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Abstract

We prove that a g-deformation D (X;¢q) of the powers of the discrim-
inant is equal, up to a normalization, to a specialization of a Macdonald
polynomial indexed by a staircase partition. We investigate the expan-
sion of D%(X;q) on different basis of symmetric functions. In particular,
we show that its expansion on the monomial basis can be explicitly de-
scribed in terms of standard tableaux and we generalize a result of King-
Toumazet-Wybourne about the expansion of the g¢-discriminant on the
Schur basis.

1 Introduction

Let X = {z1,...,z,} be an alphabet. The g-discriminant

D1(X;9) := [ [(qzi — 7).
i#]
is a polynomial encountered in different fields of mathematics. In particular,
its specialization at ¢ = 1 is the discriminant which is an example of a sym-
metric function invariant under the transformation x — = + 1 and which has
been the subject of many works in invariant theory (by Cayley, Sylvester and
MacMahon).

In condensed matter physics, it plays a crucial role in the context of the frac-
tional quantum Hall effect. Laughlin [I3] described it through a wavefunction
whose expression involves an even power of the Vandermonde determinant

U gbiin () = 01 (K5 1500, (X,

Laughlin
In this paper, we give the links between the g-discriminant and the Macdon-
ald polynomials. More precisely, our main result is that the “polarized powers”
of the g-discriminant
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D1(X;9) = [[ D154,
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appear when one evaluates some specialization of “staircase” Macdonald poly-
nomials.

The powers of the discriminant (¢ = 1) are encountered also in the context
of generalizations of the Selberg integral [10, 12| 25]. These integrals are closely
related to the notion of Hankel hyperdeterminant [19, [20] and Jack polynomials
[8,[@). The Selberg integral admits g-analogue involving the g-discriminant (see
e.g. [22] ex3 p374). It is interesting to remark that such integrals are related to
Macdonald polynomials [27].

More generally, the specializations t%q® = 1 rise deeper identities related to
the generalization of the Izergin and Korepin determinant due to Gaudin [I§].

The paper is organized as follow. In Section 2] we recall notations and prop-
erties related to symmetric functions. Section[3is devoted to the main theorem
of the paper. We prove that the polynomial D4 (X;q) is a staircase Macdonald
polynomial for a specialization of the parameters ¢ and ¢. As an application, in
Section Ml we give a formula for the coefficients arising in the expansion of an
even power of the Vandermonde determinant in terms of monomial functions.
Finally, in Section[f] we generalize a theorem of King et al. about the expansion
of the g-discriminant in terms of Schur functions.

2 Background and notations

2.1 Symmetric functions

We consider the C[[g,t,q~*, ¢ !]]-algebra Sym of symmetric functions over an
alphabet X, i.e. the functions which are invariant under permutations of com-
muting indeterminates called letters. There exists various families of such func-
tions. We shall need the generating series of complete function:

0.(%) = 351002 = [ fm

zeX

This notation is compatible with the sum X + Y and the product XY :=
EIEX,yGY 2y in the following sense

o (X +Y) = 0.(X)o.(¥) = Y SHX+Y)2!

(see e.g. [I7] 1.3 p 5), and

o1 (XY) = Zsi(xy)ti = H H 1 —1xyt

rzeXyeY




(see e.g. [17] 1.5 p13). In particular, if X = Y one has 0,(2X) = 0,(X)?. This
definition can be extended for any complex number a by putting o,(aX) =
o, (X)“.

We will use the Schur basis whose elements Sy are indexed by decreasing
partitions and defined by

Sy = det (SN )

1<i,j<n’

see e.g. [22] 1.3.4 p41 and [17] 1.4.2 p8.

2.2 Macdonald Polynomials

The Macdonald polynomials (Py(X;q,t))» form the unique basis of symmetric
functions orthogonal for the standard ¢, t deformation of the usual scalar product
on symmetric functions (see e.g. [22] V1.4 p322), verifying

PA(X;q,t) = ma(X) + Y urumy(X). (1)
159

where my is a monomial function in the notation of [22] 1.2.1 p8. Their gener-
ating function is (see e.g. [22] VI.4.13 p324)

1—1
Kou(X,Y) =01 ([ ——XY | = > PA(X;0,)Qx(Y; 0, 1),
1—g¢q T
where Qx(X;q,t) = ba(q,t)Pr(Y;q,t) with

b/\(Qa t) = H

(4,7)EX

1— qki—j-‘rlt)\;-—i

1 — ghimighi it

see e.g. [22] VI.6.19 p339.

Alternatively, when X = {z1,...,2,} is a finite alphabet, the Macdonald
polynomials can be defined as the eigenfunctions of the Sekiguchi-Debiard op-
erator My (see e.g [22] VI.3 p315 and VI.4 p325). Indeed,

P g, )M = [[M]g,e P (X5 0, 1), (2)
where, for any v € N”, [[v]]4,+ is defined as
[o]lg == """+ g7t g (3)
This operator may be defined in terms of divided differences
fFX)My = fX=(1—q)z1)R(tx1; X —21)01 ... Op—1. (4)
where, for each i = 1...n— 1, 9;, denoted on the right, is the operator (see e.g.

[15])

f(-rla" '7:571)81' =

f($1,...,$i,$i+1,...,$n) —f(,fCl,...,l’i+1,$i,...,l’n)

Ti — Ti41




3 Staircase Macdonald polynomials

Let us denote by p := [n—1,...,1,0] and set mp := [m(n — 1),...,m,0] for
m € N. We need the following lemma.

Lemma 3. 1 Under the specialization t — q(kz%) the Macdonald polynomial

Prp(X59,q e ) belongs to an eigenspace of My whose dimension is 1 and its
associated eigenvalue is

n

[[Qkp qlf Z 2k+1)(n—1)/2- (5)

Proof From Equation (@), the eigenvalue associated to a partition A is

by . = (1-2k)(n— z)/2+)\
0], 1 Z ’
Then, if [[A]] 12 = [[2kp]] 1-2¢, it exists a permutation o € &, such that,
0.4 0,9

for each 1 <14 < n, one has +(2k+1)(n—o(i)) = 3(1—2k)(n—14)+ A;. It follows
that

A — Aig1 = %(% +1)(oli + 1) — o(i)) — %(1 — 2k). (6)

Since A is a partition, one has necessarily A; — A\;+1 > 0 and Equality (6] implies
o(i+1) —o(i) > 155% > —1. This implies that o is the identity and A = 2kp.
O

For simplicity, we set p = ¢ and we will consider a finite alphabet
X = {1, - ,zn}. Our main result is that the polarized powers Dy (X, p) of the
discriminant are staircase Macdonald polynomials for the specialization consid-
ered here.

_1
2

Theorem 3.2 One has
Di(X;p) = (—p)2F "D Py (X; ., p?F ). (7)

Proof Reordering factors in D (qr1, T2, ..., 20 p) R(p**~1z1;X — 21), one ob-
tains

Zh=lp X — 1) = @k(X;p)R(p_(%H)xl; X—11).

(8)

Hence, applying Equation (§]), the polynomial D (X;p)9t; can be rewritten as

Dy (qz1, 22, ..., z0;p)R(p

@k(X;p)gﬁl = @k(X;p)R(p72k71.T1; X - wl)al <o Op—1-

Since the polynomial D (X; p) is symmetric in X, it commutes with 01, ..., 0,1
and then

@k(X;p)R(p_%_lxl; X—xl)c’)l s 6n_1 = R(p_Qk_lwl; X—x1)81 e an_lﬁDk(X;p).



The remaining factor R(p~2k~1x1; X — 1) is of total degree n — 1 and there-

fore is sent to a constant under 9;...0,_1. We use the following lemma to
compute this constant.

Lemma 3.3 For any letters a,b,

R(ax1;bxa, - ,bxp)dy -+ Ope1 = Z a't’. (9)

Proof Rewrite R(axy;bxa,...,bry) as
Sp-1(azy — b(X — 21)) = Su1((a + by — bX) = > 2(Si(a +b)Sy—1—i(—bX).
The image of this sum under 9 ...0,—1 is Sp—1(a + b)Sp(—X) as wanted. O

Applying Lemma [3.3] one obtains the value of k,
Kk — Zp(Qk-i-l)(i—n) _ Zp(2k—1)(n—i)—4k(n—i)_ (10)
i=1 i=1

From Equality (B]), one recognizes that k = [|2kp|], ,2t-1. This shows that

Dk(xap) = ﬁk,n(p)PQkp(X; q7p2k_1)a (11)

where 0., (p) is a constant depending only on p, k and n. It remains to com-
pute the coefficient Gy ,(p). Since we know that the dominant coefficient in
Porp(X; ¢, p**~1) is 1 by definition, it suffices to compute the coefficient of the

k=D)L 22k in D5 (X, p). One finds

monomial xj,

Brn(p) = (—p)2F 0,
This ends the proof..d

Example 3.4 For k =2 and n = 4, one obtains

Prig ga0)(z1 + 22 + 73 + 245 q, q3/2) =q" H ((qﬂﬁz - zj)(q3zi - 503))
i#j

4 Expansion of Macdonald polynomials in terms
of monomial functions

Macdonald gives in [22] VI.7.10 p345 the following expansion of the polynomials
@» in terms of monomial functions:

=) (Z qu(q,t)) My, (12)



where the inner sum is over the tableaux of shape A and evaluation p and each
¢r(q,t) is an explicit rational function given in [22] VI.7.11 p346.

Theorem and Equality ([I2) furnish an expansion of D (X;p) according
to the monomial basis,

_ )3k n(n—1)
mmmzlﬂ——TziZW@ﬂU»m (13)
A T

bakp (g, p?Ft1

where the inner sum is over the tableaux of shape 2kp and evaluation A.
Recall that Jack polynomials [, [9] P/{a)(X) are obtained from P\(X;q,t)
setting ¢ = ¢t* and taking the limit when ¢ tends to 1 (see [22] VI 10). One has

P{(X) = lim P (X;£°, 1), (14)
and
3) = lim Qa (s, 1) = b P (15)

where bf\a) = lim; 1 by (%, t). Putting
o) = lim o (1%, 1),

one get from Equation (I3]) an expansion of integral powers of the discriminant.

Corollary 4.1 One has

kn(n—1)
2

DG =Dk(1) = (-1)7F T PEY(X)
- ) ()
A T

where oy, = % and the inner sum is over the tableaur of shape 2kp and

evaluation \.

Example 4.2 Consider an alphabet X = {x1, 2,23} of size 3. One has,

2] 2 213 2] 2
Qu2(X5q,t) = Tt 1|1|m42+ T 1|1|m411+ TT1 1|2|m33
213 212
O aairs])m™
313 213 212
+(112|2|+112|3|+113|3|)m222'

Each tableau T is interpreted as the function ®r,
1—t\? (1—tq\? (1=t2¢*\ [1—*¢°
X; =
Qa2(X;q,1) (1—q) (1_(]2) (1—tq3)(1—tq4)m42
1-t\3/1—1q 1— 243 1—12¢2
+<1—Q) (1_‘12)(1_tq4)(1—q3t)m411+"'




Setting ¢ = t~2 and taking the limit ¢ — 1, the algorithm described here
allows to compute the expansion of the Jack polynomials according to the mono-
mial functions. After simplification, one obtains

2 x) 1 1 1 L 3
=—Myo2——=m ——m — - — .
42 280 42 T 40 ML T 140 BB T T T2 T 140 1222
And finally,

D1(X;1) = —maa+2man1+2ms3 —2msaoq + 6mag .

Corollary [4.1] can be applied to expand Hankel hyperdeterminants. Hyper-
determinants are polynomials defined by Cayley in the aim of generalizing the
notion of determinant to higher dimensional arraysﬁ [4, [5]. Given a mth order
tensor M = (Mil---im)1<i1,...,im<n on a n dimensional space, its hyperdetermi-
nant is

1 , s
Det(M) = ﬁ Z 81gn(01 S O'm) H Mal(i)...am(i)-

01, 0m EGy =1

Note that this polynomial vanishes when m is odd. Suppose that m = 2k is
an even integer. An Hankel hyperdeterminant is an hyperdeterminant whose
entries depend only on the sum of the indices M;, 4, = f(i1 + -+ + d21).
This kind of hyperdeterminant have been already considered by the authors in
collaboration with Thibon and Belbachir [19, 20, [2]. In particular, it is shown
that the coefficients Cy(n, 1) arising in the expression

n

Det (Mi1+“~+i2k) = Z C)\(TL, k) H f(>‘1)5
A 1

=

are equal (up to a multiplicative term equal to the number of permutations
of A divided by n!) to those arising in the expansion of D;(X;1) in terms of
monomial functions.

Example 4.3 From the expansion of the Jack polynomial P8(Z 2/ 3), for an al-
phabet of size 3,

Pg(ZQ/B) (1 4+ 22 +23) = msa — dmgz1 + 6mgae — dmrs + 12mza1 — 8mrsa + 6mes — 8Mgs1
—22megaa + 48mgas + 48ms52 — 36misas + 904y,

one deduces the expansion of the Hankel hyperdeterminant

INote that Cayley proposed several generalizations of determinants. The polynomial con-
sidered here is the simplest one in the sense that it generalizes the expansion of determinant
as an alternated sum. Reader can refer to [19} 20| [21], 23] [26] for more informations on the
subject.



Det (f(ir +i2 +1i3 + 1)) o<y ig iz i<y = F8)F(4)f(0) —4f(8)f(3)f(1) +3f(8)
—4f(7)f(5)£(0) +12f(7)f(4) (1) -8
+3£(6)2£(0) = 8f(6)f(5)f(1) — 22f(6
+24£(6)f(3)% +24£(5)f(2) — 36£(5)
+15f(4)3.

Furthermore, in [I5] Lapointe et al. gave a determinantal expression of Jack
polynomial in terms of monomial functions. These computations leads naturally
to a determinantal expression for Hankel hyperdeterminants.

Note that the formula for the Macdonald polynomials Hy, given by Haglund,
Haiman and Loehr [7], provides an expansion of D (X;q) in terms of modified
monomial functions my(X(1 — ¢)) having a combinatorial interpretation.

5 Expansion of the polarized powers of the ¢-
discriminant in terms of Schur functions

Di Francesco et al. [6] considered the problem of the expansion of the discrimi-
nant in terms of Schur functions. They defined the n-admissible partitions to be
the partitions in the interval [(n — 1)"], [2(n — 1),...,2,0] (with respect to the
dominance order). They conjectured that they are exactly those occurring in
the expansion of the discriminant. This conjecture is false as shown by Scharf et
al. [24]. However, Kind et al. [11] proved that it becomes true when replacing
the discriminant by the g-discriminant.

In this section, we generalize this property to D (X;q). We define (n,m)-
admissible partitions to be the partitions which appear in the expansion

mp (X)L, (X) = Y by ma(X) (17)

A

where X is an alphabet of size n. When m = 2k is even, the (n, 2k)-admissible
partitions are those of the interval [(k(n—1))"], [2k(n—1),...,2k,0]. We prove
that a partition appear in the expansion of D (X; ¢) in terms of Schur functions
if and only if it is a (n, 2k)-partition.

5.1 Computing admissible partitions

Let us denote by A,, ,, the set defined recursively by

An,l = {)\ = [)\1, N ,)\an Z )\}
Apm = {((M +0(1) — SAnton)—1))ce G, and A € A, 1}
(18)

Lemma 5.1 Let )\ be a partition. The following assertions are equivalent.

1. The partition X belongs to Ay, .



2. The partition A is (n, m)-admissible.

3. X is partition of length n less or equal to mp with respect to the dominance
order.

Proof The equivalence between the assertions 1 and 2 is straightforward from
Equations (I7) and (I8). Furthermore, from Equation (I§)), the maximal parti-
tion of A, ,, is mp. It remains to prove 3 = 1. We proceed by induction on m,
if m = 1 then the result is trivial. Suppose that m > 1. Let A be a partition of
size n less or equal to mp with respect to the dominance order. Then ((A — p))
is a partition less or equal to (m —1)p. Indeed, putting ((A—p)) = (g1, ..., pin),
for a permutation o € &,,, one has y; = A\y(;y +n — o(i). Hence, for each i

it < Aoy o+ Aoy Fn—o(1) + -4+ n—o(i)
< MM —l4dn—i
< (m—1(n—3i(i+1))

implies ((A — p)) < (m — 1)p for the dominance order.

By mductlon (()\ p)) belongs to A, ,,,—1. Furthermore, it exists a permu-
tation o such that (A — p)) + p” = A. Hence, from Equation (I8), A € Ay, m.0
5.2 Counting admissible partitions

One considers the free commutative monoid ¥ generated by the symbols T' =

{T1,...,Tn—1} acting on the vectors of size n by
Ti[v1, . vp] = V1, vim1, v — Livggr + 1, viq1, ..., 0]
For a given vector v € Z™, T.v is the set of the vectors w = [wy,...,w,] € Z"

of same weight (i.e. v1 +---+ v, = w1 + ...w,) lower or equal to v for the
dominance order. In particular, if v = X is a partition then T.\ contains all the
partition of size n lower or equal to A\. To each vector v € Z", one associates
the monomial z¥ = 2{*7"2 ...z """ "". For a given weight, the monomial 2"
characterizes completely v, furthermore v is a (decreasing) partition if and only
if its weight is non negative and the degree of the monomial z" in each variable

z; 1s non-negative.

Example 5.2
=
[4,1,1]
1/ N T2
2122 2t,252
[3,2,1] [4,0,2]
/ N\ \
zflzg zfz;l z‘ll,z;S (19)
(2,3,1] [3,1,2] [3,-1,2]
/ hwd N\
zfszg 1 z?z;s zfszg
(1,4,1] [2,2,2] [3,0,3] [3,-2,3]



Acting on v by 7; is equivalent to multiply z¥ by

Zi;ji“ ifl<i<n-—1
Zi

ti={ 3 ifi=1
Zp-2 ifi=n-—1.
Zn—1

Since there is no algebraic relations between the t.s, each vector appears in T.v
with multiplicity 0 or 1. In other words, one has

1
0q(T).2" = - 1_—tq.z” = Z g z?. (20)
7 w<v
where «,  is the degree of the monomial acting on v to obtain w. Extracting
the monomial which encodes a partition is equivalent to extract the part of
the series (20)) constituted only with non-negative exponents. This operation is
performed by the MacMahon Omega operator (see e.g [1])

=2 +qnz+4¢°

which implies that the set of the partitions of size 3 lower or equal to [411] is
{[a11], [321], [222]}.

Hence,

Proposition 5.4 The size n > 2 of the alphabet being fized, the generating
series of the (n, k)-admissible partitions is the rational function

VA V4 Z1Z
(@5 215y Zn1) = Doy ((1 —tz1. 1)1 — %q)(l - %q) (-
1 2

where zg = z, = 1.
Example 5.5 Let us give the first value of 2,,(q,¢; 21, .., 2Zn—1).

1. First, one considers the special case n = 2,
-1 1
Ai(g,t;21) = Qs ((1 —tz)(1 - %)) = (1-gt?) (1~ 2z1))
= 1+zit+ (q+ 292+ (g1 + 22 + (¢® + 28 + 2Dt + ...

This means that, for £k = 1 the only admissible partition is [21], for k = 2,
there is two admissibles partitions [42] and [33], for k = 3 the admissibles
partitions are [63] and [54] etc...

10




3,3 2t4

. _ 1—2;"29
2. Iftn =3, Q[3((]7 t; 21, 22) T -tz zz)(lfqzzg'tz;(qumSqtz)(lfq%)'

3. Ifn=4,A(1,41,1) = %

6 5 4 3 2
4 Tn =5, W1, 41, 1) = SO 08 i e )

5.3 Characterization of the partitions arising in the ex-
pansion of D;(X;q)

In this paragraph, one extends the result of King-Toumazet-Wybourne to the
polynomials D (X; q).

Theorem 5.6 Expand D (X;q) in terms of Schur functions,
Di(Xiq) = Y _ ex(@)Sa(X).
A

Then, cx(q) # 0 if and only if X is a (n,2k)-admissible partition.

Proof Let us prove first the only if part. From Theorem B.2] the polynomial
Dk (X; q) equals (up to a multiplicative coefficient) a specialization of the Mac-
donald Psy,(X;q,t). But it is well known that the partitions arising in the
expansion of Pay,(X;¢,t) in terms of Schur functions belong to the interval
[(k(n —1))"], 2kp (see e.g. the determinantal expression of Macdonald polyno-
mials given in [15]). From Lemma Bl this is equivalent to the fact that A is
(n, 2k)-admissible.

Conversely, to prove that the admissibility of A implies the non nullity of
ex(q), it suffices to prove it for a specialization. We will set ¢ = —1. In this
case,

D(Xsq) = [[ (i +2))" = S,(X)*.
1#]

We will prove a stronger result showing that the coefficient ¢{"™ in the

expansion

S0 = 30 S (X)
A

is non-zero if and only if A is (n, m)-admissible. We proceed by induction on
m. Note that the initial case (m = 2) have been proved by King-Toumazet-
Wybourne in [I1] Corollary 3.2 as a consequence of an important result of
Bereinstein-Zelevinsky [3].

One needs the two following lemmas

Lemma 5.7 If X is a (n,m)-admissible partition (m > 1), then (A — p)) is a
(n,m — 1)-admissible partition.

Proof From Equality (IT), each (n, m)-admissible partition can be obtained by
adding a permutation of p to a (n, m—1)-admissible partition. This is equivalent
to our statement. [J

11



Lemma 5.8 Let p C A be a partition and v := (A1 — 41, -+ -, A1 — 1, An —
fin)). Then, the Littlewood-Richardson coefficient ¢}, = (Sx,S,S,) equals 1.

Proof The Littlewood-Richardson coefficient ci“, is equal to the number of
tableaux of shape v and evaluation A — . But A — p is a permutation if v and
Theorem 11.4.3 of [17] implies that such a tableau exists and is unique. This
ends the proof. (I

End of the proof of Theorem Let A be a (n,m)-admissible partition.
Since p C A, Lemma [5.7] implies that the partition p = (A — p)) is (n,m — 1)-
admissible. And by induction, S, appears with a non-zero coefficient in S;”’l.
The positivity of the Littlewood Richardson coefficients implies that each par-
tition v such that ¢}, , # 0 appears with a non-zero coefficient in the expansion
of S;'. In particular, from Lemma (.8 it is the case of A\. This shows that
ey # 0 if and only if A is (n, m)-admissible and proves the Theorem.[.
Note that other expansion of Macdonald functions can be found in literature
(for example Hall-Littlewood polynomials can be expanded in terms of plane
partitions [16]), it should be interesting to investigate the properties Dy (X;q)
which can be deduced from these expansions.
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