The number of labelled intervals in the m-Tamari lattices

Mireille Bousquet-Mélou, CNRS, LaBRI

Guillaume Chapuy, CNRS, LIAFA
Louis-François Préville-Ratelle, LACIM, UQAM, Montréal
http://www.labri.fr/~bousquet

Ballot paths

An m-ballot path of size n :

- starts at $(0,0)$,
- ends at ($m n, n$),
- never goes below the line $\{x=m y\}$.

Examples:

$$
m=1
$$

$$
m=2
$$

$m=1:$ The (usual) Tamari Iattice \mathcal{T}_{n}

Covering relation:

[Huang-Tamari 72]

$m=1$: The (usual) Tamari lattice \mathcal{T}_{n}

Covering relation:

[Huang-Tamari 72]

The m-Tamari lattice $\mathcal{T}_{n}{ }^{(m)}$

Covering relation:

[Bergeron 10]

Proposition: Defines a lattice
[mbm-Fusy-Préville-Ratelle 11]

Last year's intervals

Proposition: Let $m \geq 1$ and $n \geq 1$. The number of intervals in the Tamari lattice $\mathcal{T}_{n}^{(m)}$ is

$$
\frac{m+1}{n(m n+1)}\binom{n(m+1)^{2}+m}{n-1}
$$

- Map-like numbers!
- When $m=1$: proved by [Chapoton 06]

$$
\frac{2}{n(n+1)}\binom{4 n+1}{n-1}
$$

This is also the number of 3-connected planar triangulations on $n+3$ vertices [Tutte 62] \Rightarrow Bijection found by [Bernardi \& Bonichon 09]

- Proved in [mbm-Fusy-Préville-Ratelle 11] for a generic $m \ldots$ but no bijection

In 2012, Tamari intervals get labels

Labelled Tamari intervals

The up steps of the upper path are labelled from 1 to n, in such a way the labels increase along each ascent.

Proposition: Let $m \geq 1$ and $n \geq 1$. The number of labelled intervals in the Tamari lattice $\mathcal{T}_{n}^{(m)}$ is

$$
f_{n}^{(m)}=(m+1)^{n}(m n+1)^{n-2}
$$

- For $m=1$,

$$
f_{n}^{(1)}=2^{n}(n+1)^{n-2}
$$

Since there are $(n+1)^{n-1}$ Cayley trees with $n+1$ nodes, these are again "map-like numbers", that is, conjugacy classes of trees.

A refined result: the action of \mathfrak{S}_{n} on Tamari intervals

Permutations of \mathfrak{S}_{n} act on m-Tamari intervals of size n by permuting (and then reordering) labels.

Example: if $\sigma=235614$,

Proposition: Let $\sigma \in \mathfrak{S}_{n}$ have cycle type $\lambda=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$. The number of labelled m-Tamari intervals of size n left unchanged under the action of σ is

$$
\chi_{m}(\sigma)=(m n+1)^{\ell-2} \prod_{1 \leq i \leq \ell}\binom{(m+1) \lambda_{i}}{\lambda_{i}}
$$

- When $\sigma=$ id, i.e., $\lambda=(1, \ldots, 1)$, one recovers the total number of m-Tamari intervals:

$$
\chi_{m}(\mathrm{id})=(m n+1)^{n-2}(m+1)^{n} .
$$

I. Functional equations

Generating functions

Let $I=[P, Q]$ be an m-Tamari interval. A contact of I is a contact of the lower path P with the line $\{x=m y\}$.

The initial rise of I is the length of the first sequence of up steps of the upper path Q.

We denote by $U^{(m)}(t ; x, y) \equiv U(x, y)$ the ordinary generating function of unlabelled m-Tamari intervals, where t counts the size, x the number of contacts and y the initial rise.

Similarly, $L^{(m)}(t ; x, y) \equiv L(x, y)$ is the exponential generating function of labelled m-Tamari intervals, counted according to the same parameters (exponential in the variable t).

Functional equations

Proposition: For $m \geq 1$, the generating functions of unlabelled and labelled m-Tamari intervals satisfy:

$$
\begin{array}{ll}
U(x, y)=x+x y t(U(x, 1) \cdot \Delta)^{(m)} U(x, y) \\
\frac{\partial L}{\partial y}(x, y)= & x t(L(x, 1) \cdot \Delta)^{(m)} L(x, y)
\end{array}
$$

with the initial condition $L(x, 0)=x$.

Here, Δ is the divided difference operator

$$
\Delta S(x)=\frac{S(x)-S(1)}{x-1}
$$

and the power m means that the operators are applied m times.

Proof: a recursive description of intervals (here $m=1$)

Generating function for the action of \mathfrak{S}_{n}

- Let $p=\left(p_{1}, p_{2}, \ldots\right)$ be a list of indeterminates and

$$
F^{(m)}(t, p ; x, y)=\sum_{I=[P, Q], \text { labelled }} \frac{t^{|I|}|!|}{|I|} x^{c(P)} \sum_{\sigma \in \operatorname{Stab}(I)} y^{r_{\sigma}(Q)} p_{\lambda(\sigma)},
$$

where $p_{\lambda}=\prod_{i \geq 1} p_{\lambda_{i}}, c(P)$ is the number of contacts of P, and $r_{\sigma}(Q)$ the number of cycles of σ contained in the first rise of Q.

- Then $F(x, 0)=x$ and

$$
\frac{\partial F}{\partial y}(x, y)=\sum_{k \geq 1} \frac{p_{k}}{k}\left(t x(F(x, 1) \Delta)^{(m)}\right)^{(k)} F(x, y)
$$

Generating function for the action of \mathfrak{S}_{n}

- Let $p=\left(p_{1}, p_{2}, \ldots\right)$ be a list of indeterminates and

$$
F^{(m)}(t, p ; x, y)=\sum_{I=[P, Q], \text { labelled }} \frac{t^{|I|}}{|I|!} x^{c(P)} \sum_{\sigma \in \operatorname{Stab}(I)} y^{r_{\sigma}(Q)} p_{\lambda(\sigma)}
$$

where $p_{\lambda}=\prod_{i \geq 1} p_{\lambda_{i}}, c(P)$ is the number of contacts of P, and $r_{\sigma}(Q)$ the number of cycles of σ contained in the first rise of Q.

- Then $F(x, 0)=x$ and

$$
\frac{\partial F}{\partial y}(x, y)=\sum_{k \geq 1} \frac{p_{k}}{k}\left(t x(F(x, 1) \Delta)^{(m)}\right)^{(k)} F(x, y)
$$

- For $\left(p_{1}, p_{2}, \ldots\right)=(1,0,0, \ldots)$, only the identity contributes and one recovers

$$
\frac{\partial F}{\partial y}(x, y)=\left(t x(F(x, 1) \Delta)^{(m)}\right) F(x, y)
$$

II. Solution

Functional equations when $m=1$

Proposition: The generating functions of unlabelled and labelled 1-Tamari intervals satisfy:

$$
\begin{aligned}
& U(x, y)=x+x y t U(x, 1) \cdot \frac{U(x, y)-U(1, y)}{x-1} \\
& \frac{\partial L}{\partial y}(x, y)=\quad x t L(x, 1) \cdot \frac{L(x, y)-L(1, y)}{x-1},
\end{aligned}
$$

with the initial condition $L(x, 0)=x$.

Solution in the unlabelled case ($m=1$)

0. The equation:

$$
\begin{equation*}
U(x, y)=x+x y t U(x, 1) \cdot \frac{U(x, y)-U(1, y)}{x-1} \tag{1}
\end{equation*}
$$

1. Determine the series $U(x, 1)=U_{1}(x)$.
2. Solve (1) with $U(x, 1)$ replaced by $U_{1}(x)$ (a linear equation in $U(x, y)$).

Solution in the unlabelled case ($m=1$)

0. The equation:

$$
\begin{equation*}
U(x, y)=x+x y t U(x, 1) \cdot \frac{U(x, y)-U(1, y)}{x-1} \tag{1}
\end{equation*}
$$

1. Determine the series $U(x, 1)=U_{1}(x)$. We have

$$
U_{1}(x)=x+x t U_{1}(x) \cdot \frac{U_{1}(x)-U_{1}(1)}{x-1}
$$

and this can be solved using the quadratic method [Brown 60s].

Solution in the unlabelled case ($m=1$)

0. The equation:

$$
\begin{equation*}
U(x, y)=x+x y t U(x, 1) \cdot \frac{U(x, y)-U(1, y)}{x-1} \tag{1}
\end{equation*}
$$

1. Determine the series $U(x, 1)=U_{1}(x)$. We have

$$
U_{1}(x)=x+x t U_{1}(x) \cdot \frac{U_{1}(x)-U_{1}(1)}{x-1}
$$

and this can be solved using the quadratic method [Brown 60s].
2. Solve (1) with $U(x, 1)$ replaced by $U_{1}(x)$, that is,

$$
\left(1-\frac{x y t U_{1}(x)}{x-1}\right) U(x, y)=x-\frac{x y t U_{1}(x)}{x-1} \cdot U(1, y) .
$$

This can be solved using the kernel method.
One remains in the world of algebraic series.

Solution in the unlabelled case (m general)

Proposition: Set

$$
t=z(1-z)^{m^{2}+2 m}, \quad x=\frac{1+u}{(1+z u)^{m+1}}, \quad \text { and } \quad y=\frac{1+v}{(1+z v)^{m+1}}
$$

Then

$$
\frac{y U^{(m)}(t ; x, y)}{x-y}=\frac{(1+u)(1+z u)(1+v)(1+z v)}{(u-v)(1-z u v)(1-z)^{m+2}} .
$$

In particular, $y U^{(m)}(t ; x, y)$ is a symmetric series in x and $y \ldots$ a combinatorial mystery
[mbm-Fusy-Préville-Ratelle 11]

Solution in the labelled case ($m=1$)

0 . The equation: $L(x, 0)=x$ and

$$
\begin{equation*}
\frac{\partial L}{\partial y}(x, y)=x t L(x, 1) \cdot \frac{L(x, y)-L(1, y)}{x-1} . \tag{2}
\end{equation*}
$$

1. Guess the series $L(x, 1) \equiv L_{1}(x)$ (hard).
2. Solve (2) with $L(x, 1)$ replaced by $L_{1}(x)$ (a linear equation in $L(x, y)$)
3. Check that the series $L(x, y)$ thus obtained satisfies $L(x, 1)=L_{1}(x)$.

Solution in the labelled case ($m=1$)

0 . The equation: $L(x, 0)=x$ and

$$
\begin{equation*}
\frac{\partial L}{\partial y}(x, y)=x t L(x, 1) \cdot \frac{L(x, y)-L(1, y)}{x-1} . \tag{2}
\end{equation*}
$$

1. Guess the series $L(x, 1) \equiv L_{1}(x)$ (hard). Write

$$
\begin{equation*}
t=z e^{-2 z} \quad \text { and } \quad x=(1+u) e^{-z u}, \tag{3}
\end{equation*}
$$

and $\bar{u}=1 / u$. Then $L(x, 1)=L_{1}(x)$ with

$$
\frac{L_{1}(x)}{x-1}=(1+\bar{u}) e^{2 z+z u}
$$

Solution in the labelled case ($m=1$)

0 . The equation: $L(x, 0)=x$ and

$$
\begin{equation*}
\frac{\partial L}{\partial y}(x, y)=x t L(x, 1) \cdot \frac{L(x, y)-L(1, y)}{x-1} . \tag{2}
\end{equation*}
$$

1. Guess the series $L(x, 1) \equiv L_{1}(x)$ (hard). Write

$$
\begin{equation*}
t=z e^{-2 z} \quad \text { and } \quad x=(1+u) e^{-z u}, \tag{3}
\end{equation*}
$$

and $\bar{u}=1 / u$. Then $L(x, 1)=L_{1}(x)$ with

$$
\frac{L_{1}(x)}{x-1}=(1+\bar{u}) e^{2 z+z u}
$$

2. Solve (2) with $L(x, 1)$ replaced by $L_{1}(x)$.

Solution in the labelled case ($m=1$)

0 . The equation: $L(x, 0)=x$ and

$$
\begin{equation*}
\frac{\partial L}{\partial y}(x, y)=x t L(x, 1) \cdot \frac{L(x, y)-L(1, y)}{x-1} . \tag{2}
\end{equation*}
$$

1. Guess the series $L(x, 1) \equiv L_{1}(x)$ (hard). Write

$$
\begin{equation*}
t=z e^{-2 z} \quad \text { and } \quad x=(1+u) e^{-z u}, \tag{3}
\end{equation*}
$$

and $\bar{u}=1 / u$. Then $L(x, 1)=L_{1}(x)$ with

$$
\frac{L_{1}(x)}{x-1}=(1+\bar{u}) e^{2 z+z u}
$$

2. Solve (2) with $L(x, 1)$ replaced by $L_{1}(x)$. Denoting $\tilde{L}(z ; u, y) \equiv L(t ; x, y)$ after the change of variables (3), Eq.(2) reads

$$
\frac{\partial \widetilde{L}}{\partial y}(u, y)=z(1+u)(1+\bar{u})(\tilde{L}(u, y)-\tilde{L}(0, y)),
$$

with initial condition $\tilde{L}(u, 0)=(1+u) e^{-z u}$.
2. Solve

$$
\frac{\partial \tilde{L}}{\partial y}(u, y)=z(1+u)(1+\bar{u})(\tilde{L}(u, y)-\widetilde{L}(0, y))
$$

with initial condition $\tilde{L}(u, 0)=(1+u) e^{-z u}$.

- Key observation: the term $(1+u)(1+\bar{u})$ is symmetric in u and \bar{u}. Hence

$$
\frac{\partial \widetilde{L}}{\partial y}(\bar{u}, y)=z(1+u)(1+\bar{u})(\widetilde{L}(\bar{u}, y)-\widetilde{L}(0, y))
$$

- Take the difference: an homogeneous linear DE for $\tilde{L}(u, y)-\tilde{L}(\bar{u}, y)$!

$$
\begin{aligned}
& \frac{\partial}{\partial y}(\widetilde{L}(u, y)-\widetilde{L}(\bar{u}, y))=z(1+u)(1+\bar{u})(\widetilde{L}(u, y)-\widetilde{L}(\bar{u}, y)) \\
& \Rightarrow \widetilde{L}(u, y)-\widetilde{L}(\bar{u}, y)=(1+u) e^{y z(1+u)(1+\bar{u})}\left(e^{-z u}-\bar{u} e^{-z \bar{u}}\right)
\end{aligned}
$$

- Extraction of the non-negative powers of u (plus condition $\tilde{L}(-1, y)=0$):

$$
\tilde{L}(u, y)=(1+u)\left[u^{\geq}\right]\left(e^{y z(1+u)(1+\bar{u})}\left(e^{-z u}-\bar{u} e^{-z \bar{u}}\right)\right)
$$

where $[u \geq] S(u)$ denotes the part of $S(u)$ with non-negative powers of u.
3. Check that the series $L(x, y)$ thus obtained satisfies $L(x, 1)=L_{1}(x)$: simple! (when $m=1 \ldots$)

Solution in the labelled case (m general)

- The equation:

$$
\frac{\partial L}{\partial y}(x, y)=x t(L(x, 1) \cdot \Delta)^{(m)} L(x, y)
$$

(involves $L(1, y), L^{\prime}(1, y), \ldots, L^{(m-1)}(1, y)$)

- Set

$$
t=z e^{-m(m+1) z} \quad \text { and } \quad x=(1+u) e^{-m z u}
$$

- Then

$$
\frac{L(x, 1)}{x-1}=(1+\bar{u}) e^{(m+1) z+z u}
$$

+ a horrible expression for $L(x, y)$.

The action of \mathfrak{S}_{n} on Tamari intervals

- The equation:

$$
\frac{\partial F}{\partial y}(x, y)=\sum_{k \geq 1} \frac{p_{k}}{k}\left(t x(F(x, 1) \Delta)^{(m)}\right)^{(k)} F(x, y)
$$

- Let

$$
L=\sum_{k \geq 1} \frac{p_{k}}{k}\binom{(m+1) k}{k} z^{k}, \quad K(u)=\sum_{k \geq 1} \frac{p_{k}}{k} z^{k} \sum_{i=1}^{k}\binom{(m+1) k}{k-i} u^{i}
$$

and set

$$
t=z e^{-m L} \quad \text { and } \quad x=(1+u) e^{-m K(u)}
$$

- Then

$$
\frac{F(x, 1)}{x-1}=(1+\bar{u}) e^{K(u)+L}
$$

with $\bar{u}=1 / u$.

+ a horrible expression for $F(t, p ; x, y)$.

III. Motivations: a (conjectured) link with diagonal coinvariant spaces

The diagonal action of \mathfrak{S}_{n}

- Let $k, n \geq 1$, and consider k alphabets of size n :

a_{1},	a_{2},	\ldots,	a_{n}
b_{1},	b_{2},	\ldots,	b_{n}
c_{1},	c_{2},	\ldots,	c_{n}

- Then \mathfrak{S}_{n} acts on polynomials in these variables:

$$
\sigma P\left(a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, \ldots\right)=P\left(a_{\sigma(1)}, \ldots, a_{\sigma(n)}, b_{\sigma(1)}, \ldots, b_{\sigma(n)}, \ldots\right)
$$

- Let $\mathcal{I}_{n}^{(k)}$ be the ideal generated by polynomials (with non constant term) that are invariant under this action (for instance, $a_{1}+a_{2}, a_{1} b_{1}^{2}+a_{2} b_{2}^{2}, \ldots$)
- Finally, let $\mathcal{R}_{n}^{(k)}$ be the quotient of $\mathbb{Q}\left[a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, \ldots\right]$ by $\mathcal{I}_{n}^{(k)}$.

Dimension of the quotient

- $k=1$, variables a_{1}, \ldots, a_{n} :

$$
\operatorname{dim} \mathcal{R}_{n}^{(1)}=n!
$$

the number of permutations of size n.
Basis: $\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}: 0 \leq i_{j}<j\right\}$

Dimension of the quotient

- $k=1$, variables a_{1}, \ldots, a_{n} :

$$
\operatorname{dim} \mathcal{R}_{n}^{(1)}=n!
$$

the number of permutations of size n.
Basis: $\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}: 0 \leq i_{j}<j\right\}$

- $k=2$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$:

$$
\operatorname{dim} \mathcal{R}_{n}^{(2)}=(n+1)^{n-1}
$$

the number of parking functions of size n [Haiman 02]

Dimension of the quotient

- $k=1$, variables a_{1}, \ldots, a_{n} :

$$
\operatorname{dim} \mathcal{R}_{n}^{(1)}=n!
$$

the number of permutations of size n.
Basis: $\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}: 0 \leq i_{j}<j\right\}$

- $k=2$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$:

$$
\operatorname{dim} \mathcal{R}_{n}^{(2)}=(n+1)^{n-1}
$$

the number of parking functions of size n [Haiman 02]

- $k=3$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}$:

$$
\operatorname{dim} \mathcal{R}_{n}^{(3)}=2^{n}(n+1)^{n-2}
$$

the number of 1-Tamari intervals of size n Conjecture [Haiman 94, Bergeron-Préville-Ratelle 10]

Dimension of the quotient

- $k=1$, variables a_{1}, \ldots, a_{n} :

$$
\operatorname{dim} \mathcal{R}_{n}^{(1)}=n!
$$

the number of permutations of size n.
Basis: $\left\{a_{1}^{i_{1}} \cdots a_{n}^{i_{n}}: 0 \leq i_{j}<j\right\}$

- $k=2$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$:

$$
\operatorname{dim} \mathcal{R}_{n}^{(2)}=(n+1)^{n-1}
$$

the number of parking functions of size n [Haiman 02]

- $k=3$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}$:

$$
\operatorname{dim} \mathcal{R}_{n}^{(3)}=2^{n}(n+1)^{n-2}
$$

the number of 1-Tamari intervals of size n
Conjecture [Haiman 94, Bergeron-Préville-Ratelle 10]

Representation of \mathfrak{S}_{n} on the quotient

- $k=1$, variables a_{1}, \ldots, a_{n} : regular representation of \mathfrak{S}_{n}
- $k=2$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}$: $\operatorname{action}^{(*)}$ of \mathfrak{S}_{n} on parking functions of size n [Haiman 02]
- $k=3$, variables $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n}, c_{1}, \ldots, c_{n}$: action ${ }^{(*)}$ of \mathfrak{S}_{n} on 1-Tamari intervals of size n Conjecture [Haiman 94, Bergeron-Préville-Ratelle 10]

(*) tensored by the signature

Some questions

- Prove the formulas without guessing
- Bijective proofs? Connections with certain maps?
- [unlabelled case] The joint distribution of the number of non-initial contacts of the lower path and the initial rise of the upper path is symmetric: why?

