Two-dimensional

self-avoiding walks

Mireille Bousquet-Mélou
CNRS, LaBRI, Bordeaux, France

Self-avoiding walks (SAWs)

A walk
with $n=47$ steps

Self-avoiding walks (SAWs)

A walk
with $n=47$ steps

A self-avoiding walk with $n=40$ steps

Self-avoiding walks (SAWs)

A walk
with $n=47$ steps

End-to-end distance:

$$
\Delta=\sqrt{3^{2}+4^{2}}=5
$$

> A self-avoiding walk with $n=40$ steps

End-to-end distance:

$$
D=4
$$

Some natural questions

General walks

- Number:

$$
a_{n}=4^{n}
$$

- End-to-end distance:

$$
\mathbb{E}\left(\Delta_{n}\right) \sim(\kappa) n^{1 / 2}
$$

- Limiting object: The (uniform) random walk converges to the Brownian motion

Some natural (but hard) questions

General walks

- Number:

$$
a_{n}=4^{n}
$$

- End-to-end distance:

$$
\mathbb{E}\left(\Delta_{n}\right) \sim(\kappa) n^{1 / 2}
$$

- Limiting object: The (uniform) random walk converges to the Brownian motion

Self-avoiding walks

- Number:

$$
c_{n}=?
$$

- End-to-end distance:

$$
\mathbb{E}\left(D_{n}\right) \sim ?
$$

- Limit of the random uniform SAW?

The number of n-step SAWs: predictions vs. theorems

- Predicted: The number of n-step SAWs behaves asymptotically as:

$$
c_{n} \sim \mu^{n} n^{\gamma}
$$

where $\gamma=11 / 32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

The probabilistic meaning of the exponent γ

- Predicted: The number of n-step SAWs behaves asymptotically as:

$$
c_{n} \sim \mu^{n} n^{\gamma}
$$

\Rightarrow The probability that two n-step SAWs starting from the same point do not intersect is

$$
\frac{c_{2 n}}{c_{n}^{2}} \sim n^{-\gamma}
$$

The number of n-step SAWs: predictions vs. theorems

- Predicted: The number of n-step SAWs behaves asymptotically as:

$$
c_{n} \sim \mu^{n} n^{\gamma}
$$

where $\gamma=11 / 32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

The number of n-step SAWs: predictions vs. theorems

- Predicted: The number of n-step SAWs behaves asymptotically as:

$$
c_{n} \sim \mu^{n} n^{\gamma}
$$

where $\gamma=11 / 32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

- Known: there exists a constant μ, called growth constant, such that

$$
c_{n}^{1 / n} \rightarrow \mu
$$

and a constant α such that

$$
\mu^{n} \leq c_{n} \leq \mu^{n} \alpha^{\sqrt{n}}
$$

[Hammersley 57], [Hammersley-Welsh 62]

The number of n-step SAWs: predictions vs. theorems

- Predicted: The number of n-step SAWs behaves asymptotically as:

$$
c_{n} \sim \mu^{n} n^{\gamma}
$$

where $\gamma=11 / 32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

- Known: there exists a constant μ, called growth constant, such that

$$
c_{n}^{1 / n} \rightarrow \mu
$$

and a constant α such that

$$
\mu^{n} \leq c_{n} \leq \mu^{n} \alpha^{\sqrt{n}}
$$

[Hammersley 57], [Hammersley-Welsh 62]

- c_{n} is only known up to $n=71$ [Jensen 04]

The end-to-end distance: predictions vs. theorems

- Predicted: The end-to-end distance is on average

$$
\mathbb{E}\left(D_{n}\right) \sim n^{3 / 4} \quad\left(\text { vs. } n^{1 / 2} \text { for a simple random walk }\right)
$$

[Flory 49, Nienhuis 82]

The end-to-end distance: predictions vs. theorems

- Predicted: The end-to-end distance is on average

$$
\mathbb{E}\left(D_{n}\right) \sim n^{3 / 4} \quad\left(\text { vs. } n^{1 / 2} \text { for a simple random walk }\right)
$$

[Flory 49, Nienhuis 82]

- Known [Madras 2012], [Duminil-Copin \& Hammond 2012]:

$$
n^{1 / 4} \leq \mathbb{E}\left(D_{n}\right) \ll n^{1}
$$

The scaling limit: predictions vs. theorems

- Predicted: The limit of SAW is $\operatorname{SLE}_{8 / 3}$, the Schramm-Loewner evolution process with parameter 8/3.
- Known: true if the limit of SAW exists and is conformally invariant [Lawler, Schramm, Werner 02]

Confirms the predictions

$$
c_{n} \sim \mu^{n} n^{11 / 32} \quad \text { and } \quad \mathbb{E}\left(D_{n}\right) \sim n^{3 / 4}
$$

Outline

I. Self-avoiding walks (SAWs): Generalities, predictions and results
II. The growth constant on honeycomb lattice is $\mu=\sqrt{2+\sqrt{2}}$
[Duminil-Copin \& Smirnov 10]

What else?

Outline

I. Self-avoiding walks (SAWs): Generalities, predictions and results
II. The growth constant on honeycomb lattice is $\mu=\sqrt{2+\sqrt{2}}$
[Duminil-Copin \& Smirnov 10]

What else?

III. The $1+\sqrt{2}$-conjecture: SAWs in a half-plane interacting with the boundary (honeycomb lattice) [Beaton, MBM, Duminil-Copin, de Gier \& Guttmann 12]
IV. The ???-conjecture: The mysterious square lattice (d'après [Cardy \& Ikhlef 09])

II. The growth constant

on the honeycomb lattice:

The $\mu=\sqrt{2+\sqrt{2}}$ ex-conjecture

[Duminil-Copin \& Smirnov 10]

The growth constant

Clearly,

$$
c_{m+n} \leq c_{m} c_{n}
$$

$\Rightarrow \lim _{n} c_{n}^{1 / n}$ exists and

$$
\mu:=\lim _{n} c_{n}^{1 / n}=\inf _{n} c_{n}^{1 / n}
$$

Theorem [Duminil-Copin \& Smirnov 10]: the growth constant is

$$
\mu=\sqrt{2+\sqrt{2}}
$$

(conjectured by Nienhuis in 1982)

Growth constants and generating functions

- Let $C(x)$ be the length generating function of SAWs:

$$
C(x)=\sum_{n \geq 0} c_{n} x^{n}
$$

- The radius of convergence of $C(x)$ is

$$
\rho=1 / \mu
$$

where

$$
\mu=\lim _{n} c_{n}^{1 / n}
$$

is the growth constant.

- Notation: $x^{*}:=1 / \sqrt{2+\sqrt{2}}$. We want to prove that $\rho=x^{*}$.

Many families of SAWs have the same radius ρ

For instance...

Bridges

[Hammersley 61]

To prove: $A(x)($ or $B(x))$ has radius $x^{*}:=1 / \sqrt{2+\sqrt{2}}$.

1. Duminil-Copin and Smirnov's "global" identity

Consider the following finite domain $D_{h, \ell}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

Let $A_{h, \ell}(x)$ (resp. $B_{h, \ell}(x), E_{h, \ell}(x)$) be the generating function of SAWs that start from the origin and end on the bottom (resp. top, right/left) border of the domain $D_{h, \ell}$. These series are polynomials in x.

1. Duminil-Copin and Smirnov's "global" identity

At $x^{*}=1 / \sqrt{2+\sqrt{2}}$, and for all h and ℓ,

$$
\alpha A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\varepsilon E_{h, \ell}\left(x^{*}\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon=\frac{1}{\sqrt{2}}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

Example: the domain $D_{1,1}$

$$
\begin{gathered}
A(x)=2 x^{3} \\
B(x)=2 x^{2}+2 x^{4}
\end{gathered}
$$

$$
E(x)=2 x^{4}
$$

$$
\Longrightarrow \alpha A(x)+B(x)+\varepsilon E(x)=2 x^{2}+2 \alpha x^{3}+2 x^{4}(1+\varepsilon)
$$

and this polynomial equals 1 at $x^{*}=1 / \sqrt{2+\sqrt{2}} \simeq 0.54$

(with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon=\frac{1}{\sqrt{2}}$).

1. Duminil-Copin and Smirnov's "global" identity

At $x^{*}=1 / \sqrt{2+\sqrt{2}}$, and for all h and ℓ,

$$
\alpha A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\varepsilon E_{h, \ell}\left(x^{*}\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon=\frac{1}{\sqrt{2}}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

2. A lower bound on ρ

$$
\alpha A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\varepsilon E_{h, \ell}\left(x^{*}\right)=1
$$

As h and ℓ tend to infinity, $A_{h, \ell}\left(x^{*}\right)$ counts more and more arches, but remains bounded (by $1 / \alpha$): thus it converges, and its limit is the GF $A(x)$ of all arches, taken at $x=x^{*}$.

This series is known to have radius ρ. Since it converges at x^{*}, we have $x^{*} \leq \rho$.

3. An upper bound on ρ

$$
\alpha A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\varepsilon E_{h, \ell}\left(x^{*}\right)=1
$$

$\rho \leq x^{*}$: Not much harder. Thus:

$$
\rho=x^{*}=1 / \sqrt{2+\sqrt{2}}
$$

4. Where does the global identity come from?

$$
\frac{\sqrt{2-\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

From a local identity that is re-summed over all vertices of the domain.

A local identity

Let $D \equiv D_{h, \ell}$ be our domain, a the origin of the walks, and p a mid-edge in the domain. Let

$$
F(p) \equiv F(x, \theta ; p)=\sum_{\omega: a \rightsquigarrow p} x^{|\omega|} e^{i \theta W(\omega)}
$$

where $|\omega|$ is the length of ω, and $W(\omega)$ its winding number:

$$
W(\omega)=\text { left turns - right turns. }
$$

Example:

$$
W(\omega)=6-4=2
$$

A local identity

Let

$$
F(p) \equiv F(x, \theta ; p)=\sum_{\omega: a \rightsquigarrow p \text { in } D} x^{|\omega|} e^{i \theta W(\omega)},
$$

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice, then, for $x=x^{*}$ and $\theta=-5 \pi / 24$,

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

Rem: $(p-v)$ is here a complex number!

First Kirchhoff Iaw

A local identity

Proof: Group walks that only differ in the neighborhood of v :

- Walks that visit all mid-edges:

- Walks that only visit one or two mid-edges:

The contribution of all walks in a group is zero.

A local identity

Proof: Group walks that only differ in the neighborhood of v :

- Walks that visit all mid-edges:

$$
e^{-i \pi / 3} e^{-4 i \theta}+i e^{4 i \theta}=0
$$

- Walks that only visit one or two mid-edges:

$$
\sum^{-\bar{\bullet},} \sum^{-\bar{a}} \sum^{\text {º, }} e^{-2 i \pi / 3}+e^{-i \pi / 3} e^{-i \theta} x+i e^{i \theta} x=0
$$

The contribution of all walks in a group is zero.

Proof of the global identity

Sum the local identity

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

over all vertices v of the domain $D_{h, \ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

Proof of the global identity

Sum the local identity

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)=0
$$

over all vertices v of the domain $D_{h, \ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

This gives:

$$
\frac{\sqrt{2-\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

The $\sqrt{2+\sqrt{2}}$-conjecture is proved...

What else?

III. The $1+\sqrt{2}$-conjecture:
 SAWs on the honeycomb lattice interacting with a boundary

Conjecture of [Batchelor \& Yung, 95]
joint work with
Nick Beaton, Hugo Duminil-Copin, Jan de Gier and
Tony Guttmann

Walks in a half-plane interacting with a "surface"

- Enumeration by contacts of n-step walks:

$$
\bar{c}_{n}(y)=\sum_{|\omega|=n} y^{\operatorname{contacts}(\omega)}
$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

- Enumeration by contacts of n-step walks:

$$
\bar{c}_{n}(y)=\sum_{|\omega|=n} y^{\operatorname{contacts}(\omega)}
$$

- Generating function

$$
\bar{C}(x, y)=\sum_{n \geq 0} \bar{c}_{n}(y) x^{n}
$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

- Enumeration by contacts of n-step walks:

$$
\bar{c}_{n}(y)=\sum_{|\omega|=n} y^{\operatorname{contacts}(\omega)}
$$

- Generating function

$$
\bar{C}(x, y)=\sum_{n \geq 0} \bar{c}_{n}(y) x^{n}
$$

- Radius and growth constant ($y>0$ fixed):

$$
\rho(y)=\frac{1}{\mu(y)}=\lim _{n} \bar{c}_{n}(y)^{-1 / n}
$$

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called "fugacity"

The critical fugacity y_{c}

- Radius and growth constant: for $y>0$,

$$
\rho(y)=\frac{1}{\mu(y)}=\lim _{n} \bar{c}_{n}(y)^{-1 / n}
$$

Proposition: $\rho(y)$ is a continuous, weakly decreasing function of $y \in(0, \infty)$. There exists $y_{c}>1$ such that

$$
\rho(y) \begin{cases}=1 / \mu & \text { if } y \leq y_{c} \\ <1 / \mu & \text { if } y>y_{c}\end{cases}
$$

where μ is the growth constant of (unrestricted) SAWs. [Whittington 75, Hammersley, Torrie and Whittington 82]

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$
\mathbb{P}_{n}(\omega)=\frac{y^{\operatorname{contacts}(\omega)}}{\bar{c}_{n}(y)}
$$

Then for $y<y_{c}$, the walk escapes from the surface. For $y>y_{c}$, a positive fraction of its vertices lie on the surface.

(C) A. Rechnitzer

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$
\mathbb{P}_{n}(\omega)=\frac{y^{\operatorname{contacts}(\omega)}}{\bar{c}_{n}(y)}
$$

Then for $y<y_{c}$, the walk escapes from the surface. For $y>y_{c}$, a positive fraction of its vertices lie on the surface.

(C) A. Rechnitzer

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

$$
y_{c}=1+\sqrt{2}
$$

(conjectured by Batchelor and Yung in 1995)
0. Duminil-Copin and Smirnov's "global" identity: refinement with lower contacts

For $x^{*}=1 / \sqrt{2+\sqrt{2}}$, and for any y,

$$
\alpha \frac{\sqrt{2}-y}{y(\sqrt{2}-1)} A_{h, \ell}^{-}\left(x^{*}, y\right)+\alpha A_{h, \ell}^{+}\left(x^{*}, y\right)+B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=y
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$
0. Duminil-Copin and Smirnov's "global" identity: refinement with lower contacts

For $x^{*}=1 / \sqrt{2+\sqrt{2}}$, and for any y,

$$
\alpha \frac{\sqrt{2}-y}{y(\sqrt{2}-1)} A_{h, \ell}^{-}\left(x^{*}, y\right)+\alpha A_{h, \ell}^{+}\left(x^{*}, y\right)+B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=y
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$. So what?

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$

1. Duminil-Copin and Smirnov's "global" identity: refinement with upper contacts

For $x^{*}=1 / \sqrt{2+\sqrt{2}}$, and for any y,

$$
\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

$A_{h, \ell}$ arches
$B_{h, \ell}$ bridges
$E_{h, \ell} \ldots$
2. An alternative description of the critical fugacity y_{c}

Proposition: Let $A_{h}(x, y)$ be the (rational ${ }^{1}$) generating function of arches in a strip of height h, counted by length and upper contacts.
Let y_{h} be the radius of convergence ${ }^{2}$ of $A_{h}\left(x^{*}, y\right)$.
Then, as $h \rightarrow \infty$,

$$
y_{h} \searrow y_{c}
$$

(uses [van Rensburg, Orlandini and Whittington 06])

$$
\triangleleft \triangleleft \diamond \triangleright \triangleright
$$

1. [Rechnitzer 03]
2. For all k, the coefficient of y^{k} in $A_{h}(x, y)$ is finite at $x^{*}=1 / \mu$

The complete picture

For $y>0$ fixed, let $\rho_{h}(y)$ be the radius of $A_{h}(x, y)$.

3. A lower bound on y_{c}

- For $x^{*}=1 / \sqrt{2+\sqrt{2}}$, and for any y,

$$
\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

- Set $y=y^{*}$.

3. A lower bound on y_{c}

- For $x^{*}=1 / \sqrt{2+\sqrt{2}}$,

$$
\alpha A_{h, \ell}\left(x^{*}, y^{*}\right)+\quad 0 \quad+\varepsilon E_{h, \ell}\left(x^{*}, y^{*}\right)=1
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

- Set $y=y^{*}$.

3. A lower bound on y_{c}

- For $x^{*}=1 / \sqrt{2+\sqrt{2}}$,

$$
\begin{equation*}
\alpha A_{h, \ell}\left(x^{*}, y^{*}\right)+\quad 0 \quad+\varepsilon E_{h, \ell}\left(x^{*}, y^{*}\right)=1 \tag{0}
\end{equation*}
$$

with $\alpha=\frac{\sqrt{2-\sqrt{2}}}{2}, \varepsilon=\frac{1}{\sqrt{2}}$ and $y^{*}=1+\sqrt{2}$.

- Set $y=y^{*}$. For h fixed, $A_{h, \ell}\left(x^{*}, y^{*}\right)$ increases with ℓ but remains bounded: its limit is $A_{h}\left(x^{*}, y^{*}\right)$ (arches in an h-strip), and is finite.

Since the radius of $A_{h}\left(x^{*}, y\right)$ is y_{h},

$$
y^{*} \leq y_{h}
$$

and since y_{h} decreases to y_{c},

$$
y^{*} \leq y_{c}
$$

4. An upper bound on y_{c}

$$
\alpha A_{h, \ell}\left(x^{*}, y\right)+\frac{y^{*}-y}{y\left(y^{*}-1\right)} B_{h, \ell}\left(x^{*}, y\right)+\varepsilon E_{h, \ell}\left(x^{*}, y\right)=1
$$

Harder! Uses a third ingredient:

Proposition: The length generating function $B_{h}(x, 1)$ of bridges of height h, taken at $x^{*}=1 / \mu$, satisfies

$$
B_{h}\left(x^{*}, 1\right) \rightarrow 0 \quad \text { as } h \rightarrow \infty .
$$

Inspired by [Duminil-Copin \& Hammond 12], "The self-avoiding walk is subballistic"

Conjecture (from SLE):

$$
B_{h}\left(x^{*}, 1\right) \simeq h^{-1 / 4}
$$

More about this?

The $\sqrt{\frac{2+\sqrt{2}}{1+\sqrt{2}-\sqrt{2+\sqrt{2}}}}$ conjecture
(due to [Batchelor, Bennett-Wood and Owczarek 98], proved by Nick Beaton)

- A similar result for SAWs confined to the half-plane $\{x \geq 0\}$ (rather than $\{y \geq 0\}$).

See Nick's poster on Tuesday!

IV. The mysterious square lattice

$$
\text { A } \mu=\frac{\sqrt{182+26 \sqrt{30261}}}{26} \text { conjecture? }
$$

[Jensen \& Guttmann 99], [Clisby \& Jensen 12]

Looking for a local identity

Let

$$
F(p) \equiv F(x, t, \theta ; p)=\sum_{\omega: a \rightsquigarrow p \text { in } D} x^{|\omega|} t^{s(\omega)} e^{i \theta W(\omega)},
$$

where $|\omega|$ is the length of $\omega, s(\omega)$ the number of vertices where ω goes straight and $W(\omega)$ the winding number:

$$
W(\omega)=\text { left turns - right turns. }
$$

Could it be that

$$
(p-v) F(p)+(q-v) F(q)+(r-v) F(r)+(s-v) F(s)=0
$$

for an appropriate choice of x, t and θ ?

Group walks that only differ in the neighborhood of v

- Walks that visit three mid-edges (type 1):

- Walks that visit three mid-edges (type 2):

- Walks that only visit one or two mid-edges:

The contribution of all walks in a group should be zero.

Group walks that only differ in the neighborhood of v

- Walks that visit three mid-edges (type 1):

$$
-i e^{-3 i \theta}+i e^{3 i \theta}=0
$$

- Walks that visit three mid-edges (type 2):

$$
-i t e^{-3 i \theta}+e^{2 i \theta}=0
$$

- Walks that only visit one or two mid-edges:

$$
-1+i x e^{i \theta}-i x e^{-i \theta}+t x=0
$$

Group walks that only differ in the neighborhood of v

- Walks that visit three mid-edges (type 1):

$$
-i e^{-3 i \theta}+i e^{3 i \theta}=0
$$

- Walks that visit three mid-edges (type 2):

No solution with t real

A generalization of self-avoiding walks: osculating walks

$$
F(p) \equiv F(x, t, y, \theta ; p)=\sum_{\omega: a \rightsquigarrow p \text { in } D} x^{|\omega|} t^{s(\omega)} y^{c(\omega)} e^{i \theta W(\omega)}
$$

where $|\omega|$ is the length of $\omega, s(\omega)$ the number of vertices where ω goes straight, $c(\omega)$ the number of contacts, and $W(\omega)$ the winding number.
[Cardy-Ikhlef 09]

Group walks that only differ in the neighborhood of v

- Walks that visit three or four mid-edges (type 1):

- Walks that visit three or four mid-edges (type 2):

$$
-i t e^{-3 i \theta}+e^{2 i \theta}+i x y e^{i \theta}=0
$$

- Walks that only visit one or two mid-edges:

Four (real and non-negative) solutions

θ	t	\ldots	$x y$
$-\frac{\pi}{2}$	0	1	x^{-1}
$\frac{\pi}{16}$	$\sqrt{2} \cos \frac{\pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}$	$\sqrt{2} \cos \frac{\pi}{16}-2 \sin \frac{\pi}{16}$
$-\frac{5 \pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}+2 \cos \frac{3 \pi}{16}$
$-\frac{7 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2} \cos \frac{3 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}+2 \cos \frac{\pi}{16}$

Note:

$$
\cos \frac{\pi}{16}=\frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2} \quad \text { and } \quad \sin \frac{\pi}{16}=\frac{\sqrt{2-\sqrt{2+\sqrt{2}}}}{2}
$$

Four (real and non-negative) solutions

θ	t	\ldots	$x y$
$-\frac{\pi}{2}$	0	1	x^{-1}
$\frac{\pi}{16}$	$\sqrt{2} \cos \frac{\pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}$	$\sqrt{2} \cos \frac{\pi}{16}-2 \sin \frac{\pi}{16}$
$-\frac{5 \pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}+2 \cos \frac{3 \pi}{16} \quad(3)$
$-\frac{7 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2} \cos \frac{3 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}+2 \cos \frac{\pi}{16}$

- Four local identities \Rightarrow proof for (weighted) growth constants?

Four (real and non-negative) solutions

θ	t	\longrightarrow	$x y$	x^{-1}
$-\frac{\pi}{2}$	0	1	2	
$\frac{\pi}{16}$	$\sqrt{2} \cos \frac{\pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}$	$\sqrt{2} \cos \frac{\pi}{16}-2 \sin \frac{\pi}{16}$	
$-\frac{5 \pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2} \sin \frac{3 \pi}{16}+2 \cos \frac{3 \pi}{16} \quad$ (3)	
$-\frac{7 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2} \cos \frac{3 \pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}+2 \cos \frac{\pi}{16}$	

- Four local identities \Rightarrow proof for (weighted) growth constants?
\Rightarrow cf. [Glazman 13] for a proof in Case (3), and an asymmetric model wich interpolates between (3) and the honeycomb lattice.

Some questions

- Another global identity: for $x^{*}=1 / \sqrt{2+\sqrt{2}}$,

$$
\frac{\sqrt{2-\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)+\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

Some questions

- Another global identity: for $x^{*}=1 / \sqrt{2-\sqrt{2}}$,

$$
-\frac{\sqrt{2+\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)-\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

This value of x is supposed to correspond to a dense phase of SAWs. Meaning, and proof?

Some questions

- Another global identity: for $x^{*}=1 / \sqrt{2-\sqrt{2}}$,

$$
-\frac{\sqrt{2+\sqrt{2}}}{2} A_{h, \ell}\left(x^{*}\right)+B_{h, \ell}\left(x^{*}\right)-\frac{1}{\sqrt{2}} E_{h, \ell}\left(x^{*}\right)=1
$$

This value of x is supposed to correspond to a dense phase of SAWs. Meaning, and proof?

- A global identity for the $O(n)$ loop model [Smirnov 10] \Rightarrow critical point?

References

- Smirnov's lecture/paper at the 2010 ICM for a general view of discrete preholomorphic functions and their use in physics/combinatorics/probability theory

Duminil-Copin and Smirnov, The connective constant of the honeycomb lattice equals $\sqrt{2}+\sqrt{2}$, arXiv:1007.0575

- SAWs in a half-plane interacting with the boundary:

Beaton, MBM, Duminil-Copin, de Gier and Guttmann, The critical fugacity for surface adsorption of SAW on the honeycomb lattice is $1+\sqrt{2}$, arXiv:1109.0358

Beaton, The critical surface fugacity of self-avoiding walks on a rotated honeycomb lattice, arXiv:1210.0274

- Global quasi-identities and numerical estimates:

Beaton, Guttmann and Jensen, A numerical adaptation of SAW identities from the honeycomb to other 2D lattices, arXiv:1110.1141.

Beaton, Guttmann and Jensen, Two-dimensional self-avoiding walks and polymer adsorption: Critical fugacity estimates arXiv:1110.6695.

In 5 dimensions and above: Brownian behaviour

- The critical exponents are those of the simple random walk:

$$
c_{n} \sim \mu^{n} n^{0}, \quad \mathbb{E}\left(D_{n}\right) \sim n^{1 / 2}
$$

- The limit exists and is the d-dimensional Brownian motion
[Hara-Slade 92]

