T he number of labelled intervals

IN the m-Tamari lattices

Mireille Bousquet-Mélou, CNRS, LaBRI
Guillaume Chapuy, CNRS, LIAFA
Louis-Francois Préville-Ratelle, LACIM, UQAM, Montréal

http://www.labri.fr/~bousquet



Ballot paths

An m-ballot path of size n:
— starts at (0,0),
— ends at (mn,n),

— never goes below the line {x = my}.

Examples: m=1



m = 1: The (usual) Tamari lattice 7,

Covering relation:

[Huang-Tamari 72]
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The m-Tamari lattice %(m)

Covering relation:

[Bergeron 10]

Proposition: Defines a lattice
[mbm—Fusy—Préville-Ratelle 11]



Last vear’s intervals

Proposition: Let m > 1 and n > 1. The number of intervals in the Tamari
lattice 771(7”) is

m—+ 1 <n(m—|—1)2—|—m)
n(mn + 1) n—1

e Map-like numbers!

e When m = 1: proved by [Chapoton 06]
2 4dn + 1
n(n+ 1) ( )
This is also the number of 3-connected planar triangulations on n + 3 vertices
[Tutte 62] = Bijection found by [Bernardi & Bonichon 09]

n—1

e Proved in [mbm—Fusy—Préville-Ratelle 11] for a generic m... but no bijection
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Labelled Tamari intervals

The up steps of the upper path are labelled from 1 to n, in such a way the
labels increase along each ascent.

Proposition: Let m > 1 and n > 1. The number of labelled intervals in the
Tamari lattice 7.\ is

M) = (m 4 1)"(mn + 1)"2

e For m =1,
(1) _2n(n_|_1)n 2

Since there are (n + 1)”—1 Cayley trees with n 4+ 1 nodes, these are again
“map-like numbers’, that is, conjugacy classes of trees.



A refined result: the action of &,, on Tamari intervals

Permutations of &,, act on m-Tamari intervals of size n by permuting (and then
reordering) labels.

Example: ifo=23561 4,

Proposition: Let o € &, have cycle type A = (\1,...,Ay). The number of
labelled m-Tamari intervals of size n left unchanged under the action of o is

_ m -+ 1)\;
xn(@) = (mn+1)2 I (DN,
1<i<t g
e When o =id, i.e., A= (1,...,1), one recovers the total number of m-Tamari

intervals:
xm(id) = (mn 4+ 1)""2(m + 1)™



I. Functional equations



Generating functions

Let I = [P,Q] be an m-Tamari interval. A contact of I is a contact of the
lower path P with the line {z = my}.

The initial rise of I is the length of the first sequence of up steps of the upper
path Q.

We denote by U(m)(t;x,y) = U(x,y) the ordinary generating function of unla-
belled m-Tamari intervals, where ¢t counts the size, x the number of contacts
and y the initial rise.

Similarly, LU (¢t: ., y) = L(x,v) is the exponential generating function of labelled
m-Tamari intervals, counted according to the same parameters (exponential in
the variable t).



Functional equations

Proposition: For m > 1, the generating functions of unlabelled and labelled
m-~Tamari intervals satisfy:

Ule,y) = o + ayt (U 1) - 8)"™ U, y),
L) = @@ A Ly)
Y

with the initial condition L(x,0) = x.

Here, A is the divided difference operator
S(x) —S(1)
r—1 ’

and the power m means that the operators are applied m times.

AS(x) =




Proof: a recursive description of intervals (here m = 1)

Tamari interval

1-reduction
Pl 91 pl
U(z,y) =z + ty>; Uiy (@ +---+2) x  Uz,1)
zt—1
tey ) Ui(y)——

U(x,y) —U(x, 1)
rx—1

txy



Generating function for the action of G,

e Let p = (pq,po,...) be a list of indeterminates and

1]
I=[P,Q)], Iabelled| ! oceStab([l)

where py = [[;>1py;, c(P) is the number of contacts of P, and r-(Q) the number
of cycles of o contained in the first rise of Q.

e Then F(x,0) = x and

@ = X P (R @, 1)a)™)

Ay k>1

k
W B2y,



Generating function for the action of G,

e Let p = (pq,po,...) be a list of indeterminates and

1]
I=[P,Q], labelled '™ " oceStab([l)
where py = [[;>1py;, c(P) is the number of contacts of P, and r-(Q) the number

of cycles of o contained in the first rise of Q.

e Then F(x,0) = x and

a—F(x,y) = Z % (tx(F(m, 1)A)(m))

Ay k>1

k
W B2y,

e For (p1,p>,...) =(1,0,0,...), only the identity contributes and one recovers

OF m
5y (B0) = (te(F(z, 1)) ™) F(z,y).



II. Solution



Functional equations when m =1

Proposition: The generating functions of unlabelled and labelled 1-Tamari in-
tervals satisfy:

Uy) = = + zyU(a1). |

x—1
Py = oy K22 HLY)
0y xr—1

with the initial condition L(x,0) = =.



Solution in the unlabelled case (m = 1)

0. The equation:

Uz, y) = o+ aytU (e, 1) - 20—

(1)

1. Determine the series U(x,1) = Uq(x).

2. Solve (1) with U(x,1) replaced by Uj(x) (a linear equation in U(x,vy)).



Solution in the unlabelled case (m = 1)

0. The equation:

Uz, y) = o+ aytU (e, 1) - 20—

(1)

1. Determine the series U(xz,1) = U1(x). We have
Uy(z) — U1(1)
r—1
and this can be solved using the quadratic method [Brown 60s].

Ui(z) = = + xtU (=) -




Solution in the unlabelled case (m = 1)

0. The equation:

Uz, y) = o+ aytU (e, 1) - 20—

1. Determine the series U(xz,1) = U1(x). We have
Up(z) — U1(1)
r—1

and this can be solved using the quadratic method [Brown 60s].

Ui(z) = = + xtU (=) -

2. Solve (1) with U(z,1) replaced by Ui(x), that is,
(1 B xytUq ()

x_

~ zytUs (z)
x—1

This can be solved using the kernel method.

One remains in the world of algebraic series.



Solution in the unlabelled case (m general)

Proposition: Set

t = 2(1 —z)m2+2m, x = and y =

Then

yU M (5 2,y) (L4 u) (1 + zu)(1 4 0) (1 + 2v)
x — Y (u—v)(1 —zuv)(1 — 2)m+2

In particular, yU(m>(t;az,y) iS @ symmetric series in z and y... a combinatorial
mystery

[mbm—Fusy—Préville-Ratelle 11]



Solution in the labelled case (m = 1)

. The equation: L(z,0) =z and

5, (o) = wil(w, 1) - S0 (2)

. Guess the series L(x,1) = Lq1(x) (hard).
. Solve (2) with L(x,1) replaced by Lqi(x) (a linear equation in L(x,y))

. Check that the series L(x,y) thus obtained satisfies L(x,1) = L1(x).



Solution in the labelled case (m = 1)

0. The equation: L(x,0) = z and

P (x,y) = wtL(z,1) - 2
oy = atl(e, 1) 2 2)
1. Guess the series L(x,1) = L1(x) (hard). Write
t=1ze"2% and z=(14u)e (3)
and u =1/u. Then L(x,1) = Lq(x) with
Ly ()

— (1 + ,L—L>€22—|—zu

r—1



Solution in the labelled case (m = 1)

0. The equation: L(x,0) = z and

——(x,y) = xtL(x,1) - 2
5y (&) = atL(, 1) - = (2)

1. Guess the series L(x,1) = L1(x) (hard). Write
t=z2"2% and = (14 u)e * (3)

and u =1/u. Then L(x,1) = Lq(x) with

Ly(x) _ (1 4 7)e2et2u
r—1

2. Solve (2) with L(x,1) replaced by Lq(x).



Solution in the labelled case (m = 1)

0. The equation: L(x,0) = z and

—(x,y) = xtL(x,1) - 2
oy = atl(e, 1) 2 2)
1. Guess the series L(x,1) = L1(x) (hard). Write
t=z2"2% and = (14 u)e * (3)
and u =1/u. Then L(x,1) = Lq(x) with
Ly(x) _ (1 4 7)e2et2u
x— 1

2. Solve (2) with L(z,1) replaced by Li(z). Denoting L(z;u,y) = L(t; z,y)
after the change of variables (3), Eq.(2) reads

g—L(u,y) — z(]_ —+ u)(l —+ ’L_L) (E(u,y) — Z(an)) )
Yy

with initial condition L(u,0) = (1 + u)e %Y.



2. Solve
Y

with initial condition L(u,0) = (1 + u)e %Y.
e Key observation: the term (1 4+ u»)(1 4+ w) is symmetric in v and u. Hence

Z—L(ﬂ,y) = 2(14+u)(1 4+ u) (E(ﬁ,y) - E(O,y)) :
Y

e Take the difference: an homogeneous linear DE for L(u,y) — L(%,y)!

a% (L(w,y) — L(i,9)) = 2(1 +uw)(1 + 1) (L(u,y) — L(T,v)),

= L(u,y) — L(u,y) = (1 + u)eyz(l_l_u)(l_"a) (e_zu — ﬂe_za> :
e Extraction of the non-negative powers of u (plus condition L(—1,y) = 0):

z(u’y) = (14 ) [uz] <eyz(l+u)(1+ﬂ) (e—zu B ﬂe—zﬂ>)

where [u2]S(u) denotes the part of S(u) with non-negative powers of w.



3. Check that the series L(x,y) thus obtained satisfies L(x,1) = Lq(x): simple!
(when m =1...)



Solution in the labelled case (m general)

e [ he equation:

g_L(x, y) = ot (L(z, 1) - &)™ L(z,y)
Yy

(involves L(1,y), L'(1,v),...,L{m=1)(1 y))

e Set
t =ze MMtz gng = (1 4+ u)e” "4,
e [ hen
r—1

+ a horrible expression for L(x,y).



The action of G,, on Tamari intervals

e [ he equation:

OF k
O @) = 3 P (to(F (2, 1)) ) F(a,y).
oy E>1 k
o et
o« b (m+ 1)k g o Phg s ((mA Dy
L_kglz( k )27 K(u)_kglzz z;( k—1 )u,
and set
t=ze ™ and = (14 w)e MKW,
e Then
Fz,1) _ (1 4 7)eK@W+L
r—1
with u = 1/u.

+ a horrible expression for F(t,p;x,vy).



III. Motivations: a (conjectured) link with
diagonal coinvariant spaces



T he diagonal action of &,

o Let k,n > 1, and consider k alphabets of size n:

ai, a2, ..., Qan
b]_, b2, c ooy bn
c1, C2, ..., Cn

e Then G, acts on polynomials in these variables:

O'P(CL]_, . ,an,bl, .. .,bn, .. ) — P(aa(l), . . 7a0'(n)7b0(1)7 .. '7ba(n)7 .. )

o Let Lgk) be the ideal generated by polynomials (with non constant term) that
are invariant under this action (for instance, aj + a,a1b3 + asb3,...)

e Finally, let 727(1]“) be the quotient of Q[ay,...,an,b1,...,bn,...] by Lgk).



Dimension of the quotient

e k=1, variables a1,...,an:

dim R = nt,

the number of permutations of size n.
Basis: {a}'---alr:0<i; <j}
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dimRP) = (n+ 1)" 1,

the number of parking functions of size n [Haiman 02]

e k= 3, variables ay,...,an,b1,...,bn,c1,...,Cn:

dimR$Y = 2"(n 4 1)"2,

the number of 1-Tamari intervals of size n
Conjecture [Haiman 94, Bergeron—Préville-Ratelle 10]




Representation of G,, on the quotient

e k=1, variables aq,...,an: regular representation of &,

e k = 2, variables aqy,...,an,b1,...,bn: action(*) of &,, on
parking functions of size n [Haiman 02]

e k = 3, variables a1,...,an,b1,...,bn,c1,...,cCn: action(*) of
Sp on 1-Tamari intervals of size n
Conjecture [Haiman 94, Bergeron—Préville-Ratelle 10]

(*) tensored by the signature




Some questions
e Prove the formulas without guessing
e Bijective proofs? Connections with certain maps?

e [unlabelled case] The joint distribution of the number of non-initial contacts
of the lower path and the initial rise of the upper path is symmetric: why?



