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Some references

For those interested and who want to know more:
1 Video of the conference of Julien Bobroff “Suprémacie

Quantique” sur le site de la SMF.
https://smf.emath.fr/smf-dossiers-et-ressources/suprematie-
quantique-julien-bobroff-video-2020
Thanks Yvan!

2 Mes premiers pas en Mécanique Quantique by Christos
Gougoussis and Nicolas Poilvert. Technical level fits last year
of highschool.

3 Mécanique Quantique from “Les cours de physique de
Feynman".
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Quantum mechanics: a bit of history

During the 19th century, Physics was solved and the world secrets
fully understood.

Classical Newton mechanics would predict successfully the motion
of bodies in our universe with the expected amount of precision.

Thermodynamics would allow us to build machines and understand
heat transfers and so on...

Maxwell equations would describe light, radio waves, magnets,
electricity and so on. The electromagnetic fields unification was
incredibly successful and beautiful.
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Quantum mechanics: a bit of history

All of that up-to a few technical details, that would resist to
analysis....

The Maxwell equations did not agree with the classical
Galilean relativity. Indeed they predicted that the speed of
light was constant in any referential, the suckers! But, wait it’s
fine, Maxwell equations are new, therefore probably not
completely correct yet, it’s just a matter of putting dots on the
i’s and bars on the t’s...
The motion of Mercury is a bit weird, but no big deal, surely
some hidden planet somewhere would explain everything...
Atoms are super small so we can’t see how they work. But,
pff, we can’t even break them, the Greek knew that already.
Oh! And there is this black body radiation thing going on.
Relax, we understood the high energy part already so the low
energy is going to come soon.
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Quantum mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....
So what about those points??

For a start, just forget about the first two points. They are only
mildly relevant minor points of science history anyway. Someone
named Einstein did something about those, but, quite frankly, all he
had really was a great haircut.

Figure: Einstein’s haidresser, the most overly paid hairdresser of all times.
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Quantum Mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....

Okay, cool! First two points solved, that was easy!

What about the last two points?

Well, as I said, atoms are small. That’s maybe why they are so
discreet......
Or rather why their emission/absorption spectrum is discrete:

Figure: Emission spectrum Hydrogen
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Quantum Mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....

So, those atoms? Lot of debates, they are either:
made of positive jelly with negative raisins in it (Thomson’s,
aka The Cook, model).
made of a positive nucleus, around which negative charges are
orbiting (Rutherford, aka
I-don’t-have-imagination-so-I’m-gonna-copy-the-solar-system,
model).
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Quantum Mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....

Figure: Negative raisins in positive jelly

Well, almost. In principle Thomson’s model could give discrete
spectra if everything is fine in “the best of all possible world" (we
just left the 19th century to visit our friend Gottfried). But
Thomson is struggling with this.

Plus, everyone one knows that God hates jelly, so it’s definitely not
that, as Rutherford showed! Hmm... More mystery.
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Quantum Mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....

Hey, remember! We had this no-imagination model. What about
it?

Hmm, ok, well. Remember these brand new Maxwell equations?
Let’s say they don’t agree. These new interns, they always put such
a mess... Why that?
→ According to Maxwell equations every accelerated charge
radiates energy in electromagnetic form (“light"). And the problem
with electrons orbiting is, they are accelerated... So they radiate
their energy, so their velocity diminishes, so they radiate more
energy and so on, until they crash on the positive nucleus. And
pfut! Atoms don’t exist anymore. And let’s say the process is quite
fast...
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Quantum Mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....

So Thomson-Rutherford-Nature: 0− 0− 2. Nature has an edge.

So, in 1913, Bohr decided that one should allow only discrete sets
of orbits. Why? Because! More or less. How do we do so? We
quantize the angular momentum of electrons orbiting the nucleus.
Doing so only some orbits are allowed and transition between them
require a discrete amount of energy. Perfect, we get our discrete
spectrum, for hydrogen.

That actually fall quite well in place, since Planck just found out
this new constant h in investigating the black body problem. It’s
called, Planck’s constant, and it solves the black body problem. A
very nice peculiarity of this constant is, it has the dimensions of
angular momentum! Plus the guy with funny hair advocates for it.
So you know what, just put a bar on the h by deciding ~ = h

2π
(things are orbiting, so dividing by 2π is natural).
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Quantum Mechanics: a bit of history

Putting dot on the i’s and bars on the t’s, no wait, the h’s....

Bohr atom energy levels: En = −k2mq4
e

2n2~2 ∝ − 1
n2 .

So, solved? Well, no. It’s more complicated than that. It’s a
process. First we did not talk about the black body radiation. Plus
the Bohr model does not work when there is more than one
electron (it works with hydrogen, and ionized helium, but honestly
who cares about those??).

Something to take on is that, in this process, discretizing accessible
states for matter has been successful. This quantization idea here
did not come out of nowhere. This was first used by Planck to
solve the black body problem. But Planck used that idea as a pure
mathematical trick and did not propose a physical origin for it.
Einstein tried to argue that it is physical, but really everyone was
very confused.
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The double slits experiments

After a long historical developments we start to have a better view
of what can happen. So I am going to jump forward and tell you a
bit more about what can happen in a classical experiment. We’ll do
it in several flavors, with:

1 Bullets, from a gun (the idea comes from a guy from the
US.... No surprise here.)

2 Water waves.
3 Electrons.

Generic feature of this experiment, take a wall, dig two slits in it,
throw stuff at it and then look at what happens on the other side
of the wall. Simple, no?
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The double slits experiments

The case with bullets:

Figure: The double slits experiment with bullets

The idea is as follows, one has a very bad gun shooting bullets
evenly over a widespread angle. Some of these bullets pass through
the slits in the wall and are detected with a bullet detector which
counts the number of bullets arriving at each point.
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The double slits experiment

The case with water waves:

Figure: The double slits experiment with waves

Oh! Wait! That looks different!
If you want to know whether something is a wave or a particle, just
throw said something at a wall with two slits.

Particles ⇒ Previous slide
Waves ⇒ Current slide.
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The double slits experiment

The case with electrons:

Figure: The double slits experiment with electrons

Ok, so we are done, electrons are waves. Well, no! First we can
count electrons coming one after the other, and they come entire
electrons after entire electrons, not by half or quarter of electron.

16 / 31



The double slits experiment

Spying on the electrons:

Figure: Watching the electrons

And if you watch by using a light which slit they are passing
through, interference disappear. This does not happen with waves.
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Some principles

So what? What have we learned.
1 Electrons are neither waves nor particles, they are something

else.
2 Electrons seem to be described mathematically like waves by

using complex numbers for both amplitude and phase. These
complex numbers are called probability amplitude.
This is true at least as long as we don’t watch them. Why?
Really they follow the Schrödinger equation which is a linear
equation and so different solutions can be added together to
form a new solution. Solution through hole 1 + solution
through hole 2 is a solution. This is the origin of interference
pattern.
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Some principles

1 Probability of an event is given by the square of the modulus
of a complex φ called probability amplitude:

P = Probability (1)
φ = Probability amplitude (2)

P = |φ|2. (3)

2 When an event can occur in alternative ways, the probability
amplitude for the event is the sum of the probability
amplitudes for each way. This leads to interference.

φ = φ1 + φ2 (4)

P = |φ1 + φ2|2 (5)

3 If an experiment is capable of determining whether one or
another alternative is taken, the probability of the event is the
sum of the probabilities for each alternative. No interference:

P = P1 + P2 (6)
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Some principles

Mathematically, we can keep track of the probability amplitude for
each possible event i in a big vector |φ〉 = (φ1, φ2, . . . ...).
For instance electrons can be oriented. Either up or down.if the
probability amplitude for an electron to be oriented up is 1√

2
and

the probability amplitude for the electron to be oriented down is
i√
2
, then the corresponding vector is

|φ〉 = (φ↑ =
1√
2
, φ↓ =

i√
2
). (7)

But, in Quantum Mechanics, the events form a basis for a vector
space. So each event is itself a vector. Therefore

|φ〉 = 1√
2
|↑〉+ i√

2
|↓〉. (8)

One then notice that φ↑ = 〈↑ |φ〉 and φ↓ = 〈↓ |φ〉.
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Einstein-Podolski-Rosen

That’s the difficult part of this talk. We’ve probably not reached
this stage anyway. But if we do, please don’t panic. Electrons are
oriented. This orientation is called their spin.

If you measure their orientation along a direction, then they are
either oriented one way (positively, up, or ↑) or the other way
(negatively, down, or ↓ along this direction).

The troubling fact is that this is true whatever the direction you
pick. The orientation of the electron will always project along this
direction, either positively or negatively.
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Einstein-Podolski-Rosen

Now consider that we have two electrons (or, rather
a pair electron-positron) together, not interacting. The possible
events if we measure their orientation along two directions
surpported by two vectors ~a, ~b are

↑~a↑~b, ↑~a↓~b, ↓~a↑~b, ↓~a↓~b . (9)

With the ket notation, these events are vectors

|↑~a↑~b〉, |↑~a↓~b〉, |↓~a↑~b〉, |↓~a↓~b〉. (10)

Each event comes with a probability amplitude, and, a priori, the
state of the pair is a vector of the form

|φ〉 = φ↑~a↑~b |↑~a↑~b〉+ φ↑~a↓~b |↑~a↓~b〉+ φ↓~a↑~b |↓~a↑~b〉+ φ↓~a↓~b |↓~a↓~b〉 (11)

However we can choose another additional direction ~z and measure
both orientations along this direction. One then has, a priori,

|φ〉 = φ↑↑|↑↑〉+ φ↑↓|↑↓〉+ φ↓↑|↓↑〉+ φ↓↓|↓↓〉 (12)
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Einstein-Podolski-Rosen

Now I start with a particular experiment. I have one atom whose
nucleus undergoes a nuclear reaction which releases one electron
and positron.

electron positron

Alice Bob

Figure: Desintegration of a nucleus of spin 0 into a pair electron-positron
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Einstein-Podolski-Rosen

I cheat a first time: Electron and positron have to go into opposite
directions.

I cheat a second time: the total spin, measured in the same
direction ~z , of the pair must be zero because the one of the nucleus
is.

Finally I cheat even more, by telling you that the state of the pair is
given by

|φ〉 = 1√
2
(|↑↓〉 − |↓↑〉) (13)

There are reasons for all the cheating, but I can’t explain in such a
short time.
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Einstein-Podolski-Rosen

Now consider that Alice measure the spin of her electron along the
direction ~a = ~z and Bob along a direction ~b.
The action of measuring projects the state over the result of the
measurement. That is if Alice finds a positive orientation, the
resulting state after the measurement is

|ψ〉 = |↑↓〉. (14)

If ~b 6= ~a then calling θ, ν the polar angles between ~b and ~a one has

|↑~b〉 = sin(θ/2)e iν/2|↓ +cos(θ/2)e−iν/2|↑〉. (15)

So after the measurement of Alice, the probability for Bob to find
respectively ↑~b or ↓~b are

PB(↑~b) = sin2(θ/2), PB(↓~b) = cos2(θ/2). (16)
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Einstein-Podolski-Rosen

EPR “paradox” is represented by the question: Why is the result
that Bob gets somehow depends on the result that Alice gets?

EPR said, this strange result show that there should be some
information we do not know, that encode the result beforehand.
Some hidden variables explain this.
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Einstein-Podolski-Rosen

Bell’s inequality:

One can compute the order 2 joint moment of Alice and Bob
measurement following Quantum Mechanics predictions. In that
case one finds

E(σAσB) = −
1
4
cos(θ) = −1

4
~a · ~b (17)

What if we do the same in a general theory in which there exists
hidden variables?

In the hidden variables theory, there exists some functions
σA(v , ~a) = ±1

2 and σB(v , ~b) = ±1
2 which are deterministic

function. They are only made random by the fact that we do not
know the hidden variables v !

We only know that σA(v , ~b) = −σB(v , ~b)
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Einstein-Podolski-Rosen

What is the joint moment for these two functions?

E(σA(~a)σB(~b)) =
∫

dnvρ(v)σA(v , ~a)σB(v , ~b) (18)

= −
∫

dnvρ(v)σA(v , ~a)σA(v , ~b) (19)

Consider yet another direction supported by the vector ~c . Then one
has

E(σA(~a)σB(~b))− E(σA(~a)σB(~c)) =

−
∫

dnvρ(v)σA(v , ~a)(σA(v , ~b)− σA(v , ~c))

= −
∫

dnvρ(v)σA(v , ~a)σA(v , ~b)(1− 4σA(v , ~b)σA(v , ~c)) (20)
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Einstein-Podolski-Rosen

Using the remark that (1− 4σA(v , ~b)σA(v , ~c)) ≥ 0 and that
|σA(v , ~a)σA(v , ~b)| ≤ 1

4 one has Bell’s inequality

|E(σA(~a)σB(~b))− E(σA(~a)σB(~c))| ≤
1
4
(1+ 4Ev (σA(~b)σA(~c))).

(21)
Insert QM predictions in the LHS leads to:

1
4
|~a · (~b − ~c)| (22)

Then insert QM prediction in the RHS this leads to:

1
4
(1− ~b · ~c) (23)
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Einstein-Podolski-Rosen

Is it always true that LHS≤RHS? Just pick ~a · ~b = 0 and
~c = sin(ϕ)~a+ cos(ϕ)~b. In this case

LHS =
1
4
|sinϕ| (24)

and
RHS =

1
4
(1− cosϕ). (25)
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Figure: Blue curve: LHS. Orange curve: RHS

Bell’s inequality is violated almost everywhere by QM!
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The END

That’s all for today. Thank you. Hopefully it was understandable.
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