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Self-avoiding walks (SAWs)

A walk

with n = 47 steps

∆

End-to-end distance:

∆ =

√

32 +42 = 5

A self-avoiding walk

with n = 40 steps

D

End-to-end distance:

D = 4



Some natural questions

General walks

• Number:

an = 4n

• End-to-end distance:

E(∆n) ∼ (κ)n1/2

• Limiting object: The (uniform) ran-

dom walk converges to the Brownian

motion
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Some natural (but hard) questions

General walks

• Number:

an = 4n

• End-to-end distance:

E(∆n) ∼ (κ)n1/2

• Limiting object: The (uniform) ran-

dom walk converges to the Brownian

motion
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Self-avoiding walks

• Number:

cn = ?

• End-to-end distance:

E(Dn) ∼ ?

• Limit of the random uniform SAW?

c© N. Clisby



The number of n-step SAWs: predictions vs. theorems

• Predicted: The number of n-step SAWs behaves asymptotically as:

cn ∼ µn nγ

where γ = 11/32 for all 2D lattices (square, triangular, honeycomb)

[Nienhuis 82]



The probabilistic meaning of the exponent γ

• Predicted: The number of n-step SAWs behaves asymptotically as:

cn ∼ µn nγ

⇒ The probability that two n-step SAWs starting from the same point do not

intersect is
c2n
c2n

∼ n−γ
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• Known: there exists a constant µ, called growth constant, such that
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1/n
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and a constant α such that
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√
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The number of n-step SAWs: predictions vs. theorems

• Predicted: The number of n-step SAWs behaves asymptotically as:

cn ∼ µn nγ

where γ = 11/32 for all 2D lattices (square, triangular, honeycomb)

[Nienhuis 82]

• Known: there exists a constant µ, called growth constant, such that

c
1/n
n → µ

and a constant α such that

µn ≤ cn ≤ µnα
√
n

[Hammersley 57], [Hammersley-Welsh 62]

• cn is only known up to n = 71 [Jensen 04]



The end-to-end distance: predictions vs. theorems

• Predicted: The end-to-end distance is on average

E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)

[Flory 49, Nienhuis 82]
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The end-to-end distance: predictions vs. theorems

• Predicted: The end-to-end distance is on average

E(Dn) ∼ n3/4 (vs. n1/2 for a simple random walk)

[Flory 49, Nienhuis 82]
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• Known [Madras 2012], [Duminil-Copin & Hammond 2012]:

n1/4 ≤ E(Dn) ≪ n1



The scaling limit: predictions vs. theorems

• Predicted: The limit of SAW is SLE8/3, the Schramm-Loewner evolution

process with parameter 8/3.

• Known: true if the limit of SAW exists and is conformally invariant

[Lawler, Schramm, Werner 02]

Confirms the predictions

cn ∼ µnn11/32 and E(Dn) ∼ n3/4



Outline

I. Self-avoiding walks (SAWs): Generalities, predictions and results

II. The growth constant on honeycomb lattice is µ =
√

2+
√
2

[Duminil-Copin & Smirnov 10]

What else?



Outline

I. Self-avoiding walks (SAWs): Generalities, predictions and results

II. The growth constant on honeycomb lattice is µ =
√

2+
√
2

[Duminil-Copin & Smirnov 10]

What else?

III. The 1+
√
2-conjecture: SAWs in a half-plane interacting with the boundary

(honeycomb lattice) [Beaton, MBM, Duminil-Copin, de Gier & Guttmann 12]

IV. The ???-conjecture: The mysterious square lattice

(d’après [Cardy & Ikhlef 09])



II. The growth constant

on the honeycomb lattice:

The µ =
√

2+
√
2 ex-conjecture

[Duminil-Copin & Smirnov 10]



The growth constant

Clearly,

cm+n ≤ cm cn

⇒ limn c
1/n
n exists and

µ := lim
n

c
1/n
n = inf

n
c
1/n
n

Theorem [Duminil-Copin & Smirnov 10]: the growth constant is

µ =

√

2 +
√
2

(conjectured by Nienhuis in 1982)



Growth constants and generating functions

• Let C(x) be the length generating function of SAWs:

C(x) =
∑

n≥0

cnx
n.

• The radius of convergence of C(x) is

ρ = 1/µ,

where

µ = lim
n

c
1/n
n

is the growth constant.

• Notation: x∗ := 1/
√

2 +
√
2. We want to prove that ρ = x∗.



Many families of SAWs have the same radius ρ

For instance...

Arches Bridges

[Hammersley 61]

To prove: A(x) (or B(x)) has radius x∗ := 1/
√

2+
√
2.



1. Duminil-Copin and Smirnov’s “global” identity

Consider the following finite domain Dh,ℓ.

Eh,ℓ

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches
h

Let Ah,ℓ(x) (resp. Bh,ℓ(x), Eh,ℓ(x)) be the generating function of SAWs that

start from the origin and end on the bottom (resp. top, right/left) border of

the domain Dh,ℓ. These series are polynomials in x.



1. Duminil-Copin and Smirnov’s “global” identity

At x∗ = 1/
√

2 +
√
2 , and for all h and ℓ,

αAh,ℓ(x
∗) +Bh,ℓ(x

∗) + εEh,ℓ(x
∗) = 1

with α =

√
2−

√
2

2 and ε = 1√
2
.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches



Example: the domain D1,1

A(x) = 2x3

B(x) = 2x2 +2x4

E(x) = 2x4

=⇒ αA(x) +B(x) + εE(x) = 2x2 +2αx3 +2x4(1 + ε)

and this polynomial equals 1 at x∗ = 1/
√

2+
√
2 ≃ 0.54
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(with α =

√
2−

√
2

2 and ε = 1√
2
).



1. Duminil-Copin and Smirnov’s “global” identity

At x∗ = 1/
√

2 +
√
2 , and for all h and ℓ,

αAh,ℓ(x
∗) +Bh,ℓ(x

∗) + εEh,ℓ(x
∗) = 1

with α =

√
2−

√
2

2 and ε = 1√
2
.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches



2. A lower bound on ρ

αAh,ℓ(x
∗) +Bh,ℓ(x

∗) + εEh,ℓ(x
∗) = 1

As h and ℓ tend to infinity, Ah,ℓ(x
∗) counts more and more arches, but remains

bounded (by 1/α): thus it converges, and its limit is the GF A(x) of all arches,

taken at x = x∗.

This series is known to have radius ρ. Since it converges at x∗, we have x∗ ≤ ρ.

ℓ
Ah,ℓ

h



3. An upper bound on ρ

αAh,ℓ(x
∗) +Bh,ℓ(x

∗) + εEh,ℓ(x
∗) = 1

...

ρ ≤ x∗: Not much harder. Thus:

ρ = x∗ = 1/
√

2 +
√
2



4. Where does the global identity come from?

√

2−
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗) +

1√
2

Eh,ℓ(x
∗) = 1

From a local identity that is re-summed over all vertices of the domain.



A local identity

Let D ≡ Dh,ℓ be our domain, a the origin of the walks, and p a mid-edge in the

domain. Let

F(p) ≡ F(x, θ; p) =
∑

ω:a p
x|ω|eiθW(ω),

where |ω| is the length of ω, and W (ω) its winding number:

W (ω) = left turns − right turns.

Example:

ℓ

h

a

p W (ω) = 6− 4 = 2



A local identity

Let

F(p) ≡ F(x, θ; p) =
∑

ω:a p in D

x|ω|eiθW(ω),

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice,

then, for x = x∗ and θ = −5π/24,

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0.

Rem: (p− v) is here a complex number!

First Kirchhoff law

v

r

p

q

a



A local identity

Proof: Group walks that only differ in the neighborhood of v:

• Walks that visit all mid-edges:

• Walks that only visit one or two mid-edges:

The contribution of all walks in a group is zero.



A local identity

Proof: Group walks that only differ in the neighborhood of v:

• Walks that visit all mid-edges:

e−iπ/3e−4iθ + ie4iθ = 0

• Walks that only visit one or two mid-edges:

e−2iπ/3 + e−iπ/3e−iθx+ ieiθx = 0

The contribution of all walks in a group is zero.



Proof of the global identity

Sum the local identity

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0

over all vertices v of the domain Dh,ℓ.

• The inner mid-edges do not contribute.

• The winding number of walks ending on the

boundary is known.

• The domain has a right-left symmetry.

Bh,ℓ

ℓ
Ah,ℓ

h



Proof of the global identity

Sum the local identity

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) = 0

over all vertices v of the domain Dh,ℓ.

• The inner mid-edges do not contribute.

• The winding number of walks ending on the

boundary is known.

• The domain has a right-left symmetry.

Bh,ℓ

ℓ
Ah,ℓ

h

This gives:
√

2−
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗) +

1√
2

Eh,ℓ(x
∗) = 1.



The
√

2+
√
2-conjecture is proved...

What else?



III. The 1+
√
2-conjecture:

SAWs on the honeycomb lattice

interacting with a boundary

Conjecture of [Batchelor & Yung, 95]

joint work with

Nick Beaton, Hugo Duminil-Copin, Jan de Gier and

Tony Guttmann



Walks in a half-plane interacting with a “surface”

• Enumeration by contacts of n-step walks:

c̄n(y) =
∑

|ω|=n

ycontacts(ω)

y3

In statistical physics, the parameter y is called “fugacity”



Walks in a half-plane interacting with a “surface”

• Enumeration by contacts of n-step walks:

c̄n(y) =
∑

|ω|=n

ycontacts(ω)

• Generating function

C̄(x, y) =
∑

n≥0

c̄n(y)x
n

y3

In statistical physics, the parameter y is called “fugacity”



Walks in a half-plane interacting with a “surface”

• Enumeration by contacts of n-step walks:

c̄n(y) =
∑

|ω|=n

ycontacts(ω)

• Generating function

C̄(x, y) =
∑

n≥0

c̄n(y)x
n

• Radius and growth constant (y > 0 fixed):

ρ(y) =
1

µ(y)
= lim

n
c̄n(y)

−1/n

y3

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called “fugacity”



The critical fugacity yc

• Radius and growth constant: for y > 0,

ρ(y) =
1

µ(y)
= lim

n
c̄n(y)

−1/n

Proposition: ρ(y) is a continuous, weakly decreasing function of y ∈ (0,∞).

There exists yc > 1 such that

ρ(y)

{

= 1/µ if y ≤ yc,
< 1/µ if y > yc,

where µ is the growth constant of (unrestricted) SAWs.

[Whittington 75, Hammersley, Torrie and Whittington 82]

yc y

1/µ

10

ρ(y)



The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

Pn(ω) =
ycontacts(ω)

c̄n(y)
.

Then for y < yc, the walk escapes from the surface. For y > yc, a positive

fraction of its vertices lie on the surface.

c© A. Rechnitzer



The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

Pn(ω) =
ycontacts(ω)

c̄n(y)
.

Then for y < yc, the walk escapes from the surface. For y > yc, a positive

fraction of its vertices lie on the surface.

c© A. Rechnitzer

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

yc = 1+
√
2

(conjectured by Batchelor and Yung in 1995)



0. Duminil-Copin and Smirnov’s “global” identity:

refinement with lower contacts

For x∗ = 1/
√

2+
√
2, and for any y,

α

√
2− y

y(
√
2− 1)

A−
h,ℓ(x

∗, y) + αA+
h,ℓ(x

∗, y) +Bh,ℓ(x
∗, y) + εEh,ℓ(x

∗, y) = y

with α =

√
2−

√
2

2 , ε = 1√
2
.

Eh,ℓ

h

Bh,ℓ

ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches

A+
h,ℓA−

h,ℓ



0. Duminil-Copin and Smirnov’s “global” identity:

refinement with lower contacts

For x∗ = 1/
√

2+
√
2, and for any y,

α

√
2− y

y(
√
2− 1)

A−
h,ℓ(x

∗, y) + αA+
h,ℓ(x

∗, y) +Bh,ℓ(x
∗, y) + εEh,ℓ(x

∗, y) = y

with α =

√
2−

√
2

2 , ε = 1√
2
. So what?

Eh,ℓ

h

Bh,ℓ

ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches

A+
h,ℓA−

h,ℓ



1. Duminil-Copin and Smirnov’s “global” identity:

refinement with upper contacts

For x∗ = 1/
√

2+
√
2, and for any y,

αAh,ℓ(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y) + εEh,ℓ(x
∗, y) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ

Eh,ℓ ...

Bh,ℓ bridges

Ah,ℓ arches



2. An alternative description of the critical fugacity yc

Proposition: Let Ah(x, y) be the

(rational1) generating function of arches

in a strip of height h, counted by length

and upper contacts.

Let yh be the radius of convergence2 of

Ah(x
∗, y).

Then, as h → ∞,

yh ց yc.
Ah

h

(uses [van Rensburg, Orlandini and Whittington 06])

⊳ ⊳ ⋄ ⊲ ⊲

1. [Rechnitzer 03]

2. For all k, the coefficient of yk in Ah(x, y) is finite at x∗ = 1/µ



The complete picture

For y > 0 fixed, let ρh(y) be the radius of Ah(x, y).

0

ρ

yc
y

ρh+1

ρh

yhyh+1

x∗

ρh(yh) = x∗

yh ց yc



3. A lower bound on yc

• For x∗ = 1/
√

2 +
√
2, and for any y,

αAh,ℓ(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y) + εEh,ℓ(x
∗, y) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

• Set y = y∗.



3. A lower bound on yc

• For x∗ = 1/
√

2 +
√
2,

αAh,ℓ(x
∗, y∗) + 0 + εEh,ℓ(x

∗, y∗) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

• Set y = y∗.



3. A lower bound on yc

• For x∗ = 1/
√

2 +
√
2,

αAh,ℓ(x
∗, y∗) + 0 + εEh,ℓ(x

∗, y∗) = 1

with α =

√
2−

√
2

2 , ε = 1√
2

and y∗ = 1+
√
2.

• Set y = y∗. For h fixed, Ah,ℓ(x
∗, y∗) increases with ℓ but remains bounded:

its limit is Ah(x
∗, y∗) (arches in an h-strip), and is finite.

Since the radius of Ah(x
∗, y) is yh,

y∗ ≤ yh,

and since yh decreases to yc,

y∗ ≤ yc.

Eh,ℓ

h

Bh,ℓ

ℓ
Ah,ℓ



4. An upper bound on yc

αAh,ℓ(x
∗, y) +

y∗ − y

y(y∗ − 1)
Bh,ℓ(x

∗, y) + εEh,ℓ(x
∗, y) = 1

Harder! Uses a third ingredient:

Proposition: The length generating function Bh(x,1) of bridges of height h,

taken at x∗ = 1/µ, satisfies

Bh(x
∗,1) → 0 as h → ∞.

Inspired by [Duminil-Copin & Hammond 12], “The self-avoiding walk is sub-

ballistic”

Conjecture (from SLE):

Bh(x
∗,1) ≃ h−1/4



More about this?

The

√

2+
√
2

1+
√
2−

√
2+

√
2

conjecture

(due to [Batchelor, Bennett-Wood and Owczarek 98], proved by Nick Beaton)

• A similar result for SAWs confined to the half-plane {x ≥ 0} (rather than

{y ≥ 0}).

See Nick’s poster on Tuesday!

y3



IV. The mysterious square lattice

A µ =

√
182+26

√
30261

26 conjecture?

[Jensen & Guttmann 99], [Clisby & Jensen 12]



Looking for a local identity

Let

F(p) ≡ F(x, t, θ; p) =
∑

ω:a p in D

x|ω|ts(ω)eiθW(ω),

where |ω| is the length of ω, s(ω) the number of vertices where ω goes straight

and W (ω) the winding number:

W (ω) = left turns − right turns.

Could it be that

(p− v)F(p) + (q − v)F(q) + (r − v)F(r) + (s− v)F(s) = 0

for an appropriate choice of x, t and θ?

a

p
q

r v
s



Group walks that only differ in the neighborhood of v

• Walks that visit three mid-edges (type 1):

• Walks that visit three mid-edges (type 2):

• Walks that only visit one or two mid-edges:

The contribution of all walks in a group should be zero.



Group walks that only differ in the neighborhood of v

• Walks that visit three mid-edges (type 1):

−ie−3iθ + ie3iθ = 0

• Walks that visit three mid-edges (type 2):

−ite−3iθ + e2iθ = 0

• Walks that only visit one or two mid-edges:

−1+ ixeiθ − ixe−iθ + tx = 0



Group walks that only differ in the neighborhood of v

• Walks that visit three mid-edges (type 1):

−ie−3iθ + ie3iθ = 0

• Walks that visit three mid-edges (type 2):

−ite−3iθ + e2iθ = 0

No solution with t real



A generalization of self-avoiding walks: osculating walks

F(p) ≡ F(x, t, y, θ; p) =
∑

ω:a p in D

x|ω|ts(ω)yc(ω)eiθW(ω),

where |ω| is the length of ω, s(ω) the number of vertices where ω goes straight,

c(ω) the number of contacts, and W (ω) the winding number.

[Cardy-Ikhlef 09]



Group walks that only differ in the neighborhood of v

• Walks that visit three or four mid-edges (type 1):

−ie−3iθ+ie3iθ+xye−4iθ+xye4iθ = 0

• Walks that visit three or four mid-edges (type 2):

−ite−3iθ + e2iθ + ixyeiθ = 0

• Walks that only visit one or two mid-edges:

−1+ ixeiθ − ixe−iθ + tx = 0



Four (real and non-negative) solutions

θ t
xy

x−1

−π
2 0 1 2

π
16

√
2 cos π

16

√
2 sin 3π

16

√
2 cos π

16 − 2 sin π
16

−5π
16

√
2 sin 3π

16

√
2 sin π

16

√
2 sin 3π

16 +2cos 3π
16

−7π
16

√
2 sin π

16

√
2cos 3π

16

√
2 sin π

16 +2cos π
16

Note:

cos π
16 =

√

2+
√

2+
√
2

2 and sin π
16 =

√

2−
√

2+
√
2

2



Four (real and non-negative) solutions

θ t
xy

x−1

−π
2 0 1 2

π
16

√
2 cos π

16

√
2 sin 3π

16

√
2 cos π

16 − 2 sin π
16

−5π
16

√
2 sin 3π

16

√
2 sin π

16

√
2 sin 3π

16 +2cos 3π
16 (3)

−7π
16

√
2 sin π

16

√
2 cos 3π

16

√
2 sin π

16 +2cos π
16

• Four local identities ⇒ proof for (weighted) growth constants?



Four (real and non-negative) solutions

θ t
xy

x−1

−π
2 0 1 2

π
16

√
2 cos π

16

√
2 sin 3π

16

√
2 cos π

16 − 2 sin π
16

−5π
16

√
2 sin 3π

16

√
2 sin π

16

√
2 sin 3π

16 +2cos 3π
16 (3)

−7π
16

√
2 sin π

16

√
2 cos 3π

16

√
2 sin π

16 +2cos π
16

• Four local identities ⇒ proof for (weighted) growth constants?

⇒ cf. [Glazman 13] for a proof in Case (3), and an asymmetric model wich

interpolates between (3) and the honeycomb lattice.



Some questions

• Another global identity: for x∗ = 1/
√

2 +
√
2,

√

2−
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗) +

1√
2

Eh,ℓ(x
∗) = 1



Some questions

• Another global identity: for x∗ = 1/
√

2−
√
2,

−

√

2+
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗)− 1√

2
Eh,ℓ(x

∗) = 1

This value of x is supposed to correspond to a dense phase of SAWs. Meaning,

and proof?



Some questions

• Another global identity: for x∗ = 1/
√

2−
√
2,

−

√

2+
√
2

2
Ah,ℓ(x

∗) +Bh,ℓ(x
∗)− 1√

2
Eh,ℓ(x

∗) = 1

This value of x is supposed to correspond to a dense phase of SAWs. Meaning,

and proof?

• A global identity for the O(n) loop model [Smirnov 10] ⇒ critical point?
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In 5 dimensions and above: Brownian behaviour

• The critical exponents are those of the simple random walk:

cn ∼ µnn0, E(Dn) ∼ n1/2.

• The limit exists and is the d-dimensional Brownian motion

[Hara-Slade 92]


