the situation is significantly more complicated.

• One has to compute a lot of examples;

• to guess a general pattern;

• instead of verification one needs a proof,

and every stage is non-trivial.

An example follows. . .
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k l

s+t

s t s t s t s+t
s+t

s+t

s+t

−1

s+t s+t

1

m1 = l(s+ t) + t
m2 = k(s+ t) + s
p = number of black vertices of degree s+ t
q = number of white vertices (all of them are of degree s+ t)
a = l+ t/(s+ t)
b = k + s/(s+ t)

P =

(
x− 1

2

)m1

·
(
x+1

2

)m2

· Jp(a, b, x)s+t

Q = Jq(−a,−b, x)s+t

Here Jp and Jq are Jacobi polynomials of degrees p and q.

Notice the negative parameters −a and −b in Jq.
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Classical orthogonal Jacobi polynomials Jm(a, b, x) of degree m with

parameters a and b are defined for a, b > −1.

It turns out that they are polynomials not only in x but also in a, b.

Therefore, they can be extended to arbitrary complex parameters.

The formulas on the previous slide contain

Jp(a, b, x) and Jq(−a,−b, x) with a, b > 1

so that Jq is a generalized Jacobi polynomial.

How can one guess this pattern is a mystery (Nicolas Magot, 1997,

for a particular case).
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Example: A composition of two unitrees. It is defined over Q

though it is not itself a unitree.

0 1

D

D

f

A

F(t) = f(A(t))

DF where

f = − 64x3(x− 1)

8 x+1
, A =

1

55
· (t2 +4)3(3 t+8)2 .
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VII. Groups

57



Every rational function f : C → C realizes a ramified covering of

the Reimann sphere C = C ∪ {∞} by itself.

For Belyi functions, the monodromy group is an invariant of

the Galois action.

Ritt’s theorem

A covering is a non-trivial composition of coverings of smaller

degrees if and only if its monodromy group is imprimitive.
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The monodromy group can be found on the basis of the dessin:

1

10

2

9

13

12

8
14

7

6

4

5

11

3
15

16

18

17

a = (2,9,12,13,3)(4, 6)(5,18,17,16,15)(8,14)(10, 11)

b = (1,10,11,9)(3,13,12,8,14,7,6)(4,5,15,16,17,18)

c = (1,2,3,4,5,6,7,8,9,10) = (ab)−1

Monodromy group: G = 〈a, b〉
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Definition. A permutation group acting on a set of n points is

imprimitive if the set can be split in m disjoint blocks of equal size,

1 < m < n, such that an image a block under the action of every

element of the group is once again a block.

If such a partition does not exist, the group is primitive.

The groups Sn and An are primitive. For a prime p, every group of

degree p is primitive.
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Primitive groupe are not frequent. . .

Degree 2 3 4 5 6 7 8 9 10 11 12 13 14

Primitive 1 2 2 5 4 7 7 11 9 8 6 9 4

Transitive 1 2 5 5 16 7 50 34 45 8 301 9 63

Degree 15 16 17 18 19 20 21 22 23

Primitive 6 22 10 4 8 4 9 4 7

Transitive 104 1954 10 983 8 1117 164 59 7

Degree 24 25 26 27 28 29 30 31

Primitive 5 28 7 15 14 8 4 12

Transitive 25000 211 96 2392 1854 8 5712 12

Degree 32

Primitive 5

Transitive 2 801 324
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Fourth result: (N. Adrianov, A. Z.) Complete classification of

primitive monodromy groups of weighted trees:

Proposition. Beside the symmetric and alternating groups Sn and

An for all n, and the cyclic and dihedral groups Cp and D2p for

p prime, there are finitely many primitive monodromy groups of

weighted trees.

There are:

• 184 trees (up to a color exchange);

• 85 Galois orbits;

• 34 groups;

• The highest degree of a group from this list is 32.
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Weight Group Order Orbits Trees

5 AGL1(5) 20 1 2

6 PSL2(5) 60 2 2
PGL2(5) 120 7 7

7 AGL1(7) 42 1 2
PSL3(2) 168 2 4

8 AΓL1(8) 168 1 4
PSL2(7) 168 2 2
PGL2(7) 336 6 7
ASL3(2) 1 344 6 14

9 AΓL1(9) 144 1 2
AGL2(3) 432 2 4
PSL2(8) 504 3 3
PΓL2(8) 1 512 4 10

10 PGL2(9) 720 3 3
PΓL2(9) 1 440 2 2

11 PSL2(11) 660 1 2
M11 7 920 1 2

12 PGL2(11) 1 320 2 4
M11 7 920 3 10
M12 95 040 9 20
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Weight Group Order Orbits Trees

13 PSL3(3) 5 616 3 12

14 PSL2(13) 1 092 1 1
PGL2(13) 2 184 2 4

15 PSL4(2) 20 160 3 6

16 AΓL2(4) 5 760 1 2
AGL4(2) 322 560 4 12

17 PSL2(16) 4 080 1 1
PSL2(16) ⋊ C2 8 160 1 1

20 PGL2(19) 6 840 1 3

21 PΓL3(4) 120 960 1 2

23 M23 10 200 960 1 4

24 M24 244 823 040 5 18

31 PSL5(2) 9 999 360 1 6

32 ASL5(2) 319 979 520 1 6

Total 34 — 85∗ 184

∗For certain orbits we are not entirely sure that the “orbit” in question is indeed

a single orbit and not a union of several orbits.
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Ingredients of the proof:

1. A theorem by Jordan (1873), often attributed to Marggraf,

stating that a primitive permutation group of degree n

containing a permutation with cycle structure (n − r,1r) is

(r +1)-transitive.

Thanks to the classification of finite simple groups, all multiply

transitive groups are known.

2. G. Jones (2012): Classification of primitive groups containing

a permutation with cycle structure (n− r,1r).

Based on Jones’s own results and also on those by P.Müller,

W. Feit and others.

3. K. Magaard, S. Shpectorov, G. Wang (2011): Classification of

affine groups which admit a planar generation.

4. GAP calculations: all primitive groups up to degree 127 were

tested.
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An example in which several invariants are involved

2

2

2

2

2222

2 2

2
2

2
2

2
2

22 2
2

2222
2

2

2 2 2

2

PGL (9)
2

2 2

Weight n = 10, passport (8112,2412,8112).
16 trees, four Galois orbits.
The orbit sizes: 1 (group PGL2(9)), 2 (symmetry),
5 (self-dual), 8 (not self-dual).
The monodromy group of the latter 5+ 8 = 13 trees is S10.
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VIII. Diophantine invariants
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Sometimes a splitting into more than one Galois orbit is due to

numeric relations between vertex degrees. We call such relations

diophanitine invariants.

The theory of dessins d’enfants sets as its goal the search for a

full set of combinatorial invariants of the Galois action. Therefore,

the existence of diophantine invariants is a kind of “bad news” for

the theory.

But there is also good news: everything related to diophantine

equations is very beautiful.

An example follows. . .
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m

m

m

3
m

m

m 2

2

Weight 3m, vertex degrees (m3,5113m−5).

• either one orbit over a real quadratic field;

• or two orbits over Q.

Computation gives the field Q(
√
D) where

D = 3(2m− 1) (3m− 2).
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Question: can D = 3(2m− 1) (3m− 2) be a perfect square?

1. 2m− 1 and 3m− 2 are coprime:

3m− 2 = 1 · (2m− 1) + (m− 1),
2m− 1 = 2 · (m− 1) + 1.

2. Only 2m− 1 can be divisible by 3 (3m− 2 cannot).

3. Hence, 3 (2m− 1) = 6m− 3 and 3m− 2 must both be squares.

4. Denoting

6m− 3 = a2, 3m− 2 = b2

we get

a2 − 2b2 = 1.

Pell equation ! (Plus the condition of a being a multiple of 3.)
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Pell’s name was attributed to this equation by error. . .

• Pythagoras (VI before J. C.): the equation a2 − 2b2 = 0 does

not have integral solutions; then what about a2 − 2b2 = 1 ?

• Brahmagupta (VII)

• Bhaskara II (XII)

• Narayana Pandit (XIV)

• Brouncker (XVII)

• Fermat, Euler, Lagrange, Abel, . . . (XVII–XIX)

• Dirichlet (XIX)

• etc.
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There are infinitely many solutions. They are obtained as follows:

let us take the smallest solution (a0, b0) = (1,0); then
(

an
bn

)

=

(

3 4
2 3

)n

·
(

a0
b0

)

, n = 0,1,2, . . .

It turns out that for every other solution the parameter a is a

multiple of 3.

Recall that a2 = 6m−3, so that m =
a2 +3

6
where m is the degree

of the three black vertices.

First values of the parameter m are

1 634, 1 884 962, 2 175 243 842, . . .

Growth exponent: (3 + 2
√
2)4 ≈ 1154.
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IX. Enumeration
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Theorem (A. Z.) Let an be the number of rooted trees of weight n,

and let f(t) =
∑

n≥0 ant
n be the generating function of the

sequence an. Then

f(t) =
1− t−

√

1− 6 t+5 t2

2 t

= 1+ t+3 t2 +10 t3 +36 t4 +137 t5 +543 t6 +2219 t7 + . . .

This function can also be represented as a chain fraction

f(t) =
1

1− h

1− h

1− h

1− . . .

where h =
t

1− t
.
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A Catalan-type recurrence for the numbers an:

a0 = 1, a1 = 1, an+1 = an +
n∑

k=0

akan−k for n ≥ 1.

Another recurrence:

an =
6n− 3

n+1
· an−1 − 5n− 10

n+1
· an−2 for n ≥ 2.

Asymptotic: an ∼ 1

2

√

5

π
· 5n n−3/2.

In fact, an is the Sequence A002212 of the “On-Line Encyclopedia

of Integer Sequences”. It has many different interpretations.
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Let bm,n be the number of rooted trees of weight n with m edges,

and let h(s, t) =
∑

m,n≥0 bm,nsmtn. Then

h(s, t) =
1− t−

√

1− (2 + 4s) t+ (1+ 4s) t2

2st

= 1+ st+ (s+2s2) t2 + (s+4s2 +5s3) t3

+ (s+6s2 +15s3 +14s4) t4 + . . .

Explicit formula for bm,n:

bm,n =

(

n− 1
m− 1

)

· 1

m+1

(

2m
m

)

.
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Studying trees
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Thank you !

Merci !

Спасибо !
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