Two-dimensional self-avoiding walks

Mireille Bousquet-Mélou CNRS, LaBRI, Bordeaux, France Self-avoiding walks (SAWs)

A walk with n = 47 steps

Self-avoiding walks (SAWs)

A walk with n = 47 steps

A self-avoiding walk with n = 40 steps

Self-avoiding walks (SAWs)

A walk with n = 47 steps

End-to-end distance:

$$\Delta = \sqrt{3^2 + 4^2} = 5$$

A self-avoiding walk with n = 40 steps

End-to-end distance:

D = 4

Some natural questions

General walks

• Number:

$$a_n = 4^n$$

• End-to-end distance:

$$\mathbb{E}(\Delta_n) \sim (\kappa) n^{1/2}$$

• Limiting object: The (uniform) random walk converges to the Brownian motion

Some natural (but hard) questions

General walks

• Number:

$$a_n = 4^n$$

• End-to-end distance:

$$\mathbb{E}(\Delta_n) \sim (\kappa) \, n^{1/2}$$

• Limiting object: The (uniform) random walk converges to the Brownian motion

Self-avoiding walks

• Number:

$$c_n = ?$$

• End-to-end distance:

$$\mathbb{E}(D_n) \sim ?$$

• Limit of the random uniform SAW?

• **Predicted**: The number of *n*-step SAWs behaves asymptotically as:

 $c_n \sim \mu^n \, n^\gamma$

where $\gamma = 11/32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

The probabilistic meaning of the exponent γ

• **Predicted**: The number of *n*-step SAWs behaves asymptotically as:

 $c_n \sim \mu^n \, n^\gamma$

 \Rightarrow The probability that two n-step SAWs starting from the same point do not intersect is

$$\frac{c_{2n}}{c_n^2} \sim n^{-\gamma}$$

• **Predicted**: The number of *n*-step SAWs behaves asymptotically as:

 $c_n \sim \mu^n \, n^\gamma$

where $\gamma = 11/32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

• **Predicted**: The number of *n*-step SAWs behaves asymptotically as:

 $c_n \sim \mu^n \, n^\gamma$

where $\gamma = 11/32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

• Known: there exists a constant μ , called growth constant, such that

$$c_n^{1/n} \to \mu$$

and a constant α such that

$$\mu^n \le c_n \le \mu^n \alpha^{\sqrt{n}}$$

[Hammersley 57], [Hammersley-Welsh 62]

• **Predicted**: The number of *n*-step SAWs behaves asymptotically as:

 $c_n \sim \mu^n \, n^\gamma$

where $\gamma = 11/32$ for all 2D lattices (square, triangular, honeycomb) [Nienhuis 82]

• Known: there exists a constant μ , called growth constant, such that

$$c_n^{1/n} \to \mu$$

and a constant α such that

$$\mu^n \le c_n \le \mu^n \alpha^{\sqrt{n}}$$

[Hammersley 57], [Hammersley-Welsh 62]

• c_n is only known up to n = 71 [Jensen 04]

The end-to-end distance: predictions vs. theorems

• Predicted: The end-to-end distance is on average

 $\mathbb{E}(D_n) \sim n^{3/4}$ (vs. $n^{1/2}$ for a simple random walk) [Flory 49, Nienhuis 82]

The end-to-end distance: predictions vs. theorems

• Predicted: The end-to-end distance is on average

 $\mathbb{E}(D_n) \sim n^{3/4}$ (vs. $n^{1/2}$ for a simple random walk) [Flory 49, Nienhuis 82]

• Known [Madras 2012], [Duminil-Copin & Hammond 2012]:

 $n^{1/4} \leq \mathbb{E}(D_n) \ll n^1$

The scaling limit: predictions vs. theorems

• Predicted: The limit of SAW is $SLE_{8/3}$, the Schramm-Loewner evolution process with parameter 8/3.

• Known: true if the limit of SAW exists and is conformally invariant [Lawler, Schramm, Werner 02]

Confirms the predictions

$$c_n \sim \mu^n n^{11/32}$$
 and $\mathbb{E}(D_n) \sim n^{3/4}$

Outline

I. Self-avoiding walks (SAWs): Generalities, predictions and results

II. The growth constant on honeycomb lattice is $\mu = \sqrt{2 + \sqrt{2}}$ [Duminil-Copin & Smirnov 10]

What else?

Outline

I. Self-avoiding walks (SAWs): Generalities, predictions and results

II. The growth constant on honeycomb lattice is $\mu = \sqrt{2 + \sqrt{2}}$ [Duminil-Copin & Smirnov 10]

What else?

III. The $1 + \sqrt{2}$ -conjecture: SAWs in a half-plane interacting with the boundary (honeycomb lattice) [Beaton, MBM, Duminil-Copin, de Gier & Guttmann 12]

IV. The ???-conjecture: The mysterious square lattice (d'après [Cardy & Ikhlef 09])

II. The growth constant

on the honeycomb lattice: The $\mu = \sqrt{2 + \sqrt{2}}$ ex-conjecture

[Duminil-Copin & Smirnov 10]

The growth constant

Clearly,

$$c_{m+n} \le c_m \, c_n$$

 $\Rightarrow \lim_{n} c_n^{1/n}$ exists and

$$\mu := \lim_n c_n^{1/n} = \inf_n c_n^{1/n}$$

Theorem [Duminil-Copin & Smirnov 10]: the growth constant is

$$\mu = \sqrt{2 + \sqrt{2}}$$

(conjectured by Nienhuis in 1982)

Growth constants and generating functions

• Let C(x) be the length generating function of SAWs:

$$C(x) = \sum_{n \ge 0} c_n x^n.$$

• The radius of convergence of C(x) is

$$\rho = 1/\mu,$$

where

$$\mu = \lim_n c_n^{1/n}$$

is the growth constant.

• Notation: $x^* := 1/\sqrt{2 + \sqrt{2}}$. We want to prove that $\rho = x^*$.

Many families of SAWs have the same radius ρ

For instance...

[Hammersley 61]

To prove: A(x) (or B(x)) has radius $x^* := 1/\sqrt{2 + \sqrt{2}}$.

1. Duminil-Copin and Smirnov's "global" identity

Consider the following finite domain $D_{h,\ell}$.

Let $A_{h,\ell}(x)$ (resp. $B_{h,\ell}(x)$, $E_{h,\ell}(x)$) be the generating function of SAWs that start from the origin and end on the bottom (resp. top, right/left) border of the domain $D_{h,\ell}$. These series are polynomials in x.

1. Duminil-Copin and Smirnov's "global" identity

At $x^* = 1/\sqrt{2 + \sqrt{2}}$, and for all h and ℓ ,

 $\alpha A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \varepsilon E_{h,\ell}(x^*) = 1$

with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon = \frac{1}{\sqrt{2}}$.

 $A_{h,\ell}$ arches $B_{h,\ell}$ bridges $E_{h,\ell}$...

Example: the domain $D_{1,1}$

(with
$$\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$$
 and $\varepsilon = \frac{1}{\sqrt{2}}$).

1. Duminil-Copin and Smirnov's "global" identity

At $x^* = 1/\sqrt{2 + \sqrt{2}}$, and for all h and ℓ ,

 $\alpha A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \varepsilon E_{h,\ell}(x^*) = 1$

with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$ and $\varepsilon = \frac{1}{\sqrt{2}}$.

 $A_{h,\ell}$ arches $B_{h,\ell}$ bridges $E_{h,\ell}$...

2. A lower bound on ρ

$$\alpha A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \varepsilon E_{h,\ell}(x^*) = 1$$

As h and ℓ tend to infinity, $A_{h,\ell}(x^*)$ counts more and more arches, but remains bounded (by $1/\alpha$): thus it converges, and its limit is the GF A(x) of all arches, taken at $x = x^*$.

This series is known to have radius ρ . Since it converges at x^* , we have $x^* \leq \rho$.

3. An upper bound on ρ

$$\alpha A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \varepsilon E_{h,\ell}(x^*) = 1$$

. . .

 $\rho \leq x^*$: Not much harder. Thus:

$$\rho = x^* = 1/\sqrt{2 + \sqrt{2}}$$

4. Where does the global identity come from?

$$\frac{\sqrt{2-\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1$$

From a local identity that is re-summed over all vertices of the domain.

Let $D \equiv D_{h,\ell}$ be our domain, a the origin of the walks, and p a mid-edge in the domain. Let

$$F(p) \equiv F(x,\theta;p) = \sum_{\omega:a \rightsquigarrow p} x^{|\omega|} e^{i\theta W(\omega)},$$

where $|\omega|$ is the length of ω , and $W(\omega)$ its winding number:

 $W(\omega) = \text{left turns} - \text{right turns}.$

Example:

$$W(\omega) = 6 - 4 = 2$$

Let

$$F(p) \equiv F(x,\theta;p) = \sum_{\omega:a \rightsquigarrow p \text{ in } D} x^{|\omega|} e^{i\theta W(\omega)},$$

If p, q and r are the 3 mid-edges around a vertex v of the honeycomb lattice, then, for $x = x^*$ and $\theta = -5\pi/24$,

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0.$$

Rem: (p - v) is here a complex number!

First Kirchhoff law

Proof: Group walks that only differ in the neighborhood of v:

• Walks that visit all mid-edges:

• Walks that only visit one or two mid-edges:

The contribution of all walks in a group is zero.

Proof: Group walks that only differ in the neighborhood of v:

• Walks that visit all mid-edges:

• Walks that only visit one or two mid-edges:

The contribution of all walks in a group is zero.

Proof of the global identity

Sum the local identity

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

over all vertices v of the domain $D_{h,\ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

Proof of the global identity

Sum the local identity

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) = 0$$

over all vertices v of the domain $D_{h,\ell}$.

- The inner mid-edges do not contribute.
- The winding number of walks ending on the boundary is known.
- The domain has a right-left symmetry.

This gives:

$$\frac{\sqrt{2-\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1.$$

The $\sqrt{2} + \sqrt{2}$ -conjecture is proved...

What else?

III. The $1 + \sqrt{2}$ -conjecture: SAWs on the honeycomb lattice interacting with a boundary

Conjecture of [Batchelor & Yung, 95]

joint work with Nick Beaton, Hugo Duminil-Copin, Jan de Gier and Tony Guttmann

Walks in a half-plane interacting with a "surface"

• Enumeration by contacts of *n*-step walks:

$$\bar{c}_n(y) = \sum_{|\omega|=n} y^{\operatorname{contacts}(\omega)}$$

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

• Enumeration by contacts of *n*-step walks:

$$\bar{c}_n(y) = \sum_{|\omega|=n} y^{\operatorname{contacts}(\omega)}$$

• Generating function

$$\overline{C}(x,y) = \sum_{n \ge 0} \overline{c}_n(y) x^n$$

 y^3

In statistical physics, the parameter y is called "fugacity"

Walks in a half-plane interacting with a "surface"

• Enumeration by contacts of *n*-step walks:

$$\bar{c}_n(y) = \sum_{|\omega|=n} y^{\operatorname{contacts}(\omega)}$$

• Generating function

$$\bar{C}(x,y) = \sum_{n \ge 0} \bar{c}_n(y) x^n$$

• Radius and growth constant (y > 0 fixed):

$$\rho(y) = \frac{1}{\mu(y)} = \lim_{n} \bar{c}_n(y)^{-1/n}$$

[Hammersley, Torrie and Whittington 82]

In statistical physics, the parameter y is called "fugacity"

 y^3

The critical fugacity y_c

• Radius and growth constant: for y > 0,

$$\rho(y) = \frac{1}{\mu(y)} = \lim_{n} \bar{c}_n(y)^{-1/n}$$

Proposition: $\rho(y)$ is a continuous, weakly decreasing function of $y \in (0, \infty)$. There exists $y_c > 1$ such that

$$\rho(y) \begin{cases} = 1/\mu & \text{if } y \leq y_c, \\ < 1/\mu & \text{if } y > y_c, \end{cases}$$

where μ is the growth constant of (unrestricted) SAWs. [Whittington 75, Hammersley, Torrie and Whittington 82]

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$\mathbb{P}_n(\omega) = \frac{y^{\text{contacts}(\omega)}}{\bar{c}_n(y)}.$$

Then for $y < y_c$, the walk escapes from the surface. For $y > y_c$, a positive fraction of its vertices lie on the surface.

The critical fugacity: probabilistic meaning

Take half-space SAWs of length n under the Boltzmann distribution

$$\mathbb{P}_n(\omega) = \frac{y^{\text{contacts}(\omega)}}{\bar{c}_n(y)}.$$

Then for $y < y_c$, the walk escapes from the surface. For $y > y_c$, a positive fraction of its vertices lie on the surface.

Theorem [B-BM-dG-DC-G 12]: this phase transition occurs at

 $y_c = 1 + \sqrt{2}$

(conjectured by Batchelor and Yung in 1995)

0. Duminil-Copin and Smirnov's "global" identity: refinement with lower contacts

For
$$x^* = 1/\sqrt{2 + \sqrt{2}}$$
, and for any y ,

$$\alpha \frac{\sqrt{2} - y}{y(\sqrt{2} - 1)} A_{h,\ell}^-(x^*, y) + \alpha A_{h,\ell}^+(x^*, y) + B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = y$$
with $\alpha = \frac{\sqrt{2 - \sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$.

 $A^-_{h,\ell}$

 $A_{h,\ell}^+$

 ℓ

 $A_{h,\ell}$ arches $B_{h,\ell}$ bridges $E_{h,\ell}$...

0. Duminil-Copin and Smirnov's "global" identity: refinement with lower contacts

1. Duminil-Copin and Smirnov's "global" identity: refinement with upper contacts

For
$$x^* = 1/\sqrt{2 + \sqrt{2}}$$
, and for any y ,
 $\alpha A_{h,\ell}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = 1$
with $\alpha = \frac{\sqrt{2 - \sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.
 h
 h
 h
 $A_{h,\ell}$
 $A_{h,\ell}$ arches
 $B_{h,\ell}$ bridges
 $E_{h,\ell}$
 $E_{h,\ell}$
 $A_{h,\ell}$ arches
 $B_{h,\ell}$ bridges
 $E_{h,\ell}$...

•

2. An alternative description of the critical fugacity y_c

Proposition: Let $A_h(x,y)$ be the (rational¹) generating function of arches in a strip of height h, counted by length and upper contacts.

Let y_h be the radius of convergence² of $A_h(x^*, y)$.

Then, as $h \to \infty$,

 $y_h \searrow y_c$.

(uses [van Rensburg, Orlandini and Whittington 06])

 $\triangleleft \ \vartriangleleft \ \diamond \ \triangleright \ \triangleright$

- 1. [Rechnitzer 03]
- 2. For all k, the coefficient of y^k in $A_h(x,y)$ is finite at $x^* = 1/\mu$

The complete picture

For y > 0 fixed, let $\rho_h(y)$ be the radius of $A_h(x, y)$.

3. A lower bound on y_c

• For $x^* = 1/\sqrt{2 + \sqrt{2}}$, and for any y,

$$\alpha A_{h,\ell}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = 1$$

$$y = \frac{\sqrt{2 - \sqrt{2}}}{2} \quad \varepsilon = \frac{1}{2} \text{ and } y^* = 1 + \sqrt{2}$$

with $\alpha = \frac{\sqrt{2}-\sqrt{2}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.

• Set $y = y^*$.

3. A lower bound on y_c

• For $x^* = 1/\sqrt{2 + \sqrt{2}}$, $\alpha A_{h,\ell}(x^*, y^*) + 0 + \varepsilon E_{h,\ell}(x^*, y^*) = 1$ with $\alpha = \frac{\sqrt{2 - \sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.

• Set $y = y^*$.

3. A lower bound on y_c

• For
$$x^* = 1/\sqrt{2 + \sqrt{2}}$$
,
 $\alpha A_{h,\ell}(x^*, y^*) + 0 + \varepsilon E_{h,\ell}(x^*, y^*) = 1$
with $\alpha = \frac{\sqrt{2-\sqrt{2}}}{2}$, $\varepsilon = \frac{1}{\sqrt{2}}$ and $y^* = 1 + \sqrt{2}$.

• Set $y = y^*$. For *h* fixed, $A_{h,\ell}(x^*, y^*)$ increases with ℓ but remains bounded: its limit is $A_h(x^*, y^*)$ (arches in an *h*-strip), and is finite.

Since the radius of
$$A_h(x^*, y)$$
 is y_h ,
 $y^* \leq y_h$,
and since y_h decreases to y_c ,
 $y^* \leq y_c$.

4. An upper bound on y_c

$$\alpha A_{h,\ell}(x^*, y) + \frac{y^* - y}{y(y^* - 1)} B_{h,\ell}(x^*, y) + \varepsilon E_{h,\ell}(x^*, y) = 1$$

Harder! Uses a third ingredient:

Proposition: The length generating function $B_h(x, 1)$ of bridges of height h, taken at $x^* = 1/\mu$, satisfies

$$B_h(x^*,1) o 0$$
 as $h \to \infty$.

Inspired by [Duminil-Copin & Hammond 12], "The self-avoiding walk is sub-ballistic"

Conjecture (from SLE):

$$B_h(x^*, 1) \simeq h^{-1/4}$$

More about this?

The
$$\sqrt{\frac{2+\sqrt{2}}{1+\sqrt{2}-\sqrt{2+\sqrt{2}}}}$$
 conjecture

(due to [Batchelor, Bennett-Wood and Owczarek 98], proved by Nick Beaton)

• A similar result for SAWs confined to the half-plane $\{x \ge 0\}$ (rather than $\{y \ge 0\}$).

 y^3

See Nick's poster on Tuesday!

IV. The mysterious square lattice A $\mu = \frac{\sqrt{182 + 26\sqrt{30261}}}{26}$ conjecture?

[Jensen & Guttmann 99], [Clisby & Jensen 12]

Looking for a local identity

Let

$$F(p) \equiv F(x, t, \theta; p) = \sum_{\omega: a \rightsquigarrow p \text{ in } D} x^{|\omega|} t^{s(\omega)} e^{i\theta W(\omega)},$$

where $|\omega|$ is the length of ω , $s(\omega)$ the number of vertices where ω goes straight and $W(\omega)$ the winding number:

 $W(\omega) = \text{left turns} - \text{right turns}.$

Could it be that

$$(p-v)F(p) + (q-v)F(q) + (r-v)F(r) + (s-v)F(s) = 0$$

for an appropriate choice of x, t and θ ?

Group walks that only differ in the neighborhood of \boldsymbol{v}

• Walks that visit three mid-edges (type 1):

• Walks that visit three mid-edges (type 2):

• Walks that only visit one or two mid-edges:

The contribution of all walks in a group should be zero.

Group walks that only differ in the neighborhood of \boldsymbol{v}

• Walks that visit three mid-edges (type 1):

$$-ie^{-3i\theta} + ie^{3i\theta} = 0$$

• Walks that visit three mid-edges (type 2):

• Walks that only visit one or two mid-edges:

$$\int \frac{\overline{\bullet}}{1} \int \frac{1}{1} \int \frac$$

Group walks that only differ in the neighborhood of v

• Walks that visit three mid-edges (type 1):

 $-ie^{-3i\theta} + ie^{3i\theta} = 0$

• Walks that visit three mid-edges (type 2):

 $-ite^{-3i\theta} + e^{2i\theta} = 0$

No solution with t real

A generalization of self-avoiding walks: osculating walks

$$F(p) \equiv F(x, t, y, \theta; p) = \sum_{\omega: a \rightsquigarrow p \text{ in } D} x^{|\omega|} t^{s(\omega)} y^{c(\omega)} e^{i\theta W(\omega)},$$

where $|\omega|$ is the length of ω , $s(\omega)$ the number of vertices where ω goes straight, $c(\omega)$ the number of contacts, and $W(\omega)$ the winding number.

[Cardy-Ikhlef 09]

Group walks that only differ in the neighborhood of \boldsymbol{v}

• Walks that visit three or four mid-edges (type 1):

$$\begin{array}{c} \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{a} } \\ \overbrace{a} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \\ \overbrace{} \\ \overbrace{} } \\ \overbrace{} \atop \overbrace{\phantom{$$

• Walks that visit three or four mid-edges (type 2):

$$\begin{array}{c} -ite^{-3i\theta} + e^{2i\theta} + ixye^{i\theta} = 0 \end{array}$$

$$\int \frac{\overline{\bullet}}{1} \int \frac$$

Four (real and non-negative) solutions

heta	<i>t</i> —	xy	x^{-1}
$-\frac{\pi}{2}$	0	1	2
$\frac{\pi}{16}$	$\sqrt{2}\cos\frac{\pi}{16}$	$\sqrt{2}\sinrac{3\pi}{16}$	$\sqrt{2}\cosrac{\pi}{16} - 2\sinrac{\pi}{16}$
$-\frac{5\pi}{16}$	$\sqrt{2}\sinrac{3\pi}{16}$	$\sqrt{2}\sinrac{\pi}{16}$	$\sqrt{2}\sin\frac{3\pi}{16} + 2\cos\frac{3\pi}{16}$
$-\frac{7\pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2}\cos\frac{3\pi}{16}$	$\sqrt{2}\sin\frac{\pi}{16} + 2\cos\frac{\pi}{16}$

Note:

$$\cos \frac{\pi}{16} = \frac{\sqrt{2 + \sqrt{2 + \sqrt{2}}}}{2}$$
 and $\sin \frac{\pi}{16} = \frac{\sqrt{2 - \sqrt{2 + \sqrt{2}}}}{2}$

Four (real and non-negative) solutions

θ	<i>t</i> —	xy	x^{-1}
$-\frac{\pi}{2}$	0	1	2
$\frac{\pi}{16}$	$\sqrt{2}\cos\frac{\pi}{16}$	$\sqrt{2}\sinrac{3\pi}{16}$	$\sqrt{2}\cos\frac{\pi}{16} - 2\sin\frac{\pi}{16}$
$-\frac{5\pi}{16}$	$\sqrt{2}\sinrac{3\pi}{16}$	$\sqrt{2}\sinrac{\pi}{16}$	$\sqrt{2}\sin\frac{3\pi}{16} + 2\cos\frac{3\pi}{16}$ (3)
$-\frac{7\pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2}\cos\frac{3\pi}{16}$	$\sqrt{2}\sin\frac{\pi}{16} + 2\cos\frac{\pi}{16}$

• Four local identities \Rightarrow proof for (weighted) growth constants?

Four (real and non-negative) solutions

θ	<i>t</i> —	xy	x^{-1}
$-\frac{\pi}{2}$	0	1	2
$\frac{\pi}{16}$	$\sqrt{2}\cos\frac{\pi}{16}$	$\sqrt{2}\sinrac{3\pi}{16}$	$\sqrt{2}\cos\frac{\pi}{16} - 2\sin\frac{\pi}{16}$
$-\frac{5\pi}{16}$	$\sqrt{2}\sinrac{3\pi}{16}$	$\sqrt{2}\sinrac{\pi}{16}$	$\sqrt{2}\sin\frac{3\pi}{16} + 2\cos\frac{3\pi}{16}$ (3)
$-\frac{7\pi}{16}$	$\sqrt{2} \sin \frac{\pi}{16}$	$\sqrt{2}\cos\frac{3\pi}{16}$	$\sqrt{2}\sin\frac{\pi}{16} + 2\cos\frac{\pi}{16}$

• Four local identities \Rightarrow proof for (weighted) growth constants?

 \Rightarrow cf. [Glazman 13] for a proof in Case (3), and an asymmetric model wich interpolates between (3) and the honeycomb lattice.

Some questions

• Another global identity: for $x^* = 1/\sqrt{2 + \sqrt{2}}$,

$$\frac{\sqrt{2-\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) + \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1$$

Some questions

• Another global identity: for $x^* = 1/\sqrt{2-\sqrt{2}}$,

$$-\frac{\sqrt{2+\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) - \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1$$

This value of x is supposed to correspond to a dense phase of SAWs. Meaning, and proof?

Some questions

• Another global identity: for $x^* = 1/\sqrt{2-\sqrt{2}}$,

$$-\frac{\sqrt{2+\sqrt{2}}}{2} A_{h,\ell}(x^*) + B_{h,\ell}(x^*) - \frac{1}{\sqrt{2}} E_{h,\ell}(x^*) = 1$$

This value of x is supposed to correspond to a dense phase of SAWs. Meaning, and proof?

• A global identity for the O(n) loop model [Smirnov 10] \Rightarrow critical point?

References

• Smirnov's lecture/paper at the 2010 ICM for a general view of discrete preholomorphic functions and their use in physics/combinatorics/probability theory

Duminil-Copin and Smirnov, The connective constant of the honeycomb lattice equals $\sqrt{2 + \sqrt{2}}$, arXiv:1007.0575

• SAWs in a half-plane interacting with the boundary:

Beaton, MBM, Duminil-Copin, de Gier and Guttmann, The critical fugacity for surface adsorption of SAW on the honeycomb lattice is $1+\sqrt{2}$, arXiv:1109.0358

Beaton, The critical surface fugacity of self-avoiding walks on a rotated honeycomb lattice, arXiv:1210.0274

• Global quasi-identities and numerical estimates:

Beaton, Guttmann and Jensen, A numerical adaptation of SAW identities from the honeycomb to other 2D lattices, arXiv:1110.1141.

Beaton, Guttmann and Jensen, Two-dimensional self-avoiding walks and polymer adsorption: Critical fugacity estimates arXiv:1110.6695.

In 5 dimensions and above: Brownian behaviour

• The critical exponents are those of the simple random walk:

$$c_n \sim \mu^n n^0$$
, $\mathbb{E}(D_n) \sim n^{1/2}$.

- The limit exists and is the *d*-dimensional Brownian motion
- [Hara-Slade 92]