COUNTING UPPER INTERACTIONS IN DYCK PATHS

YVAN LE BORGNE

ABsTrRACT. A Dyck word w of size n is a shuffle of n copies of the word zZ.
An upper interaction in w is an occurrence of a factor z¥z* where k£ > 1. We
present different methods to enumerate Dyck words according to the size and
the number of upper interactions. The generating function has a rather unusual
form: it is the ratio of two g-series where occurs an algebraic term. The first
method mainly involves calculation over formal power series. Our next two
methods interpret different steps of the previous calculation by manipulations
or factorisations of the Dyck words.

VERSION FRANGAISE. Un mot de Dyck w de taille n est un mélange de n copies
du mot zZ. Une interaction supérieure dans w est une occurrence d’un facteur
Thzk ou k > 1. On présente différentes méthodes pour énumérer les mots
de Dyck selon leur taille et le nombre d’interactions supérieures. La fonction
génératrice, peu usuelle, est un quotient de deux g-séries dans lesquelles appa-
rait un terme algébrique. La premiére méthode nécessite principalement des
calculs sur des séries formelles. Les deux méthodes suivantes interprétent dif-
férentes étapes du calcul précédent par des manipulations ou des factorisations
des mots de Dyck.

1. INTRODUCTION

A Dyck word w is a word over the alphabet {z,Z} that contains as many letters
x than T and such that any prefix contains at least as many letters x as letters T.
The size of w is the number of letters x in w. A Dyck path is a walk in the plane,
starting from the origin, made up of rises, steps (1, 1), and falls, steps (1, —1), that
remains above the horizontal axis and finishes on it. Figure 1 gives an example of
a Dyck path of size 12. The Dyck path related to the Dyck word w is the walk
obtained by replacing in w a letter x by a rise, and a letter T by a fall. In the rest
of the paper we identify the two notions.
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An upper interaction, respectively a lower interaction, in the Dyck word w is
an occurrence of a factor TFz*, respectively z*Z*, for any k > 1. The example of
Figure 1 contains 7 upper interactions and 9 lower interactions. Lower interactions
are easy to take into account in the enumeration because of the usual decomposition
of Dyck paths which splits them at the second vertex on the horizontal axis, the
vertex A on the Figure 1. Lower interactions are included in one of the two subwalks.
Denise and Simion [6] already used this fact to enumerate Dyck paths according
to the size and the number of lower interactions. By constrast, there are upper
interactions above the vertex A that belong to the two subwalks. It explains why
upper interactions seemingly do not satisfy an algebraic decomposition and are
more difficult to take into account.

This paper present three methods to find an expression for the generating func-
tion

Alt,u) = > P (1)

non-empty Dyck path w

where n is the size of w and k the number of upper interactions.

In Section 2, the first method, inspired by a work of Bousquet-Mélou and Rech-
nitzer [3], consists in building Dyck words by inserting a factor ‘T after the last
letter z. This leads to a functionnal equation that can be solved through calcula-
tions over formal power series involving four main steps: an iteration, the kernel
method [2], a division and the use of a relation between roots of a polynomial. The
resulting generating function has a rather unusual form: it is a ratio of g-series,with
q = tu, where occurs an algebraic term o. Our aim is now to understand better
these calculations over formal power series by direct manipulations or factorizations
of Dyck paths.

In the next method in Section 3, we consider Dyck paths with small valleys
that are Dyck words that avoid the factor ZZzxz. An ad hoc valuation of the
valleys, the factors Tz, allows us to recover the generating function A(t,u). We can
recursively split these words to obtain a g-algebraic equation that is solvable after a
change of unknown function. The choice of this change is crucial in the resolution.
A first possibility, inspired by a paper of Janse Van Rensburg [7], leads to a ¢-
linear equation. This equation admits as solution a basic hypergeometric series
computable with the algorithm proposed by Abramov, Paule et Petkovsek [1]. We
present a second change of unknown function, seemingly a brother of the previous
one, that, in our case, requires less calculation to conclude.

In Section 4 we consider more precisely the valuation of each valley: it is the
sum of a constant term and a term that depends geometrically on the height of
the valley. We expand this sum in each valley to consider bicolored paths with
small valleys where the valuation of a valley is either the constant term for a white
valley, or the "geometric" term for a black valley. Paths with only white valleys
give a combinatorial interpretation of the algebraic term o that comes from the
kernel method in Section 2. Paths with only black valleys are in bijection with
certain heaps of segments [4] thus their generating function, a ratio of g-series, is
an instance of Viennot’s heaps inversion lemma [9]. The iteration in the calculation
of Section 2 seems to correspond to the calculation of trivial heaps of segments.
Moreover, we have a combinatorial interpretation of the first change of unknown
function in Section 3. Finally we consider bicolored paths with small valleys where
any black valley is isolated, that is, occurs in a factor zxTxTz. A partition of
these paths leads to a bijection with other heaps of segments. The inversion lemma
gives a ratio of g-series where appears the algebraic term o. Moreover the relation
between roots of a polynomial, used in Section 2, gives rise to a term (q),(qto?),
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that admits here a combinatorial interpretation. Hence, by considering the three
above sets of bicolored paths, we are able to interpret combinatorially the four main
steps of the calculation over formal power series. It may be possible to merge these
interpretations to obtain a combinatorial interpretation of the generating function
of Dyck paths counted according to the size and the number of upper interactions.

2. A CATALYTIC PARAMETER FOR A "SLICE" FUNCTIONAL EQUATION

In [3], Bousquet-Mélou and Rechnitzer use a factorization of partially directed
walks. We adapt their work to the case of Dyck paths. The length of the last
descent of a Dyck word is the number of letters T after the last letter z. We define
the generating function of non-empty Dyck paths counted according to the size, the
number of upper interactions and the length of the last descent by:

B(s) = B(t,u;s) = Z t"uksd
non-empty Dyck path w

where n is the size of w, k the number of upper interactions and j the length of
the last descent. Our aim is to compute A(t,u) = B(t,u;1) but we need to know
the additionnal parameter to write an equation linking B(1), B(s) and B(uts).
Zeilberger [10] calls this kind of parameter a catalytic parameter. The form of the
decomposition of Dyck paths that we use also reminds Temperley-like decomposi-
tions, used by certain physicists [8].

Lemma 1. The generating function B(s) of Dyck paths counted according to the
size, the number of upper interactions and the length of the last descent satisfies

B _ ts ut ts (B(s) — B(uts))
() = 1—ts 1—ut 1—ts 9
ut  (s(B(1)=B(s)) uts(B(1) — Bluts)) (2)
+1—ut( 1—s - 1—uts )

Proof. (sketch) A peak is a vertex next to a rise and before a fall. We split the set
of Dyck paths into three disjoint subsets illustrated on Figure 2: the paths with at
most one peak, the paths where the last peak is strictly higher than the previous
one, the paths where the last peak is below the previous one.

FIGURE 2. The "slice" decomposition of Dyck paths

The generating function of each subset is obtained by adding a factor z*Z*:

to the empty path for the first subset or to any non-empty Dyck path otherwise.
The length of the last descent is sufficient to determine the number of ways one
can extend a Dyck path and the number of additionnal upper interactions in each
case. Figure 2 gives extensions leading to each subset. The summation of these
extensions over all Dyck paths gives rise to different evaluations of B(s). The
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generating function of each subset gives one of the three terms in the right-hand
side of Equation (2). O

The solution of Equation (2) requires an iteration to remove B(uts) and the
kernel method to remove B(s). Like in [3], we obtain for B(1) = A(t,u) a ratio of
two g¢-series in which occurs an algebraic term.

Proposition 2. The generating function of Dyck paths counted according to the
size and the number of upper interactions is

(¢ —t)o\" ")t
tz( 1—gq ) (9)n(qta?)y,

A - B _ n>0
(t:) @ Z ((q — t)a) " q(ngz)—l 1—-tq"o )
1=\ T=0 ) @al@to?) A=q0) 0 —q"70)
B = 14t-29— /A — )1 -t - 4q + 4¢%)
where ¢ = ut, (x), = kl;[O(l—qk:L') ando = 5q — 1) .
Proof. (sketch) Equation (2) can be rewritten as
B(s) = a(s) + b(s)B(1) + ¢(s)B(gs) + d(s)B(s). (4)

We iterate this equation, using its evaluation at s = g¥s to recursively replace the
term B(q**1s) by an expression in terms of B(q**?s). We show that this process
converges, in the sense of formal power series, toward the relation

o s n n
1-ds)Bs) =[] T dighig) (@) + bla"»)B() (5)

n>0 k=0 1-d

where the unknown functions B(g*s), k > 1, have disappeared. The kernel method
consists in choosing s = ¢ such that 1 —d(o) = 0. Thus o is one of the roots of the
polynomial, deduced from 1 — d(s), called the kernel:

1+(f—_2—1)a+t02:0. (6)
We choose o to be the unique root of this polynomial that is a formal power series
in t and replace s by o in (5). After the annulation for s = o of the left side of
Equation (5), it remains one division to deduce the expression of B(1). The fact
that the product of the two roots of the kernel is 1/t enables us to rewrite the
products of ¢(¢¥a)/(1 — d(¢"*'0)) as terms where appears (¢),(qto?) . a

3. A CATALYTIC PARAMETER FOR A ¢-ALGEBRAIC EQUATION

To be able to write a g-algebraic equation whose solution leads to A(t,u) we con-
sider a subset of Dyck paths, the paths with small valleys, and another catalytic
parameter. The solution of the g-algebraic equation uses a change of unknown func-
tion in the spirit of the works of Brak and Prellberg [5] and Janse Van Rensburg [7].

3.1. DYCK PATHS WITH SMALL VALLEYS

A walley in a Dyck path is a vertex next to a fall and before a rise. Dyck paths
with small valleys are Dyck paths that avoid the factor ZZxx. We define an ad hoc
valuation of such paths: there is a weight ¢ on each rise and a weight

k41
V() = G200 ")
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on a valley at height k. The generating function according of Dyck paths with small
valleys to these weights is

Cly) = C(t,usy) = > t" T Vo (k)

non-empty Dyck path with small valleys w  ¥>0
(8)

where n is the size of w and vy, the number of valleys at height k in w.

Lemma 3. The generating function A(t,u) of Dyck paths, defined by (1), and the
generating function C(t,u;y) of Dyck paths with small valleys satisfy

A(t,u) = C(t,us 1). (9)

Proof. We group Dyck paths into sets of paths with the same sequence of heights
of the peaks. In each set S there is a single path wg of minimal size and we use
it as the representative of the set. This path is also the single path with small
valleys in S. All paths in S are obtained by "digging" the valleys of wg, that is
rewriting recursively factors Zz of wg in ZZzz while the path remains above the
horizontal axis. In wg there are as many upper interactions as valleys. Moreover,
each rewriting Tx — TTxx increases the size and the number of upper interactions
by one. Thus the generating function of paths of S according to size and the number
of upper interactions corresponds to the weigth of wgs where a rise is weigthed ¢
and a valley at height k,

k+1
2 k+1.k _ g1 —¢**h) _
uHut'+...Fu"t —71:(1_(1) Voat (B)|y=1-
We recognize here the valuation of valleys in (8) when y = 1. The summation over
all the sets S, that is over the paths with small valleys, leads to (9). O

The variable y that occurs in the weight of valleys is another example of a
catalytic variable since it allows to write a g-algebraic equation for paths with
small valleys:

Lemma 4. The genemting function of non-empty paths with small valleys satisfies
1— 1—qy\”
Cly) =t+t (1 +a3 qj) Clay) +a7 qqu(y) + (q 1 _qqy) C(gy)C(y). (10)

Proof. We split a path with small valleys at the second vertex on the axis, called A
in Figure 3. There are five cases due to the avoiding of the factor ZZxx especially
around the vertex A.

FIGURE 3. Decomposition of paths with small valleys

If w is a path with small valleys of weight W (¢, u,y), then zwZ is a path of
weight tW (¢, u, qy). This fact explains why we use the catalytic variable y in the
weight of paths with small valleys. As an example the valuation of the fifth case is

q(1 —qy) ,q(1 — qy)

t C(y
=g ti—g ¥
since there are two valleys, A and B. |

tC(gy)
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3.2. LINEARIZATION

The resolution of the g-algebraic equation (10) begins with a change of unknown
function: we look for solutions of the form

_ J(qy)
CW) = ST+ AT (@) (1)

where « is independent of y, B(y) a rational function in y and J(y) a formal power
series in y such that J(0) = 1. A series H(y) = }_,,5 hny™ is a basic hypergeometric
series if there is a rational function F'(X) such that hyq1/hy, = F(¢™) for alln € N.

Proposition 5. The unique formal power series in t that satisfies the q-algebraic
Equation (10) is

(g—to\" ")
(t“-’)t"%( =) @
Cly) = N ("I ( 2042 2 (12)
z((q—t)o) q\ 2 )(¢"to —q - ¢"t°0 )yn
1—g¢q (Q)n(thQ)n

n>0
where again q = ut and o is defined as in Proposition 3.

Proof. We consider Equation (10) where C(y) is replaced by its expression (11).
We reduce it to a single rational function R in y, J(y), J(qy) and J(q?y)). The
numerator N of R is a linear combination of J(y)J(qy), J(qy)?, J(¢*y)J(qy) and

1_
J(¢*y)J(y). We choose B(y) = — 1 qj to remove the term J(q?y).J(y), thus we

can factorize J(qy) in N. The other factor of N vanishes if and only if yhe following
g-linear equation holds:

(t—q)(1—qy)

2 j—
ta”J(y) (1+ 1—¢

) attan) + () =0, (13)
The evaluation at y = 0 of Equation (13) implies that « is one of the two roots
of a polynomial that is the kernel (6) in the proof of Proposition 3. We define
a = 1/(to). We will explain later why we choose this root rather than o. The
change of unknown function defined by this analysis is

toJ(qy)

1—gqy
Jy) = 7= . toJ(qy)

; (14)

and it leads to the g-linear equation (13) where o = 1/(to). Since (13) is of degree
1 in y and by definition J(y) =1+ 3", jny", the extraction of the coefficient of

y™+1 in (13) gives a relation between j, and j,,1 which is

. (g —t)og"*! .
Int1 = 1 17,2y
(1-¢)(1—g"H)(1 - g"t'to?)

Thus J(y) is the basic hypergeometric series
’n+1)

_ (g—to\" 4" n
J(y)_z< 1—¢q ) (@n(gto®)n’

n>0

We plug this expression in (14) and we recognize the expression (12). O
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Remark 6. We may also compute C(y) using the same method as in Section 2.
The additionnal variable y does not deeply modify the calculations. The change
of unknown function (14) was actually conjectured at the sight of this formula. It
also explains why we choose o = 1/(to) instead of o.

Remark 7. In [7], Janse Van Rensburg suggests a change of unknown function
that we generalize in

_ad(qy) + B(y)J(y)

Cly) =
W= 0w
where « is independent of y and S(y) and 7(y) polynomials in y. This change

also leads to a g-linear equation (L) that admits a basic hypergeometric series as
solution. But the resolution of (L) requires the algorithm of Abramov, Paule and
Petkovsek [1] and much more calculation in our case.

(15)

4. TOWARD A COMBINATORIAL INTERPRETATION

The weight V. (k) of a small valley is the sum of a constant term ¢/(¢(1—gq)) and
a term —q**+2y/(t(1 — q)) that depends geometrically on the height k. We expand
these sums in the paths with small valleys to define the bicolored paths (with small
valleys): they are paths with small valleys where the valleys are either white or
black. The weight of a white valley is ¢/ (t(1 —q)), the weight of a black valley lying
at height k is —g*+2y/(t(1 — q)) and the weight of a rise remains t. By definition,
the generating function of these bicolored paths is also C(y).

We study three subsets of the bicolored paths. The white paths are the bicolored
paths where all valleys are white. The black paths are the bicolored paths where
all valleys are black. The bicolored black-isolated paths are the bicolored paths
where all black valleys belong to a factor zzZxZZ. Each of these subsets yields a
combinatorial interpretation of some of the four main steps of the calculation that
gives Proposition 2.

4.1. THE ALGEBRAIC TERM

The function o(t,u) in Proposition 2 can be written as ) ,,~qPn(u)t"™ where
pn(u) are polynomials whose coefficients are nonnegative integers. Morever o(t, 1)
is the generating function of Dyck paths according to the size. These facts suggest
the existence of combinatorial interpretations of o. The first one is the generating
function of Dyck paths according to the size, counted by ¢, and the number of
lower interactions, counted by u. This result was already obtained by Denise and
Simion [6].

Proposition 8. The generating function D(t,u) of Dyck paths counted according
to size and the number of lower interactions satisfies

ut
D(t =1+ ——D(t t{D(t —
() =14 L2 D)+ (i) -

) Ditu)  (16)
thus D(t,u) = o.

We can group Dyck paths into sets with the same sequence of heights of the
valleys. The smallest path of each set is a path that avoid zxZZ, that is a path
with small peaks. As for valleys and upper interactions, we can define D(t,u) by a
summation over paths with small peaks where a peak is weighted ¢/(¢(1 — ¢)) and
a rise ¢t.

The white paths correspond to the case y = 0 for Dyck paths with small valleys.
For y = 0, the g-algebraic equation (10) becomes an algebraic equation whose
solution is the generating function of the white paths. This generating function is
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only "almost" equal to o(t,u). A double-peak in a Dyck path is a factor zzZZ. To
recover exactly o, we consider the white paths starting with o double-peak.

Proposition 9. There exists a bijection f between paths with small peaks and white
paths starting with o double-peak such that the weight of f(w) is exactly the weight
of w multiplied by t>. The generating function of the white paths starting with a
double-peak is t?o.

Proof. (sketch) Let w be a non-empty path with small peaks. Let A be the first
vertex of w, B the first vertex of maximal height, C' the last vertex and D the vertex
preceeding B. Using these vertices, we factor w in wapzwpc, where wpg denotes
the subpath of w between the vertices P and (). We denote by g the morphism on
the words over the alphabet {z,Z} defined by g(z) = T and g(Z) = z. We define
f(w) = 22TZg(vec)Tg(vap)-

FIGURE 4. A bijection between two interpretations of o

Figure 4 gives on an example a geometrical definition of this bijection f. It is
supposed to convince us that f satisfies all claimed properties. We consider the
path p = zwrw and the line (A;) below this path containing exactly three vertices
of the path p on it. Then we consider the line (Az) above this path, parallel to
(A1), with exactly two vertices B; and By of p. Between the vertices E and Da,
we recognize the image of f(w) by g. A path with small peaks w becomes a path
with small valleys and the weights ¢/(¢(1 — ¢)) remain on the same vertices. O

Remark 10. It is also possible to compute directly the generating function of
white paths starting with a double-peak using an algebraic decomposition of these
paths.

4.2. THE RATIO OF BASIC HYPERGEOMETRIC SERIES

To enumerate black paths, we use a bijection with heaps of marked segments with
an ad hoc weight. A marked segment s = ([I(s),7(s)],m(s)) is defined by an interval
[1(s),r(s)] € Nof I(s) — r(s) + 1 elements and a subset m(s) C [I(s) + 1,7(s) — 1]

of marked elements. If the marked segment is a singleton ([r(s),r(s)], ) then its

weight Vieq(s) is —%ﬂ. Otherwise I(s) < 7(s) and the weight of the marked

segment s = ([I(s),r(s)],m(s)) is
k42

1(s)+2,,\ 2
q Y r(s)—I(s q "y
vseg(s)z(_ S ) O ] (‘1_q)-

kem(s)
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A heap of (marked) segments of size n is a set {(s;, h;) }i=1...n» where s; is a marked
segment and h; € N is its height, such that
e if h; = h; then [I(s;),r(s;)]N[I(s;),7(s;)] = 0: two segments can not overlap.
e if h; > 0 then there exists (s;, h; — 1) such that [I(s;),r(s;)]N[I(s;),7(s;)] =
(): a segment that is not on the floor lay on a segment just below.
A heap of segments is a half-pyramid of (marked) segments if there is at most one
segment s; on the floor, that is h; = 0, and moreover [(s;) = 0. On the right of
Figure 5 there is a half-pyramid of marked segments. The generating function of
half-pyramids of segments is defined by

F(y) = Z H Vseg (5)

half-pyramid h \s segment of h

As in the case of white paths, we consider black paths starting with o double-peak.

Proposition 11. There exists a bijection h between black paths starting with a
double-peak and haolf-pyramids of marked segments. This bijection implies that
t2F(y) is the generating function of black paths starting with a double-peak.

Proof. (sketch)

{21):0)}
B «
() O 3
L] [e] [e] ] 2
O 1
OO0 o
43210

FIGURE 5. Black paths and half-pyramids of marked segments

The bijection is a variant of a previous one between Dyck paths and half-pyramids
of segments [4]. We discuss here its specificities. We use the example of Figure 5 to
define how a black path w is mapped to a half-pyramid h(w). A cutting peak in w,
pointed by a grey arrow on Figure 5, is a peak that is not before a factor zzz. Two
consecutive cutting peaks are the endpoints of a block b where [(b) is the height of
the vertex before the first rise, r(b) + 1 is the height of the second cutting peak and
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m(b) is the set of all heights of valleys in b. The block b is mapped to the marked
segment s = ([I(b),r(b)],m(b)\{l(b)}). Given a sequence of marked segments, we
"let them fall on the floor" to obtain an heap of segments h(w). Moreover, since
the black path starts with a double-peak, the vertex before the first rise of the
first block b is at height 0, leading to a segment s = ([0,7(s)],m(s)). By definition
of cutting peaks, all the other segments are carried by a previous segment in the
sequence. Thus h(w) is a half-pyramid of marked segments. We claim without
proving it here that h is a bijection. Since the weight of the marked segment s
was defined to be the weight of rises and valleys in the block b, the weight of h(w)
is almost the weight of w: only the weight of the two first rises in w is not take
into account in h(w). Thus the generating function of black paths starting with a
double-peak is t2F (y). O

A trivial heap is a heap {(s;, h;)} where all segments are on the floor, that is
h; =0 for all i. The alternating generating function of trivial heaps is defined by

T(y) = Z H (_l)v;'eg(s)

trivial heap h \s segment of h

Lemma 12. The alternating generating function of trivial heaps T (y) satisfies the
q-linear equation

T(y) = T(gy)+ lqiqu(qy) - ltL_q (T(ay) — T(4°y)) n
+t/q° (T(qy) - T(¢%y) - lqi_qu(qzy)) :
and ()
_ g—t\" q¢‘': n
Tw=2, (=2) @

Proof. (sketch) The weight of a segment s = ([I(s),7(s)],m(s)) can be distributed
to the elements of [I(s), r(s)] as follows:

r(s)+2 I(s)+1 k+1 t
(@O [ gy gty t
VSCQ(S)_( 1—¢q )( 1—q> 11 ( 1—q> 11 q

kem(s) kell(s)+1,r(s)—1]\m(s)

Thus there are three kinds of element in [I(s), r(s)]: the first element r(s), weighted
r(s)+2

—45—%, the heavy elements k € m(s) U {I(s)}, weighted —qf:y, and the light
elements k € [I(s) + 1,7(s) — 1]\m(s) weighted t/q. That distribution corresponds
to the evelation of the valuation of the first black valley in front of the last rise of
the block. A singleton contains only its first element. In the other segments I(s) is
an heavy element, r(s) the first element and the elements of [I(s) + 1,7(s) — 1] are
either heavy or light. We split the set of trivial heaps S into four disjoint subsets:
the set of trivial heaps S; where 0 is not an element of a segment, the set of trivial
heaps S2 where there is a singleton ([0, 0], ?), the set of trivial heaps S3 where there
is a segment ([0, 7(s)],m(s)) whose 1 is a light element and the set of trivial heaps
Sa where there is a segment ([0,7(s)],m(s)) whose 1 is either an heavy element or
the first element. The alternating generating function of each of these subsets gives
a term in the right side of Equation (17). The translated segment of a segment s is
t = ([l(s) + 1,7(s) + 1],{k + 1|k € m(s)}). The weight Vse,(t) is Vseq(s) where gy
has been substitued to y. The subset S; is exactly the set obtained by translating
all heaps, thus the alternating generating function of this subset is T'(qy). Since we
are in an abstract, it is left to the reader to note that the alternating generating
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1—q
and —lt—z%(T(qy) —T(q%y)) for Sy.
Equation (17) is of degree 1 in y. Moreover T'(y) = 1 since only the empty trivial
heap is not weighted by a factor y. By a resolution similar to that of Equation (13)

we compute the basic hypergeometric series T'(y). d

functions of the sets are ‘f—yT(qy) for Sa, t/q? (T(qy) -1+ %)T(q{y)) for S3

The heap inversion Lemma of Viennot [9] states that the generating function of
heaps where all segments on the floor belong to a set of segments A is Ha(y)/H (y)
where H (y) is the alternating generating function of trivial heaps and H4(y) the
alternating generating function of trivial heaps where no segment belongs to A.
In the case of half-pyramids, A is the set of segments s = ([0,7(s)],m(s)) and
H(y) = T(qy)- Thus the generating function of half-pyramids is T'(qy)/T'(y). This
fact, Proposition 11 and Lemma, 12 lead to the generating funtion of black paths
starting with a double peak. In the next proposition we consider all non-empty
black paths.

Proposition 13. The generating function of non-empty black paths satisfies

1—q)? (,T P2
w-lGE () e

and

Gly) = — (19)

Proof. A black path starting with a double-peak is either the path xxZZ, or the
path zzZTTxT or it starts with the factor x2ZZxZ and followed by any non-empty
black path. On the other hand Proposition 11 states that the generating function
of black paths starting with a double-peak is ¢2F(y). This leads to the equation

2 4,2
2Ry =2 -2 LY 1+ 1Y _g). 20

) i ot) (20)

Using the fact that F(y) = T'(qy)/T (y), standard calculations lead to (18) and (19).
O

Remark 14. Equation (18) is reminiscent of the second change of unknown func-
tion (15) used by Janse Van Rensburg to solve a similar question [7]. Moreover
the combinatorial interpretation leading to Equation (20) explains why ~y(y) is the
denominator.

4.3. A PARTIAL MIXING OF THE TWO INTERPRETATIONS

Proposition 15. The generating function of bicolored black-isolated paths starting
with a double-peak is

antno.
yn
\ nz;; (¢ —1)**(@)n(qto?)n
t°oc—

q5ntn0.
yn
HZZO (g —1)3*"(q)n(gto®)n

where ¢ = ut and ois defined as in Propositions 2 and 5.
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Proof. (sketch) We group bicolored black-isolated paths starting with a double-peak
into sets of paths that admit the same sequence of heights of black valleys and the
same sequence of minimal heights between two black valleys. Let S be one of these
sets. There is a single smallest path w in S. In w there is a factor 2Z*tizT2/ 27
between consecutive black valleys. Figure 6 gives a example of a path w. The
generating function of paths in S is obtained by inserting white paths counted by o
before double rise or double fall in w except for a double rise in a factor xZzx. The
path w is mapped to a half-pyramid of segments where the segment s = [I(s),7(s)]

is weighted (git1‘7)3 q"® (to)"®)=s) | Only a factor t20 at the start of the path is
forgotten in this map. On Figure 6, w is mapped to the half-pyramid defined by
S1,--.,84. We compute the alternating generating function of trivial heaps made up
of these segments. The heap inversion lemma leads to the generating function (21)

where appears the terms (q),(qto?)y. O

Q-0 0 O
AV
0.<U S4
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1%

g
O Q“OR

FIGURE 6. A representative of a set of bicolored black-isolated paths
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