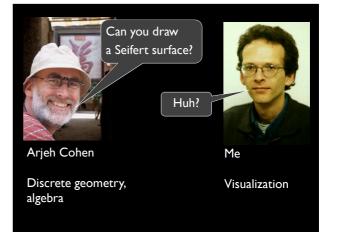
Visualization of Regular Maps

Jarke J. van Wijk Eindhoven University of Technology

JCB 2016, Bordeaux

Proceeding and the second and the seco

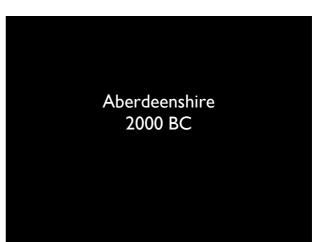


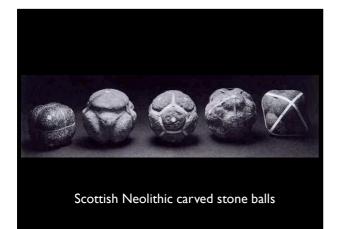
Seifert surface

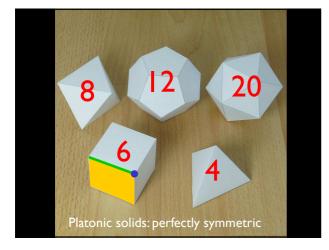
Eindhoven 2006

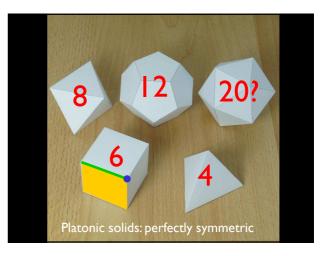
Ι







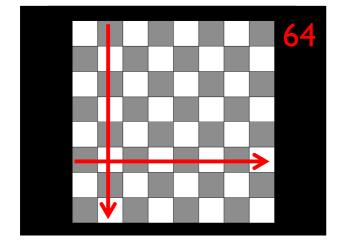


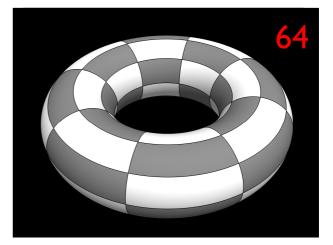


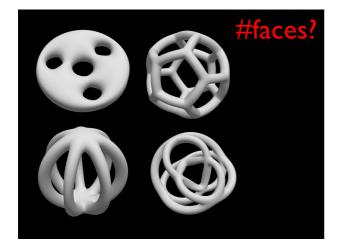
How to get more faces, all perfectly symmetric?

How to get more faces, all perfectly symmetric?

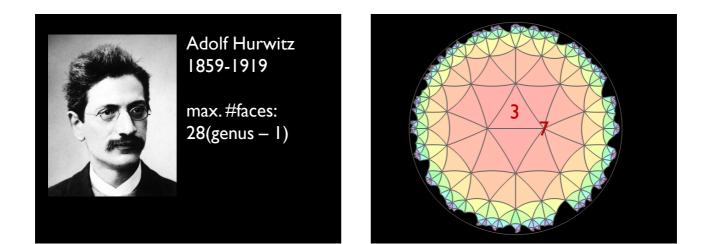
Use shapes with holes Aim only at topological symmetry





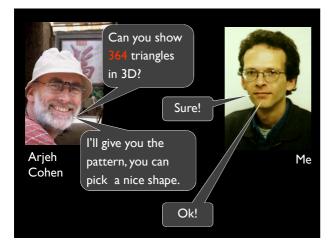


Königsberg 1893



Genu	us Faces
3	56
7	168
14	364
	• • •

Genus	Genus Faces			
3	56			
7	168			
14	364			
•••				

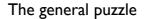


New Orleans 2009

three years later

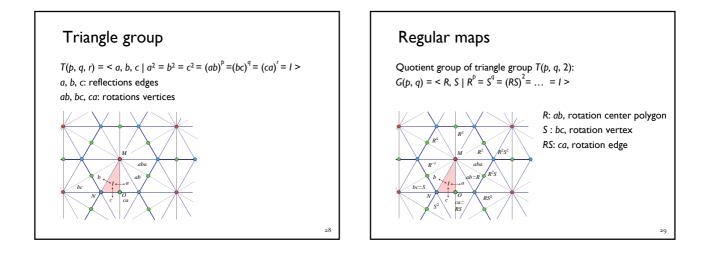
Jarke van Wijk TU Eindhoven

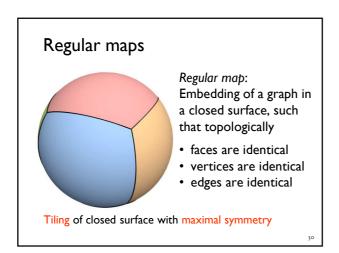
ACM SIGGRAPH 2009, August 3-7, New Orleans

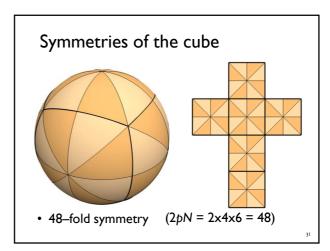


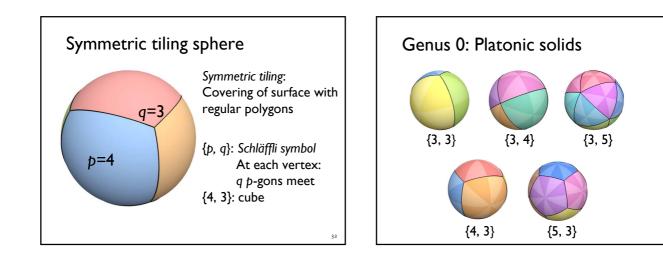
Construct space models of regular maps

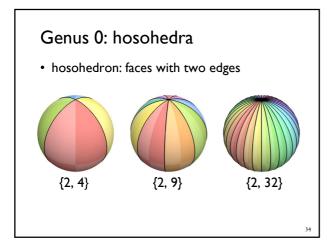
• Surface topology, combinatorial group theory, graph theory, algebraic geometry, hyperbolic geometry, physics, chemistry, ...

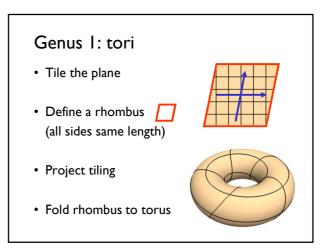


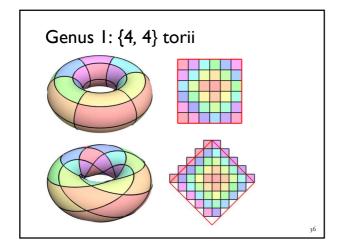


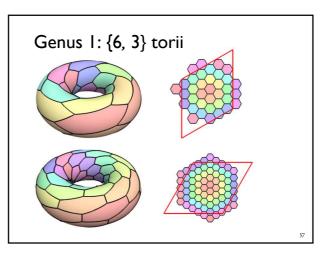




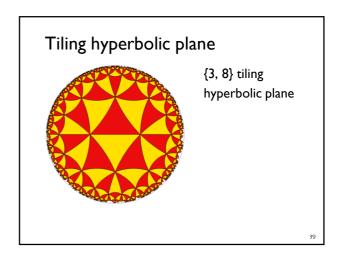


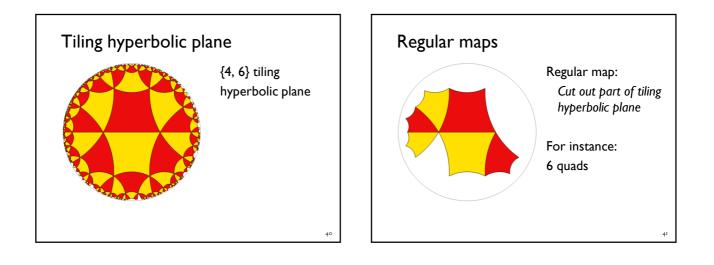


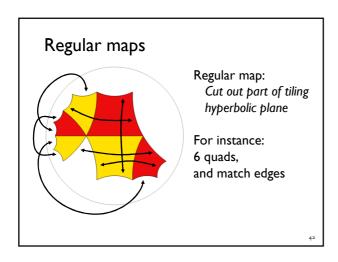


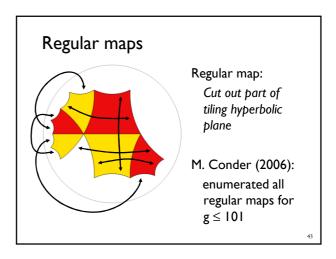


Genus g≥2				
g	shape	geometry	transf.	tilings
0	sphere	spherical	3D rotation	{3,3}, {3,4}, {4,3}, {3,5}, {5,3}, {2,n}
I	torus	planar	2D Euclidean	{4,4}, {3,6}, {6,3}
≥ 2	?	hyperbolic	Möbius	{3,7}, {4,5}, {5,4}, {4,6}, {6,4}, {5,5},
	I	1	1	38

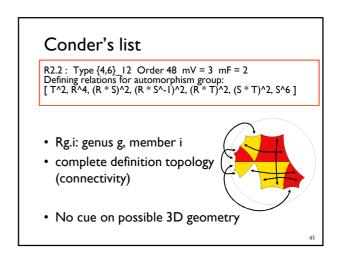


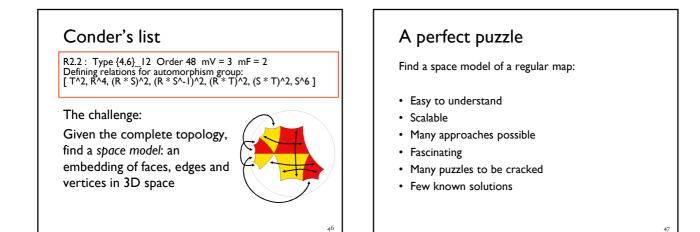






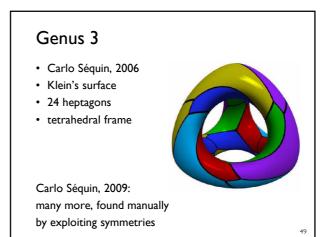
Conder's list State of the state





Genus 3

- Helaman Ferguson, 1993
- The Eightfold Way
- Hurwitz genus 3
- Klein's surface
- 24 heptagons



An addictive puzzle

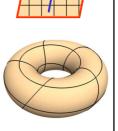
Carlo Séquin Berkeley

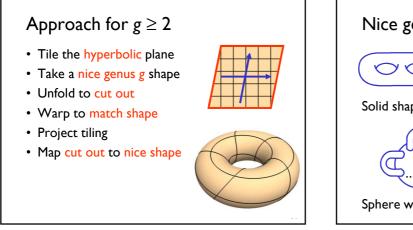
"During the last few nights I woke up at 3am with some ideas, and sometimes they worked, and sometimes they evaporated in daylight!"

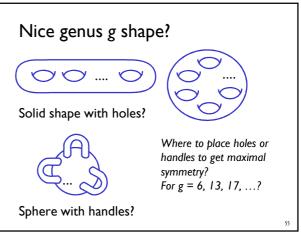
"..., that is why I had to physically remove all signs of these puzzles from my desk and 'lock them up in a vault', so that I would not be constantly distracted from the duties that I HAVE to fulfill ..."

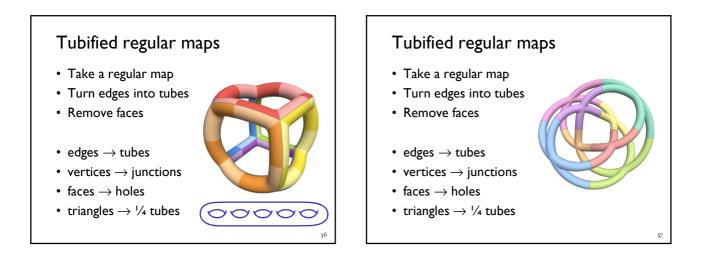
Tori (genus I) (reprise)

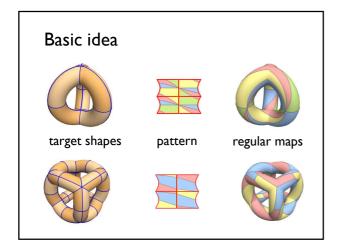
- Tile the plane
- Take a torus
- Unfold to square
- Warp to a rhombus
- Project tiling
- Map rhombus to torus

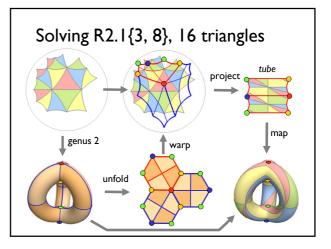


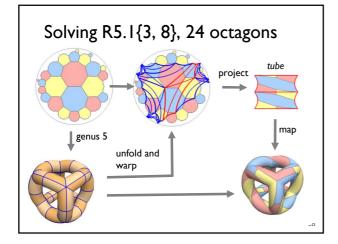


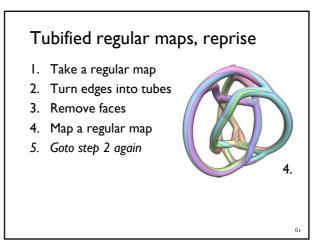












Results

• About 50 different space models for regular maps found automatically

62

Symmetric Tiling of Closed Surfaces: Visualization of Regular Maps

ACM SIGGRAPH 2009

Paris 2014

Five years later

Visualization of Regular Maps: The Chase Continues

Jarke J. van Wijk Eindhoven University of Technology

IEEE SciVis, 2014, Paris

Results 2014

- More generic approach for regular shapes - 45 new space models for regular maps found
- New smoothing approach – Better quality of models

(Lots of) details: see paper

Visualization of cyclic groups

- Subdivide a circle into 18 intervals, given a circle, subdivided in 12 intervals
- Source: C₁₈
- Target: C₁₂

Visualization of cyclic groups

Source	\mathbf{C}	
Source	C_{18}	

- C₉ × {1, 2}
 C₆ × {1, 2, 3}
- Target: C₁₂ : • C₆ × {1, 2}
- C₄ × {I, 2, 3}
- $C_3 \times \{1, 2, 3, 4, 5, 6\}$ $C_3 \times \{1, 2, 3, 4\}$
- $C_2 \times \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ $C_2 \times \{1, 2, 3, 4, 5, 6\}$

Visualization of cyclic groups

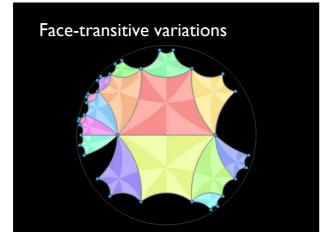


Visualization of cyclic groups

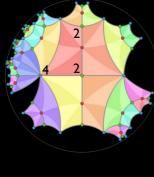
- Subdivide a circle into 18 intervals, given a circle, subdivided in 12 intervals
- Source: C₁₈
- Target: C₁₂

Approach

- Take regular maps. Produce face-transitive variations by enumerating subgroups;
- Make target shapes. Produce face-transitive maps by duplicating regular maps, enumerating subgroups, punching, gluing
- Match variations regular map and target.



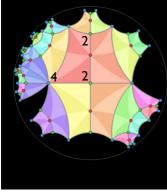
Face-transitive variations



G_S: given source group

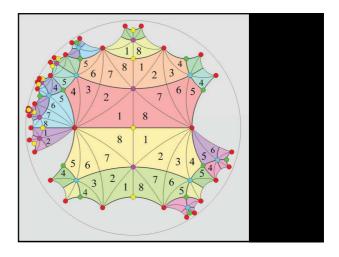
Factorization: G_S = H_SA_S H_S: subgroup G_S A_S: subset G_S, tile of Fuchsian map here (0; 4, 2, 2)

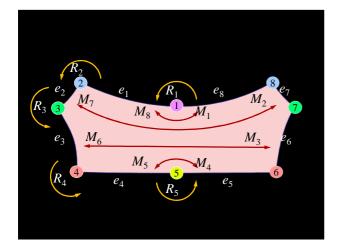
Face-transitive variations



Fuchsian groups:

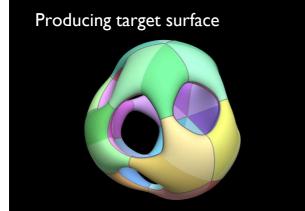
Hyperbolic plane can be tesselated with facetransitive polygons, characterized by genus and rotational symmetry boundary points (Poincaré, 1882)





Approach

- Take regular maps. Produce face-transitive variations by enumerating subgroups;
- Make target shapes. Produce face-transitive maps by duplicating regular maps, enumerating subgroups, punching, gluing;
- Match variations regular map and target.



Producing target surfaces

G_T: group target surface

Factorization: $G_T = H_T A_T$ H_T : subgroup G_T A_T : subset G_T , tile of Fuchsian map here (0; 3, 2, 2, 2, 2, 2)

Approach

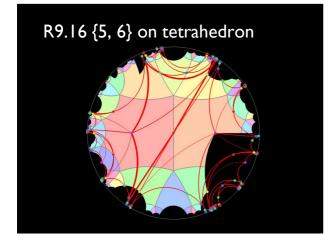
- Take regular maps. Produce face-transitive variations by enumerating subgroups;
- Make target shapes. Produce face-transitive maps by duplicating regular maps, enumerating subgroups, punching, gluing
- Match variations regular map and target:
 - same type of face, same group
 - geometric match in hyperbolic plane

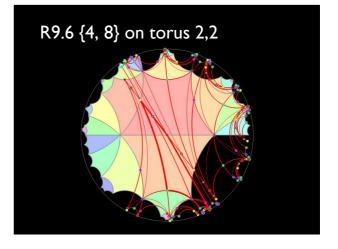
Approach

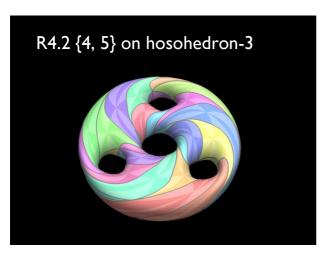
• Match variations regular map and target:

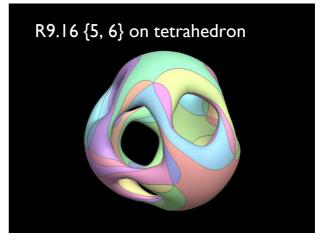
Given lists of factorizations of regular maps and alternative target surfaces:

- Find matches of $G_S = H_S A_S$ and $G_T = H_T A_{T,}$ such that $H_S = H_T$ and $A_S = A_T$
- Find corresponding polygons in the hyperbolic plane

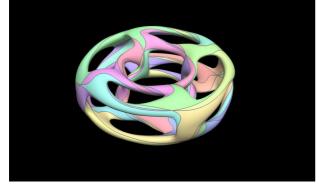


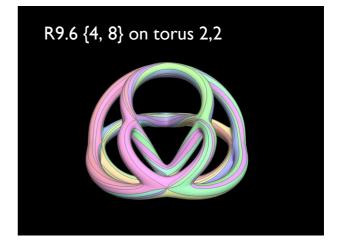


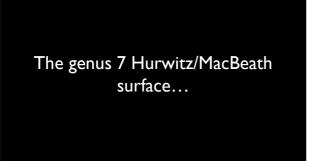




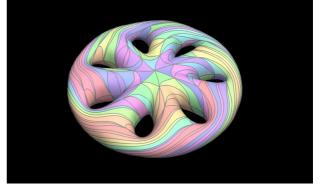
R17.20 {6, 6} on torus 2,0

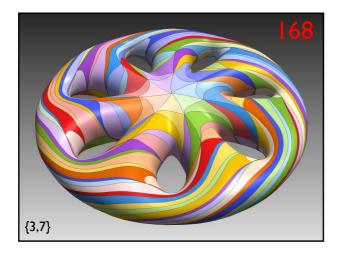


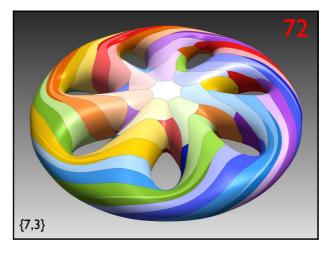


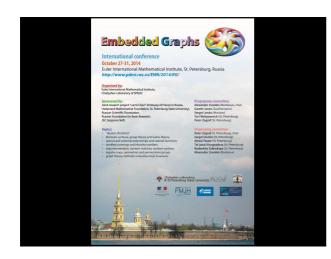


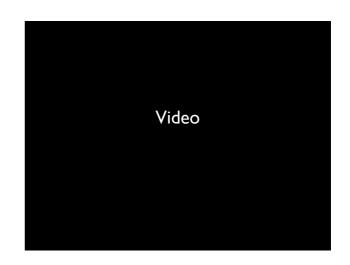
R7.1 {3, 7} on 7-hosohedron











Holes	Faces	
3	56	done
7	168	done
14	364	•••
	• • •	• • •

Holes	Faces		
3	56	done	
7	168	done	
14	364	todo	
• • •	• • •	• • •	

Thank you!