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Ballot paths

An m-ballot path of size n:

– starts at (0,0),

– ends at (mn, n),

– never goes below the line {x = my}.

Examples: m = 1 m = 2



m = 1: The (usual) Tamari lattice Tn

Covering relation:
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The m-Tamari lattice T
(m)
n

Covering relation:

≺ab b

a

S S

[Bergeron 10]

Proposition: Defines a lattice

[mbm–Fusy–Préville-Ratelle 11]



Last year’s intervals

Proposition: Let m ≥ 1 and n ≥ 1. The number of intervals in the Tamari

lattice T
(m)
n is

m+1

n(mn+1)

(n(m+1)2 +m

n− 1

)

• Map-like numbers!

• When m = 1: proved by [Chapoton 06]

2

n(n+1)

(4n+1

n− 1

)

.

This is also the number of 3-connected planar triangulations on n+3 vertices

[Tutte 62] ⇒ Bijection found by [Bernardi & Bonichon 09]

• Proved in [mbm–Fusy–Préville-Ratelle 11] for a generic m... but no bijection



In 2012, Tamari intervals get labels



Labelled Tamari intervals

The up steps of the upper path are labelled from 1 to n, in such a way the

labels increase along each ascent.
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Proposition: Let m ≥ 1 and n ≥ 1. The number of labelled intervals in the

Tamari lattice T
(m)
n is

f
(m)
n = (m+1)n(mn+1)n−2

• For m = 1,

f
(1)
n = 2n(n+1)n−2

Since there are (n + 1)n−1 Cayley trees with n + 1 nodes, these are again

“map-like numbers”, that is, conjugacy classes of trees.



A refined result: the action of Sn on Tamari intervals

Permutations of Sn act on m-Tamari intervals of size n by permuting (and then

reordering) labels.

Example: if σ = 2 3 5 6 1 4,

1

2

3

4

5
6

2
5

6

4
3
1

Proposition: Let σ ∈ Sn have cycle type λ = (λ1, . . . , λℓ). The number of

labelled m-Tamari intervals of size n left unchanged under the action of σ is

χm(σ) = (mn+1)ℓ−2
∏

1≤i≤ℓ

((m+1)λi
λi

)

.

• When σ = id, i.e., λ = (1, . . . ,1), one recovers the total number of m-Tamari

intervals:

χm(id) = (mn+1)n−2(m+1)n.



I. Functional equations



Generating functions

Let I = [P,Q] be an m-Tamari interval. A contact of I is a contact of the

lower path P with the line {x = my}.

The initial rise of I is the length of the first sequence of up steps of the upper

path Q.

We denote by U(m)(t; x, y) ≡ U(x, y) the ordinary generating function of unla-

belled m-Tamari intervals, where t counts the size, x the number of contacts

and y the initial rise.

Similarly, L(m)(t; x, y) ≡ L(x, y) is the exponential generating function of labelled

m-Tamari intervals, counted according to the same parameters (exponential in

the variable t).



Functional equations

Proposition: For m ≥ 1, the generating functions of unlabelled and labelled

m-Tamari intervals satisfy:

U(x, y) = x + xyt (U(x,1) ·∆)(m)U(x, y),

∂L

∂y
(x, y) = xt (L(x,1) ·∆)(m)L(x, y),

with the initial condition L(x,0) = x.

Here, ∆ is the divided difference operator

∆S(x) =
S(x)− S(1)

x− 1
,

and the power m means that the operators are applied m times.



Proof: a recursive description of intervals (here m = 1)

p1 q1 p1

Tamari interval

1-reduction

U(x, y) = x + ty
∑

iUi(y)(x+ · · ·+ xi) × U(x,1)

txy
∑

i

Ui(y)
xi − 1

x− 1

txy
U(x, y)− U(x,1)

x− 1



Generating function for the action of Sn

• Let p = (p1, p2, . . .) be a list of indeterminates and

F (m)(t, p;x, y) =
∑

I=[P,Q], labelled

t|I|

|I|!
xc(P )

∑

σ∈Stab(I)

yrσ(Q)pλ(σ),

where pλ =
∏

i≥1 pλi, c(P) is the number of contacts of P , and rσ(Q) the number

of cycles of σ contained in the first rise of Q.

• Then F(x,0) = x and

∂F

∂y
(x, y) =

∑

k≥1

pk
k

(

tx(F(x,1)∆)(m)
)(k)

F(x, y).
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of cycles of σ contained in the first rise of Q.

• Then F(x,0) = x and

∂F

∂y
(x, y) =

∑

k≥1

pk
k

(

tx(F(x,1)∆)(m)
)(k)

F(x, y).

• For (p1, p2, . . .) = (1,0,0, . . .), only the identity contributes and one recovers

∂F

∂y
(x, y) =

(

tx(F(x, 1)∆)(m)
)

F(x, y).



II. Solution



Functional equations when m = 1

Proposition: The generating functions of unlabelled and labelled 1-Tamari in-

tervals satisfy:

U(x, y) = x + xytU(x,1) ·
U(x, y)− U(1, y)

x− 1
,

∂L

∂y
(x, y) = xtL(x,1) ·

L(x, y)− L(1, y)

x− 1
,

with the initial condition L(x,0) = x.



Solution in the unlabelled case (m = 1)

0. The equation:

U(x, y) = x+ xytU(x,1) ·
U(x, y)− U(1, y)

x− 1
(1)

1. Determine the series U(x,1) = U1(x).

2. Solve (1) with U(x,1) replaced by U1(x) (a linear equation in U(x, y)).
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Solution in the unlabelled case (m = 1)

0. The equation:

U(x, y) = x+ xytU(x,1) ·
U(x, y)− U(1, y)

x− 1
(1)

1. Determine the series U(x,1) = U1(x). We have

U1(x) = x+ xtU1(x) ·
U1(x)− U1(1)

x− 1

and this can be solved using the quadratic method [Brown 60s].

2. Solve (1) with U(x,1) replaced by U1(x), that is,
(

1−
xytU1(x)

x− 1

)

U(x, y) = x−
xytU1(x)

x− 1
· U(1, y).

This can be solved using the kernel method.

One remains in the world of algebraic series.



Solution in the unlabelled case (m general)

Proposition: Set

t = z(1− z)m
2+2m, x =

1+ u

(1 + zu)m+1
, and y =

1+ v

(1 + zv)m+1
.

Then

yU(m)(t;x, y)

x− y
=

(1+ u)(1 + zu)(1 + v)(1 + zv)

(u− v)(1− zuv)(1− z)m+2
.

In particular, yU(m)(t;x, y) is a symmetric series in x and y... a combinatorial

mystery

[mbm–Fusy–Préville-Ratelle 11]



Solution in the labelled case (m = 1)

0. The equation: L(x,0) = x and

∂L

∂y
(x, y) = xtL(x,1) ·

L(x, y)− L(1, y)

x− 1
. (2)

1. Guess the series L(x,1) ≡ L1(x) (hard).

2. Solve (2) with L(x,1) replaced by L1(x) (a linear equation in L(x, y))

3. Check that the series L(x, y) thus obtained satisfies L(x,1) = L1(x).
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= (1+ ū)e2z+zu



Solution in the labelled case (m = 1)

0. The equation: L(x,0) = x and

∂L

∂y
(x, y) = xtL(x,1) ·

L(x, y)− L(1, y)

x− 1
. (2)

1. Guess the series L(x,1) ≡ L1(x) (hard). Write

t = ze−2z and x = (1+ u)e−zu, (3)
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Solution in the labelled case (m = 1)

0. The equation: L(x,0) = x and

∂L

∂y
(x, y) = xtL(x,1) ·

L(x, y)− L(1, y)

x− 1
. (2)

1. Guess the series L(x,1) ≡ L1(x) (hard). Write

t = ze−2z and x = (1+ u)e−zu, (3)

and ū = 1/u. Then L(x,1) = L1(x) with

L1(x)

x− 1
= (1+ ū)e2z+zu

2. Solve (2) with L(x,1) replaced by L1(x). Denoting L̃(z;u, y) ≡ L(t; x, y)

after the change of variables (3), Eq.(2) reads

∂L̃

∂y
(u, y) = z(1 + u)(1 + ū)

(

L̃(u, y)− L̃(0, y)
)

,

with initial condition L̃(u,0) = (1+ u)e−zu.



2. Solve

∂L̃

∂y
(u, y) = z(1 + u)(1 + ū)

(

L̃(u, y)− L̃(0, y)
)

,

with initial condition L̃(u,0) = (1+ u)e−zu.

• Key observation: the term (1 + u)(1 + ū) is symmetric in u and ū. Hence

∂L̃

∂y
(ū, y) = z(1 + u)(1 + ū)

(

L̃(ū, y)− L̃(0, y)
)

.

• Take the difference: an homogeneous linear DE for L̃(u, y)− L̃(ū, y)!

∂

∂y

(

L̃(u, y)− L̃(ū, y)
)

= z(1 + u)(1 + ū)
(

L̃(u, y)− L̃(ū, y)
)

,

⇒ L̃(u, y)− L̃(ū, y) = (1 + u)eyz(1+u)(1+ū)
(

e−zu − ūe−zū
)

.

• Extraction of the non-negative powers of u (plus condition L̃(−1, y) = 0):

L̃(u, y) = (1+ u)[u≥]
(

eyz(1+u)(1+ū)
(

e−zu − ūe−zū
))

where [u≥]S(u) denotes the part of S(u) with non-negative powers of u.



3. Check that the series L(x, y) thus obtained satisfies L(x,1) = L1(x): simple!

(when m = 1...)



Solution in the labelled case (m general)

• The equation:

∂L

∂y
(x, y) = xt (L(x,1) ·∆)(m)L(x, y)

(involves L(1, y), L′(1, y), . . . , L(m−1)(1, y))

• Set

t = ze−m(m+1)z and x = (1+ u)e−mzu.

• Then

L(x,1)

x− 1
= (1+ ū)e(m+1)z+zu.

+ a horrible expression for L(x, y).



The action of Sn on Tamari intervals

• The equation:

∂F

∂y
(x, y) =

∑

k≥1

pk
k

(

tx(F(x,1)∆)(m)
)(k)

F(x, y).

• Let

L =
∑

k≥1

pk
k

((m+1)k

k

)

zk, K(u) =
∑

k≥1

pk
k
zk

k
∑

i=1

((m+1)k

k − i

)

ui,

and set

t = ze−mL and x = (1+ u)e−mK(u).

• Then

F(x,1)

x− 1
= (1+ ū)eK(u)+L

with ū = 1/u.

+ a horrible expression for F(t, p;x, y).



III. Motivations: a (conjectured) link with

diagonal coinvariant spaces



The diagonal action of Sn

• Let k, n ≥ 1, and consider k alphabets of size n:

a1, a2, . . . , an
b1, b2, . . . , bn
c1, c2, . . . , cn

. . .

• Then Sn acts on polynomials in these variables:

σP(a1, . . . , an, b1, . . . , bn, . . .) = P(aσ(1), . . . , aσ(n), bσ(1), . . . , bσ(n), . . .).

• Let I
(k)
n be the ideal generated by polynomials (with non constant term) that

are invariant under this action (for instance, a1 + a2, a1b
2
1 + a2b

2
2, . . .)

• Finally, let R
(k)
n be the quotient of Q[a1, . . . , an, b1, . . . , bn, . . .] by I

(k)
n .



Dimension of the quotient

• k = 1, variables a1, . . . , an:

dimR
(1)
n = n!,

the number of permutations of size n.

Basis: {a
i1
1 · · · ainn : 0 ≤ ij < j}
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dimR
(2)
n = (n+1)n−1,

the number of parking functions of size n [Haiman 02]
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Conjecture [Haiman 94, Bergeron–Préville-Ratelle 10]
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dimR
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Representation of Sn on the quotient

• k = 1, variables a1, . . . , an: regular representation of Sn
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• k = 2, variables a1, . . . , an, b1, . . . , bn: action(∗) of Sn on

parking functions of size n [Haiman 02]

• k = 3, variables a1, . . . , an, b1, . . . , bn, c1, . . . , cn: action(∗) of

Sn on 1-Tamari intervals of size n

Conjecture [Haiman 94, Bergeron–Préville-Ratelle 10]

(*) tensored by the signature



Some questions

• Prove the formulas without guessing

• Bijective proofs? Connections with certain maps?

• [unlabelled case] The joint distribution of the number of non-initial contacts

of the lower path and the initial rise of the upper path is symmetric: why?


