Baxter permutations and meanders

Éric Fusy (LIX, École Polytechnique)
Meanders on two lines

- A 2-line meander
Meanders on two lines

• A 2-line meander

encoded by a permutation
Meanders on two lines

- A 2-line meander encoded by a permutation

- Monotone 2-line meander: can be obtained from two monotone lines (one in x, the other in y)
Meanders on two lines

• A 2-line meander

encoded by a permutation

• Monotone 2-line meander:
 can be obtained from two monotone lines (one in \(x \), the other in \(y \))

associated permutation
Meanders on two lines

- A 2-line meander encoded by a permutation

- Monotone 2-line meander: can be obtained from two monotone lines (one in x, the other in y)

Which permutations can be obtained this way?
Meanders on two lines

- A 2-line meander

- Monotone 2-line meander:
 can be obtained from two monotone lines (one in x, the other in y)

Which permutations can be obtained this way?
Meanders on two lines

- A 2-line meander encoded by a permutation

- Monotone 2-line meander:
 can be obtained from two monotone lines (one in x, the other in y)

Which permutations can be obtained this way?
Maps odd numbers to odd numbers, even numbers to even numbers
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]

then has to go left
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]

then has to go right
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]

white points are either:

rising or descending
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]

white points are either:

- rising
- descending
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]

white points are either:

rising

descending

or
Permutations for monotone 2-line meanders

[Baxter’64, Boyce’68&’81]

White points are either:
- Rising
- Descending
Permutations mapping even to even, odd to odd, and satisfying condition shown on the right are called **complete Baxter permutations**
Permutations for monotone 2-line meanders
[Baxter’64, Boyce’68&’81]

Permutations mapping even to even, odd to odd, and satisfying condition shown on the right are called complete Baxter permutations.

Theorem ([Boyce’81] reformulated bijectively):

Monotone 2-line meanders with $2n - 1$ crossings are in bijection with complete Baxter permutations on $2n - 1$ elements.
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

-
- or
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve

or
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve

or
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
2) Draw the red curve
Inverse construction
From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
2) Draw the red curve
Inverse construction

From a complete Baxter permutation to a monotone 2-line meander

white points are either:

1) Draw the blue curve
2) Draw the red curve

The two curves meet only at the permutation points (because of the empty area-property at white points)
Complete and reduced Baxter permutations
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one
Complete and reduced Baxter permutations

- Complete one can be recovered from reduced one

Case of a descent

- Complete one can be recovered from reduced one
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one

Case of a rise
Complete and reduced Baxter permutations

• complete one can be recovered from reduced one

case of a rise
Complete and reduced Baxter permutations

• complete one can be recovered from reduced one

complete

reduced

case of a rise
Complete and reduced Baxter permutations

- Complete one can be recovered from reduced one
- Reduced one is characterized by forbidden patterns $2 - 41 - 3$ and $3 - 14 - 2$
Complete and reduced Baxter permutations

- complete one can be recovered from reduced one
- reduced one is characterized by forbidden patterns $2 - 41 - 3$ and $3 - 14 - 2$
- permutation on white points (called anti-Baxter) is characterized by forbidden patterns $2 - 14 - 3$ and $3 - 41 - 2$
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with n elements
 \[b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2} \]

[Chung et al’78] [Mallows’79]
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with \(n \) elements
 \[
 b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
 \]
 [Chung et al’78] [Mallows’79]
 - Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

5 7 6 2 1 4 3 \Leftrightarrow

Diagram:

5 7 6 2 1 4 3
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with \(n \) elements
 \[
 b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}
 \]
 [Chung et al’78] [Mallows’79]
 - Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

- Subfamilies
 - alternating [Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]
 \[
 \text{Cat}_k \text{Cat}_k \text{ if } n = 2k \quad \text{Cat}_k \text{Cat}_{k+1} \text{ if } n = 2k + 1
 \]
 - doubly alternating [Guibert-Linusson’00]
 \[
 \text{Cat}_k \text{ where } k = \lfloor n/2 \rfloor
 \]
Counting results

- Baxter permutations
 - Number of reduced Baxter permutations with n elements
 \[b_n = \sum_{r=0}^{n-1} \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2} \]
 [Chung et al’78] [Mallows’79]
 - Bijective proof: [Viennot’81], [Dulucq-Guibert’98]

- Subfamilies
 - alternating [Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]
 \[\text{Cat}_k \text{Cat}_k \text{ if } n = 2k \]
 \[\text{Cat}_k \text{Cat}_{k+1} \text{ if } n = 2k + 1 \]
 - doubly alternating [Guibert-Linusson’00]
 \[\text{Cat}_k \text{ where } k = \lfloor n/2 \rfloor \]

- anti-Baxter permutations
 \[a_n = \sum_{i=0}^{[(n+1)/2]} (-1)^i \binom{n+1-i}{i} b_{n+1-i} \]
 [Asinowski et al’10]
Local conditions for monotone 2-line meanders
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black point (one above, one below the blue line)
- white points are either rising or descending
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black point (one above, one below the blue line)
- white points are either rising or descending

Proof of \Leftarrow
Assume there is a red loop (say, clockwise):
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black point (one above, one below the blue line)
- white points are either rising or descending

Proof of \Leftarrow
Assume there is a red loop (say, clockwise):
then the leftmost and the rightmost point on the loop are of different colors
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black point (one above, one below the blue line)
- white points are either rising or descending

Proof of \Leftarrow
Assume there is a red loop (say, clockwise):
then the leftmost and the rightmost point on the loop are of different colors
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black point (one above, one below the blue line)
- white points are either rising or descending

Proof of \iff
Assume there is a red loop (say, clockwise):

then the leftmost and the rightmost point on the loop are of different colors

\Rightarrow we have a 2-line meander
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions:
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either \[\begin{array}{c}
\text{or}
\end{array} \]

Proof of \(\Leftarrow \): construct permutation step by step

Important observation:

\[\begin{array}{c}
i
\end{array} \]

already labelled

By similar argument as to show there is no red loop
Local conditions for monotone 2-line meanders

Conditions:
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of ⇐: construct permutation step by step

Important observation:
- already labelled
- already labelled

By similar argument as to show there is no red loop
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

important observation:
\[
\begin{array}{c}
\text{i} & \text{i+1} \\
\text{already labelled} & \text{already labelled}
\end{array}
\]
Local conditions for monotone 2-line meanders

\[\iff \]

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either \(\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array} \)

Proof of \(\iff \): construct permutation step by step

<table>
<thead>
<tr>
<th>3</th>
<th>2</th>
<th>1</th>
<th>4</th>
<th>6</th>
<th>5</th>
</tr>
</thead>
</table>

important observation:
- already labelled
- already labelled
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

Important observation:
- i already labelled
- $i+1$ already labelled
- $i+1$ already labelled
- i
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of \iff: construct permutation step by step

important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either \(\begin{array}{c}
\text{or}
\end{array} \)

Proof of \(\Leftarrow \): construct permutation step by step

Important observation:
\(i \text{ already labelled} \)
\(i+1 \text{ already labelled} \)
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of ⇐: construct permutation step by step

Important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

Important observation:

already labelled

already labelled
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of \Leftarrow: construct permutation step by step

<table>
<thead>
<tr>
<th>i</th>
<th>$i+1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>already labelled</td>
<td>already labelled</td>
</tr>
</tbody>
</table>

Important observation:
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either or

Proof of \Leftarrow: construct permutation step by step

Important observation:
- already labelled
- already labelled
Local conditions for monotone 2-line meanders

\[\iff \]

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

\[\begin{array}{c}
\text{or} \\
\end{array} \]

Proof of \(\iff \): construct permutation step by step

important observation:
\[\begin{array}{c}
\text{already labelled} \\
\text{already labelled} \\
\end{array} \]
Local conditions for monotone 2-line meanders

Conditions
- two bipartite matchings missing a black node (one above, one below the blue line)
- white nodes are either

Proof of \Leftarrow: construct permutation step by step

Similarly:
Encoding a monotone 2-line meander

Each path has length $n - 1$
Encoding a monotone 2-line meander
close to encoding in [Viennot’81, Dulucq-Guibert’98]
Encoding a monotone 2-line meander

close to encoding in [Viennot’81, Dulucq-Guibert’98]
exactly coincides with encoding in [Felsner-F-Noy-Orden’11]
(uses “equatorial line” in separating decompositions of quadrangulations)
Enumeration using the LGV lemma

Each path has length $n - 1$
Enumeration using the LGV lemma

Let \(a_{i,j} = \# \) (upright lattice paths from \(A_i \) to \(B_j \)) = \(\left(x(B_j) - x(A_i) \right)^{n-1} \)

By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot’81])

the number \(b_{n,r} \) of such nonintersecting triples of paths is

\[
b_{n,r} = \text{Det}(a_{i,j}) = \begin{vmatrix}
(n-1) & (n-1) & (n-1) \\
\begin{array}{c}
\binom{n-1}{r} \\
\binom{n-1}{r+1} \\
\binom{n-1}{r+2}
\end{array} & \begin{array}{c}
\binom{n-1}{r} \\
\binom{n-1}{r+1} \\
\binom{n-1}{r+2}
\end{array} & \begin{array}{c}
\binom{n-1}{r} \\
\binom{n-1}{r+1} \\
\binom{n-1}{r+2}
\end{array} \\
(n-1) & (n-1) & (n-1) \\
\begin{array}{c}
\binom{n-1}{r-1} \\
\binom{n-1}{r} \\
\binom{n-1}{r+1}
\end{array} & \begin{array}{c}
\binom{n-1}{r-1} \\
\binom{n-1}{r} \\
\binom{n-1}{r+1}
\end{array} & \begin{array}{c}
\binom{n-1}{r-1} \\
\binom{n-1}{r} \\
\binom{n-1}{r+1}
\end{array} \\
(n-1) & (n-1) & (n-1) \\
\begin{array}{c}
\binom{n-1}{r-2} \\
\binom{n-1}{r-1} \\
\binom{n-1}{r}
\end{array} & \begin{array}{c}
\binom{n-1}{r-2} \\
\binom{n-1}{r-1} \\
\binom{n-1}{r}
\end{array} & \begin{array}{c}
\binom{n-1}{r-2} \\
\binom{n-1}{r-1} \\
\binom{n-1}{r}
\end{array}
\end{vmatrix} = \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2} \]

each path has length \(n - 1 \)
Enumeration using the LGV lemma

Let $a_{i,j} = \#$ (upright lattice paths from A_i to $B_j) = \left(x(B_j) - x(A_i) \right)^{n-1}$

By the Lindstroem-Gessel-Viennot Lemma (used in [Viennot’81])

the number $b_{n,r}$ of such nonintersecting triples of paths is

$$b_{n,r} = \text{Det}(a_{i,j}) = \left| \begin{array}{ccc} \binom{n-1}{r} & \binom{n-1}{r+1} & \binom{n-1}{r+2} \\ \binom{n-1}{r-1} & \binom{n-1}{r} & \binom{n-1}{r+1} \\ \binom{n-1}{r-2} & \binom{n-1}{r-1} & \binom{n-1}{r} \end{array} \right| = \frac{2}{n(n+1)^2} \binom{n+1}{r} \binom{n+1}{r+1} \binom{n+1}{r+2}$$

this is also the number of Baxter permutations of size n with r rises
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

\[\pi = 8 \quad 9 \quad 7 \quad 10 \quad 1 \quad 4 \quad 3 \quad 5 \quad 2 \quad 6 \]
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8 \ 9 \ 7 \ 10 \ 1 \ 4 \ 3 \ 5 \ 2 \ 6$

alternation \Rightarrow middle word is 010101…0
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8\ 9\ 7\ 10\ 1\ 4\ 3\ 5\ 2\ 6$

alternation \Rightarrow middle word is 010101...0

middle path is

\[\text{Diagram with path and steps} \]
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

1) Case n even, $n = 2k$

$\pi = 8 \ 9 \ 7 \ 10 \ 1 \ 4 \ 3 \ 5 \ 2 \ 6$

There are $\text{Cat}_k \text{Cat}_k$ alternating (reduced) Baxter permutations of size n.
Alternating (reduced) Baxter permutations

[Cori-Dulucq-Viennot’86], [Dulucq-Guibert’98]

2) Case n odd, $n = 2k + 1$

There are $\text{Cat}_k \text{Cat}_{k+1}$ alternating (reduced) Baxter permutations of size n
Doubly alternating (reduced) Baxter permutations
[Guibert-Linusson’00]

1) Case n even, $n = 2k$

$\pi = 5 \ 7 \ 6 \ 8 \ 3 \ 4 \ 1 \ 2$

Alternation of π: middle word is $010101\ldots 0$

Middle path is

Alternation of π^{-1}: black points are \blacklozenge or \blackdiamondsuit
Doubly alternating (reduced) Baxter permutations
[Guibert-Linusson’00]

1) Case n even, $n = 2k$

$\pi = 5 \ 7 \ 6 \ 8 \ 3 \ 4 \ 1 \ 2$

\Rightarrow

mirror of each other

There are Cat_k doubly alternating (reduced) Baxter permutations of size n
Doubly alternating (reduced) Baxter permutations

[Guibert-Linusson’00]

2) Case \(n \) odd, \(n = 2k + 1 \)

\(\pi = 1 \ 3 \ 2 \ 5 \ 4 \ 9 \ 7 \ 8 \ 6 \)

\(\pi^{-1} \) has black points:

\(\Rightarrow \) mirror of each other

\(\Rightarrow \) mirror of each other

\(\Rightarrow \) mirror of each other

There are \(\text{Cat}_k \) doubly alternating (reduced) Baxter permutations of size \(n \).